A fast hydrogen sulfide-releasing donor increases the tumor response to radiation therapy

Géraldine De Preter¹, Caroline Deriemaeker¹, Pierre Danhier¹, Lucie Brisson², Thanh Trang Cao Pham¹, Vincent Grégoire³, Bénédicte F. Jordan¹, Pierre Sonveaux² and Bernard Gallez¹

Louvain Drug Research Institute (LDRI), Biomedical Magnetic Resonance Research Group¹, Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics², Institute of Experimental and Clinical Research (IREC), Pole of Molecular Imaging and Experimental Radiotherapy³, Université catholique de Louvain, Brussels, Belgium.

Running Title: Hydrogen sulfide donor potentiates radiotherapy

Keywords: Hydrogen sulfide, tumor, oxygenation, radiosensitivity, proliferation.

Financial support: This study was supported by grants from the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, PDR T.0107.13) (B. Gallez), the Fonds Joseph Maisin (B.F. Jordan, B. Gallez), the Action de Recherches Concertées ARC 14/19-058 (V. Grégoire, B.F. Jordan, P. Sonveaux, B. Gallez), and a Starting Grant from the European Research Council (ERC No. 243188 TUMETABO to P. Sonveaux). G. De Preter and T.T. Cao-Pham are Télévie PhD Fellows, P. Danhier is a Postdoctoral Télévie Fellow, B.F. Jordan and P. Sonveaux are Research Associates of the F.R.S.-FNRS.

Corresponding Author:

Prof. Bernard Gallez, PhD
Biomedical Magnetic Resonance
Louvain Drug Research Institute
Avenue Mounier 73.08
B-1200 Brussels
Belgium
bernard.gallez@uclouvain.be
Tel : +32 2 764 73 91, Fax: 32 2 764 73 90

Conflict of interest: none

Word count (abstract): 250/250 words

Word count (excluding references): 4566/5000

Number of figures: 6
Abstract

Hydrogen sulfide (H$_2$S) is the last gaseous transmitter identified in mammals and previous studies have reported disparate conclusions regarding the implication of H$_2$S in cancer progression. In the present study, we hypothesized that NaHS, a fast H$_2$S-releasing donor, might interfere with the mitochondrial respiratory chain of tumor cells, increase tumor oxygenation and potentiate the response to irradiation. Using EPR oximetry, we found a rapid increase in tumor pO$_2$ after NaHS administration (0.1 mmol/kg) in two human tumor models (breast MDA-MB-231 and cervix SiHa), an effect that was due to a decreased oxygen consumption and an increased tumor perfusion. Tumors irradiated 15 minutes after a single NaHS administration were more sensitive to irradiation compared to those that received irradiation alone (increase in growth delay by 50%). This radiosensitization was due to the oxygen-effect as the increased growth delay was abolished when temporarily clamped tumors were irradiated. In contrast, daily NaHS injection (0.1 mmol/kg/day for 14 days) did not provide any effect on tumor growth in vivo. To understand these paradoxical data, we analyzed the impact of external factors on the cellular response to NaHS. We found that extracellular pH had a dramatic effect on the cell response to NaHS as the proliferation rate (measured \textit{in vitro} by BrdU incorporation) was increased at pH=7.4, but decreased at pH=6.5. Overall, our study highlights the complex role of environmental components on the response of cancer cells to H$_2$S and suggests a new approach for the use of H$_2$S donors in combination with radiation therapy.
Introduction

Hydrogen sulfide (H\textsubscript{2}S) has emerged as an important endogenous modulator and is now considered the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide (CO) (1). H\textsubscript{2}S is an enzymatically produced small molecule that can freely cross biological membranes and exert a wide range of actions. H\textsubscript{2}S most known effect is the reversible inhibition of the last mitochondrial electron acceptor, cytochrome C oxidase (2). Other H\textsubscript{2}S targets have been reported so that H\textsubscript{2}S appears also implicated in the cardiovascular system. H\textsubscript{2}S dilates rat and human blood vessels by opening smooth muscle cells \(K\textsubscript{ATP}\) channels (3). Other cardiovascular effects of H\textsubscript{2}S, such as protection against ischemia/reperfusion injury, have been described (4). Moreover, H\textsubscript{2}S effects are also found in the nervous and endocrine systems, as well as in inflammation (5). Since the discovery that H\textsubscript{2}S is important for physiological and pathological processes, development and clinical applications of injectable donors allowing controlled and safe administration of the molecule have attracted growing interest (6). Because of their commercial availability, pre-clinical and clinical studies have been conducted using fast H\textsubscript{2}S-releasing inorganic salts such as sodium hydrosulfide (NaHS) and sodium sulfide (Na\textsubscript{2}S) (7).

Until now, investigations in cancer research have mainly focused on the effects of H\textsubscript{2}S on proliferation and survival of cancer cells (8-11). However, controversial results exist, as evidenced by the reported increased (8) or decreased (9) proliferation of colon cancer cells following NaHS treatment. A study showed that H\textsubscript{2}S derived from NaHS may confer intrinsic radioresistant properties to cancer cells (12). However, the beneficial effects of H\textsubscript{2}S as co-treatment to radiotherapy have never been studied \textit{in vivo}. We paid attention to this latter aspect because it was previously shown that NO, another gaseous mediator, radiosensitizes tumors in mice (13-15). It was shown that NO acts as an intrinsic radiosensitizer but also acts through an “oxygen enhancement” effect, alleviating tumor
hypoxia which is a major cause of resistance to radiotherapy (16, 17). pO\(_2\) values of 2.5 mmHg or less, are characteristic of advanced solid tumors in a wide range of human cancers (18) and oxygen tensions below 10 mmHg are estimated to significantly reduce radiosensitivity (19). It is related to the fact that oxygen enhances water radiolysis and fixes DNA damage following radiation treatment.

In the present study, we considered the potential effect of NaHS administration on tumor hypoxia and response to irradiation. Considering the origins of tumor hypoxia (18), the effect of NaHS treatment on the delivery of oxygen from the blood and on oxygen consumption by cancer cells were examined. We also investigated in vitro and vivo the impact of NaHS on cancer cell growth when used as a single therapeutic compound.
Materials and methods

Cell culture and reagents

The human cervix carcinoma SiHa and the human breast cancer MDA-MB-231 cell lines were from the American Type Culture Collection (ATCC). SiHa cancer cells were obtained in 2012 and MDA-MB-231 cancer cells were obtained in 2011. Cell lines were authenticated by the provider and were frozen in liquid nitrogen soon after arrival. In this study, aliquots were thawed and early passage (< 20 passages) cells were used. Cells were grown in DMEM + Glutamax (Life Technologies) containing 4.5 g/L glucose supplemented with 10 % heat inactivated FBS and 1% penicillin-streptomycin. For the experiments, culture medium containing no glutamine was used. pH was buffered with 10 mM PIPES or 3.7 g/L sodium bicarbonate. For the oxygen consumption measurements, where no incubation time was used, pH was adjusted to 6.5, 7.0 or 7.5 with HCl 0.1 M and NaOH 0.1 M solutions. All cultures were kept at 37°C in 5% CO₂ atmosphere. Sodium hydrosulfide (NaHS, Sigma) crystals were dissolved in physiological saline (NaCl 0.9%). Rotenone (Sigma), a mitochondrial complex I inhibitor, was diluted in DMSO. Solutions were freshly prepared before all experiments.

Oxygen consumption rate

The oxygen consumption rate (OCR) of intact whole cells was measured using a Bruker EMX EPR spectrometer operating at 9.5 GHz as previously described (20). Adherent cells were trypsinized and resuspended in fresh medium (10⁷ cells/ml). 100 µl of the cell suspension was mixed with 100 µl of 20% dextran to avoid agglomeration and was sealed in a glass capillary tube in the presence of 0.2 mM of a nitrooxide probe acting as an oxygen sensor (¹⁵N 4-oxo-2,2,6,6-tetramethylpiperidine-d₁₆-¹⁵N-1-oxyl, CDN isotopes, Pointe-Claire, Quebec, Canada). Cells were maintained in 37°C during the acquisition of the spectra. EPR linewidth was measured every minute and reported on a calibration.
curve to obtain the oxygen concentration (13). OCR was determined by the absolute value of the slope of the decrease in oxygen concentration in the closed capillary tube.

Cell proliferation

Cell proliferation was assayed with a 5-bromo-2'-deoxyuridine (BrdU)-ELISA based method (Roche) following provider's instructions. Cells were incubated in the presence of BrdU (a nucleotide analog) during 4 hours and the amount of BrdU incorporated in the cells was assessed by colorimetric measurements using a plate reader (SpectraMax M2e, Molecular Devices).

Glucose consumption

Extracellular glucose consumption was measured from supernatant of cultured cells. Metabolite concentration was enzymatically quantified on deproteinized samples with a CMA600 analyzer (CMA Microdialysis AB, Solna, Sweden). Glucose consumption was normalized to protein content using the Pierce BCA Protein assay (Thermo Scientific).

Intracellular ATP quantification

Total intracellular ATP was measured by the ATP Determination Kit (Life Technologies) according to manufacturer's protocol. Cells were washed twice with PBS and lysed in the buffer recommended by the manufacturer (10 mM Tris, 1 mM EDTA, 100 mM NaCl, 0.01% Triton X-100). Cell lysates were added to a reaction mixture containing luciferase and luciferin for bioluminescence measurements using a plate reader (SpectraMax M2e, Molecular Devices). A standard curve was generated with known ATP concentrations in the same conditions. Intracellular ATP concentration was normalized to protein content using the Pierce BCA Protein assay (Thermo Scientific).
pHi measurements

Cells were incubated for 30 min at 37°C in Hank’s medium (Sigma) containing 7 μM 5-(and-6)-Carboxy SNARF-1, Acetoxy methyl Ester, a fluorescent pH-indicator (Life Technologies). Cells were washed with Hank’s medium and fluorescence (excitation 485 nm; emission 580 and 642 nm) was detected using a plate reader (SpectraMax i3, Molecular Devices). Fluorescent values were converted into pH values using the nigericin/high K+ solution calibration technique according to the manufacturer.

Mouse models and in vivo experiments

5 week-old female NMRI nude mice (Janvier Labs) were intramuscularly injected with 10^7 SiHa or MDA-MB-231 human cancer cells in the rear leg. Tumor xenografts were allowed to grow up to 8 mm before experimentation. For the treated groups, NaHS was dissolved in physiological saline (NaCl 0.9%) and given by intraperitoneal injection (100 μmol/kg body weight). Control animals were treated with physiological saline only. Animals were anesthetized by inhalation of isoflurane mixed with air (3% induction, 1.8 % maintain for a minimum of 15 minutes before any measurement). All animal experiments were conducted in accordance with national animal care regulations.

Tumor oxygenation

EPR oximetry using charcoal (CX 0670-1; EM Sciences, Gibbstown, NJ) as oxygen sensor was used to dynamically evaluate changes in tumor oxygenation after treatment with NaHS, using a protocol described previously (21). EPR spectra were recorded using an EPR spectrometer (Magnettech, Berlin, Germany) with a low frequency microwave bridge operating at 1.2 GHz and an extended loop resonator. A suspension of charcoal was injected into the center of the tumor 1 day before measurement (100 mg/mL; 50 μL injected, particle size of 1-25 μm). The localized EPR measurements correspond to an average of the pO₂ values in a volume of ~10 mm³ (22). For the experiments, baseline
values were performed after mice were anesthetized to determine the oxygen status of
tumors before injection of the treatment. Then, the effect of NaHS was measured by
following tumor pO2 for 1 hour after the single injection. Body temperature of the mice was
kept at 37°C throughout the experiment.

Tumor perfusion

The Patent blue staining method was used to obtain an estimation of the tumor perfusion
fraction using a protocol described previously (23). 15 minutes after NaHS or physiological
saline treatment, 100 µL of Patent blue (Sigma) solution (1.25%) was injected in the tail
vein of the mice. After 1 minute, mice were sacrificed and tumors were excised. To
evaluate the tumor perfusion fraction, each tumor was cut into two size-matched halves
and the percentage of stained area of the whole cross section was determined using an in-
house program running on MatLab.

Tumor radioresponse

The tumor was locally irradiated (137Cs γ-iradiator) with a single dose of 16 Gy. Mice were
anesthetized and the tumor was centered in a 3-cm diameter circular irradiation field.
Irradiation was given 15 minutes after injection of NaHS or physiological saline. After
radiotherapy, tumor growth was determined using a caliper until the diameter reached 14
mm, time at which the mice were sacrificed.

Statistical analysis

All results are expressed as means ± standard error of the mean (SEM). Differences
between groups were analyzed using the unpaired Student’s t test or ANOVA when more
than two groups were compared. P<0.05 was considered statistically significant.
Results

NaHS injection increases oxygenation of hypoxic tumors in mice

Hypoxia is a major cause of resistance to radiotherapy in solid tumors. Therefore, we analyzed the capability of the fast H₂S-releasing donor NaHS to increase tumor oxygenation in two human tumor models. As H₂S is rapidly oxidized in biological samples, local tumor oxygenation was monitored before (baseline) and during 1 hour after intraperitoneal injection of NaHS (100 µmol/kg) or vehicle (physiological saline [NaCl 0.9 %]). Oxygen levels were quantified using EPR oximetry, a sensitive method allowing continuous measurement of pO₂ from the same site over time (21). Our results showed that, as compared to control groups, NaHS injection rapidly increased tumor pO₂ in human breast MDA-MB-231 (Fig. 1A) and human cervix SiHa (Fig. 1B) xenografts, where significant increased oxygenation was observed 15 min after NaHS injection. Note the different scales used in Fig. 1A and Fig. 1B. Interestingly, the significant effect on tumor pO₂ correlated with the time to reach maximum plasmatic H₂S concentration following an intraperitoneal injection of NaHS (24).

NaHS inhibits cellular oxygen consumption and enhances tumor perfusion

To understand the significant increase in pO₂ induced by NaHS in hypoxic tumors, oxygen consumption of cancer cells was first studied. We intended to determine *in vitro* how NaHS influences the oxygen consumption rate (OCR) of MDA-MB-231 and SiHa cancer cells. In aqueous solution, H₂S derived from dissolved NaHS is in equilibrium with the poorly membrane permeant HS⁻ + H⁺ with a pKa = 6.9 (25). We therefore analyzed the influence of different extracellular pH (pHe) on OCR inhibition by NaHS. As shown in Fig. 2A-B, exposure to 50 µM NaHS instantaneously inhibited OCR in MDA-MB-231 and SiHa tumor...
cell lines and the response was dependent on pH. We observed that OCR inhibition was more effective when pH decreased. After, to examine the concentration response to NaHS, MDA-MB-231 and SiHa cells were treated with 0, 1.5, 25, 50 and 100 µM NaHS in the presence of acidic pH (Fig. 2C-D). We observed a significantly reduced OCR at 50 µM NaHS in both cancer cell lines. At lower sulfide concentration, the affinity of H2S for the heme center of cytochrome C oxidase is too low to produce detectable inhibition of the enzyme (2), justifying the absence of OCR inhibition at lower NaHS concentrations. Hence, the trend towards an increased OCR in cells exposed to 1.5 µM NaHS corroborates that H2S may also act as a mitochondrial electron donor when present in low concentration (26). At 100 µM NaHS, the same OCR inhibition as with rotenone, an inhibitor of mitochondrial respiration, was observed. To ensure that OCR inhibition was not due to cell mortality caused by the experimental conditions, viability assays were also performed. As shown in Supplemental Fig. S1A-D, no cell death was found.

Blood perfusion was also investigated. Measurements were performed 15 minutes after NaHS injection using the Patent blue staining assay. This method, involving the injection of a dye in the systemic circulation of the mice, has previously been validated and compared with DCE-MRI (23). We observed that, as compared to vehicle-treated mice, the perfused area was increased in MDA-MB-231 (Fig. 3A) and SiHa (Fig. 3B) xenografts of NaHS-treated (100 µmol/kg) mice, indicating that increased perfusion also accounts for the improved tumor O2 level following NaHS treatment.

NaHS radiosensitizes tumors by an “oxygen enhancement” effect

To investigate the therapeutic relevance of NaHS as a potential radiosensitizer, regrowth delay assays were performed in MDA-MB-231 tumors. Tumor growth curves are presented in Fig. 4A. Without irradiation, no difference in tumor growth was observed after a single i.p. administration of NaHS or vehicle. In irradiated groups, the regrowth delay to
reach a 12 mm tumor diameter was 13.6 ± 2 days for irradiation + vehicle and 20.5 ± 3.5 for irradiation + NaHS, suggesting that NaHS administration 15 minutes before irradiation increased sensitivity of tumors by a factor of 1.5 (Fig. 4B). To highlight that NaHS radiosensitizes tumor through an oxygen effect, we also used a group of mice receiving irradiation + NaHS whose legs were temporarily ligated to induce complete hypoxia at the time of irradiation. As the regrowth delay was similar to the irradiation + vehicle group (Fig. 4B), this experiment showed that oxygen was necessary for NaHS to increase radioresponse.

Chronic NaHS injection alone is inactive to control tumor growth in mice

The potential inhibitory or stimulatory effect of the H₂S donor on tumor growth was also evaluated in vivo. Nude mice bearing MDA-MB-231 xenografts were daily intraperitoneally injected with NaHS (100 µmol/kg/day) or vehicle (physiological saline) and tumor diameter was measured until tumors reached 14 mm in diameter. Results showed that daily NaHS injection was inactive to control tumor growth as no difference between NaHS-treated and vehicle-treated MDA-MB-231 tumor bearing mice was found (Fig. 5A). Chronic NaHS injections seemed to have low incidence on the general condition of the mice as no deterioration in body weight was observed as compared to vehicle-treated mice during the experiment (Fig. 5B).

Prolonged exposure to NaHS exhibits opposite effects on cancer cells proliferation depending on the extracellular pH

Some reports have already investigated the intrinsic anticancer properties of H₂S. Under different circumstances, H₂S acts as an inhibitor or as a promoter of proliferation for various cell types (27). It is currently hypothesized that conflictual conclusions arise from
the manner in which cells are exposed to the treatment. We investigated whether pH could play a role in the effects of NaHS on cancer cell proliferation. For the purpose, MDA-MB-231 cancer cells were incubated with 50 µM NaHS in alkaline (pH 7.4) or acidic (pH 6.5) media during 4 hours. Proliferation was assessed using quantitation of BrdU incorporated in the DNA of the cells during incubation. Our results showed opposite effects of NaHS depending on pH (Fig. 6A). In the presence of an alkaline pH, DNA synthesis in NaHS-treated cells increased, as compared to non-treated cells. In contrast, a decrease in DNA synthesis was induced by the H₂S donor when cells were incubated in an acidic medium. The decreased proliferation found in cells incubated at low pH was not associated with cell mortality (Supplemental Fig. S2). Further experiments were conducted to help understand the complex role of H₂S in cancer cell proliferation. We found that reactive oxygen species (ROS) were not implicated in the pro or anti-proliferative effects of NaHS (Supplemental Fig. S3). We then asked whether a glycolytic switch occurred in the NaHS-treated cells. Indeed, enhanced glycolysis is known to confer advantages for cancer cells proliferation by providing reductive equivalents and glycolytic intermediates that fuel important biosynthetic reactions and promote cell expansion (28-30). We found a significant increase in glucose consumption (Fig. 6B) in NaHS-treated cells compared to non-treated cells in the alkaline condition, seemingly induced to maintain ATP homeostasis (Fig. 6C) in compensation to inhibition of the mitochondrial function. Supporting our findings, others have also reported that a synthetic H₂S donor promotes an influx of glucose and triggers enhanced glycolysis in another human breast cancer cell line (31). We then analyzed the decreased proliferation induced by NaHS in the acidic condition. By noticing that low pH itself had profound impact on cancer cells proliferation, we questioned whether NaHS treatment was able to exacerbate the acidic stress experienced by cancer cells at low pH. Indeed, it was recently evidenced that, besides its ability to enhance glycolysis, H₂S also impairs the activity of pH regulators in cancer cells,
leading to the intracellular accumulation of acid and reduction of pHi (31, 32). It is also known that pHi must be kept in a narrow range, otherwise cell cycle progression and biosynthetic processes are compromised (33). By measuring pHi in MDA-MB-231 cancer cells, we observed that 4 hours of exposure to an acidic pHe decreased pHi, and that an additional effect was found when NaHS was added (Fig. 6D).
Discussion

In this study, we showed that H$_2$S used as co-treatment to radiotherapy, but not as single treatment, provide beneficial effects for cancer therapy.

Clinical investigation has demonstrated that tumor hypoxia, arising from an imbalance between oxygen consumption and blood supply is a major cause of resistance to radiotherapy. Therefore, selective targeting of cellular oxidative metabolism and/or tumor perfusion is challenging to radiosensitize tumors. For the first time, we report that administration of an H$_2$S donor (NaHS) before radiotherapy improves tumor oxygenation and radiosensitivity. Our results suggest that NaHS rapidly reduces tumor hypoxia by decreasing oxygen consumption by tumor cells and by increasing oxygen delivery by the tumor vasculature. Human cancer cells treated with NaHS exhibited a decreased oxygen consumption rate that was dose and pHe-dependent. The potentiating effect of an acidic pHe on OCR inhibition by NaHS is of particular interest as hypoxic areas are generally associated with low pH due to cellular adaptations (28, 34) so that pHe values as low as 6.5 have been observed in human tumors (35). Several mechanisms may be implicated in the enhanced inhibitory effect of NaHS on OCR at low pHe. First, as H$_2$S dissociates to form HS$^-$ + H$^+$ ions with a pKa close to 7, acidosis shifts the balance to the uncharged (H$_2$S) form, which is permeant to the cell membrane (25). Also, Nicholls and Kim have demonstrated that cytochrome C oxidase inhibition by H$_2$S is pH-dependent (Ki values ranging from 2.6 µM to 0.07 µM at pH of 8.05 to 6.28, respectively) (36). We also observed that when incubated in the same experimental conditions, OCR inhibition by NaHS was more efficient in MDA-MB-231 cancer cells than in SiHa cancer cells. In vivo, a major increase in pO$_2$ was also found in MDA-MB-231 tumors following NaHS treatment. These different sensitivities may involve the capacity of cells to metabolize H$_2$S. It has been mathematically demonstrated (37) and experimentally validated (38) that targeting oxygen
consumption was the most effective way to reduce tumor hypoxia. Therefore the different cellular response observed in OCR experiments may account for the greater increased pO$_2$ found in MDA-MB-231 tumors following NaHS injection.

We also studied the effect of NaHS on tumor perfusion. At first glance, as H$_2$S induces vasorelaxation in numerous types of blood vessels (3), it would appear that a systemic administration of H$_2$S would lead to a negative response in tumor perfusion because of the so-called “steal effect” (39). However, our results showed that NaHS injected in the systemic circulation of the mice increased tumor perfusion in two tumor models. The fact that the vasoactive effects of H$_2$S are oxygen-dependent may play a beneficial role on the vascular response of hypoxic tumors. Indeed, both chronic an intermittent hypoxia increase the expression of K$_{ATP}$ channels (40), the principal vascular target of H$_2$S (3). Moreover, it has been reported that H$_2$S induces vasorelaxation much faster at below physiological O$_2$ levels (41).

As we showed that NaHS increases tumor pO$_2$ by targeting both cancer cells metabolism and tumor perfusion, we then conducted radiosensitizing experiments in the MDA-MB-231 tumor model to test the therapeutic value of the use of NaHS in combination with radiation therapy. There was a significantly increased radioresponse of the tumors when irradiation was applied 15 minutes after NaHS injection, time at which tumor reoxygenation occurred. Confirming that the oxygen level is an important factor for radiosensitization by the H$_2$S donor, tumors that were clamped during the irradiation were not radiosensitized.

One area related to H$_2$S treatment for cancer that has already been studied is the effect on proliferation and survival. Changes in the expression of endogenous H$_2$S-producing enzymes (11) or exogenous administration of H$_2$S donors (8-10) suggests that H$_2$S controls tumor progression. Here, we studied the impact of pH$_e$ on the cellular response to prolonged exposure to NaHS. At pH$_e = 7.4$, the H$_2$S donor increased glucose
consumption. Enhanced glucose uptake was likely induced in cancer cells to compensate the ATP depletion due to the mitochondrial inhibition observed in these experimental conditions. Because enhanced glucose metabolism is known to promote cancer cells proliferation (28, 29), increased glycolysis by NaHS could potentially account for the increased DNA synthesis rate observed in our study. On the other hand, as H$_2$S also impaired pH$_i$ homeostasis, NaHS exhibited anti-proliferative effects when cells were incubated at lower pH$_e$. Taken together, our results emphasize how external factors influence cell response to H$_2$S.

The chronic injection of NaHS in mice did not provide significant effect on tumor growth, probably because of the microenvironmental heterogeneities characteristic of solid tumors, such as pH gradients. Using xenografts of leukemia cells in mice, others have evidenced the efficacy of a synthetic H$_2$S donor to restrain tumor growth (10). On the contrary, silencing of the H$_2$S producing enzyme cystathionine-β-lyase (CBS) decreased tumor growth (11). Further experiments with increasing dose of NaHS injected more repeatedly or intratumorally may highlight pro or anti-cancer properties in vivo. Our experiment suggested a good tolerance of the mice to daily 100 µmol/kg NaHS administration, but more accurate monitoring of in vivo toxicity should be considered, especially in dose escalation experiments. Finally, as we showed that the anti-proliferative effect of NaHS arises at low pH, more advanced tumors may be more sensitive to the treatment.

In conclusion, we report that NaHS, a fast H$_2$S-releasing donor, enhances radiotherapy efficacy by alleviating hypoxia in solid tumors. The good tolerance of the mice to chronic NaHS administration further pleads in favor of pre-clinical evaluation of the combination of H$_2$S donors to fractionated radiotherapy. When considering H$_2$S as single treatment for cancer, we report paradoxical effects of H$_2$S on cancer cell proliferation depending on external pH and no therapeutic benefits in vivo. Therefore, we suggest a new approach for the use of H$_2$S donors in combination therapy.
Financial Support

This study was supported by grants from the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, PDR T.0107.13) (B. Gallez), the Fonds Joseph Maisin (B.F. Jordan, B. Gallez), the Action de Recherches Concertées ARC 14/19-058 (V. Grégoire, B.F. Jordan, P. Sonveaux, B. Gallez), and a Starting Grant from the European Research Council (ERC No. 243188 TUMETABO to P. Sonveaux). G. De Preter and T.T. Cao-Pham are Télévie PhD Fellows, P. Danhier is a Postdoctoral Télévie Fellow, B.F. Jordan and P. Sonveaux are Research Associates of the F.R.S.-FNRS.
References

Figure legends:

Fig. 1. NaHS injection increases tumor pO$_2$. Tumor pO$_2$ was monitored in (A) MDA-MB-231 and (B) SiHa tumors by EPR (L-band) oximetry before (baseline) and after NaHS (100 µmol/kg, ●) or vehicle (NaCl 0.9 %, ○) i.p. injection (60 min). Each point represents mean pO$_2$ ± SEM. *$p<0.05$, **$p<0.01$, ***$p<0.001$. ANOVA and Bonferroni post-test (n = 5-7/group).

Fig. 2. NaHS treatment decreases cancer cells oxygen consumption rate. OCR of viable MDA-MB-231 and SiHa cancer cells was measured in vitro using EPR (X-band) oximetry. (A-B) Cancer cells treated with 50 µM NaHS or vehicle (NaCl 0.9 %) in the presence of different extracellular pH (pHe) values. (C-D) Cancer cells treated with increasing NaHS concentration or vehicle in the presence of pHe = 6.5. Each bar represents mean OCR ± SEM. *$p<0.05$, **$p<0.01$, ***$p<0.001$, ns, not significant. Two-sided t test (A-B) (n = 3) or ANOVA and Dunnett’s post-test (C-D) (n = 3).

Fig. 3. NaHS injection increases blood perfusion. Perfusion of (A) MDA-MB-231 and (B) SiHa tumors was measured by Patent blue staining 15 min after NaHS (100 µmol/kg) or vehicle (NaCl 0.9 %) i.p. injection. Each bar represents mean colored area ± SEM. *$p<0.05$, **$p<0.01$. Two-sided t test (n = 4-5/group).
Fig. 4. NaHS in combination with radiotherapy increases the radioresponse of MDA-MB-231 tumors. (A) Tumor growth curves of mice treated with NaHS (100 µmol/kg, ■) or vehicle (NaCl 0.9 %, □) alone, 16 Gy of radiotherapy 15 min after NaHS (●) or vehicle (○) injection and 16 Gy of radiotherapy 15 min after NaHS injection plus ligation at the time of irradiation (▲). Each point represents the mean tumor size ± SEM. (B) Regrowth delay expressed as the time to reach a tumor size of 12 mm. *p<0.05, **p<0.01, ns, not significant. ANOVA and Bonferroni post-test (n = 6/group).

Fig. 5. NaHS injected chronically is inactive on MDA-MB-231 tumor growth. (A) Tumor growth and (B) body weight of mice treated daily with NaHS (100 µmol/kg/day, ■) or vehicle (NaCl 0.9 %, □). Each point represents mean ± SEM (n = 4/group).

Fig. 6. pH-dependent opposite effects of NaHS on MDA-MB-231 cancer cells proliferation. Cancer cells were incubated with 50 µM NaHS or vehicle (NaCl 0.9 %) in the presence of different pH values during 4 hours. (A) Proliferation rates were analyzed by incorporation of a nucleotid analog (5-bromo-2'-deoxyuridine [BrdU]) in the DNA of the cells during the incubation. (B) Glucose consumption was evaluated by measuring extracellular glucose concentrations before and after the 4 hours incubation in the presence of pH = 7.4. (C) Intracellular ATP level was quantified using a luciferase-based method after the 4 hours incubation in the presence of pH = 7.4. (D) pH was measured using a fluorescent pH-indicator. Each bar represents mean ± SEM. *p<0.05, ***p<0.001. Two-sided t test (n ≥ 3).
Fig. 2

A. MDA-MB-231

- NaCl
- NaHS 50 μM

B. SiHa

- NaCl
- NaHS 50 μM

C. MDA-MB-231

- NaCl
- NaHS 1.5 μM
- NaHS 25 μM
- NaHS 50 μM
- NaHS 100 μM
- Rotenone 20 μM

D. SiHa

- NaCl
- NaHS 1.5 μM
- NaHS 25 μM
- NaHS 50 μM
- NaHS 100 μM
- Rotenone 20 μM

OCR (nmol O₂/min/5x10⁶ cells)

- pH 6.5
- pH 7
- pH 7.5

ns **p < 0.05** **p < 0.01** **p < 0.001**
Fig. 3

(A) MDA-MB-231

(B) SiHa

Perfused tumor area (%)
Fig. 4

Figure A

Tumor diameter (mm) over days post-irradiation for different treatments: NaCl, NaHS, 16 Gy + NaCl, 16 Gy + NaHS, and 16 Gy + NaHS + Ligation.

Figure B

Time to reach 12 mm diameter (days post-irradiation) for 0 Gy and 16 Gy treatments with NaCl, NaHS, and NaHS + ligation treatments. Significance levels are indicated as *p < 0.05* and **p < 0.01**.

ns: not significant.
Fig. 5

(A) Tumor diameter (mm) over days of treatment.

(B) Body weight (g) over days of treatment.

Legend:
- □ NaCl
- ■ NaHS
Molecular Cancer Therapeutics

A fast hydrogen sulfide-releasing donor increases the tumor response to radiation therapy

Geraldine De Preter, Caroline Deriemaeker, Pierre Danhier, et al.

Mol Cancer Ther Published OnlineFirst December 18, 2015.

Updated version

Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-15-0691-T

Supplementary Material

Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/12/18/1535-7163.MCT-15-0691-T.DC1

Author Manuscript

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.