Inhibition of p70S6K1 Activation by Pdcd4 Overcomes the Resistance to an IGF-1R/IR Inhibitor in Colon Carcinoma Cells

Yan Zhang¹, Qing Wang¹, Li Chen²,³, and Hsin-Sheng Yang¹,³

Abstract

Agents targeting insulin-like growth factor 1 receptor (IGF-1R) are being actively examined in clinical trials. Although there has been some initial success of single-agent targeting IGF-1R, attempts in later studies failed because of resistance. This study aimed to understand the effects of programmed cell death 4 (Pdcd4) on the chemosensitivity of the IGF-1R inhibitor OSI-906 in colorectal cancer cells and the mechanism underlying this impact. Using OSI-906-resistant and -sensitive colorectal cancer cells, we found that the Pdcd4 level directly correlates with cell chemosensitivity to OSI-906. In addition, tumors derived from Pdcd4 knockdown cells resist the growth inhibitory effect of OSI-906 in a colorectal cancer xenograft mouse model. Moreover, Pdcd4 enhances the antiproliferative effect of OSI-906 in resistant cells through suppression of p70S6K1 activation. Knockdown of p70S6K1, but not p70S6K2, significantly increases the chemosensitivity of OSI-906 in cultured colorectal cancer cells. Furthermore, the combination of OSI-906 and PF-4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906-resistant colon tumor cells in vitro and in vivo. Taken together, activation of p70S6K1 that is inhibited by Pdcd4 is essential for resistance to the IGF-1R inhibitor in colon tumor cells, and the combinational treatment of OSI-906 and PF-4708671 results in enhanced antiproliferation effects in colorectal cancer cells in vitro and in vivo, providing a novel venue to overcome the resistance to the IGF-1R inhibitor in treating colorectal cancer. Mol Cancer Ther. 14(3): 1–11. © 2015 AACR.

Introduction

The insulin-like growth factor 1 receptor (IGF-1R) signaling pathway has been shown to stimulate cancer development and progression in various cancers, including colorectal cancer (1–4). Conversely, inactivation of IGF-1R signaling inhibits tumor growth, reduces tumor metastasis, and enhances the antitumor effects of other cancer therapeutic agents (5–7). Upon binding with ligands (IGF-1, IGF-2, and insulin), IGF-1R leads to activation of downstream pathways, including the PI3K–AKT and Ras–MAPK pathways (2). Several epidemiologic studies have shown that IGF-1R activation correlates with the risk of colon cancer (8–10). In addition, immunohistochemical studies revealed that IGF-1R is overexpressed in colorectal cancer tissues compared with adjacent normal tissues (8). Moreover, the higher expression level of IGF-1R is associated with a higher grade and stage in patients with colorectal cancer (11). Thus, inhibition of the IGF-1R pathway may offer a promising strategy for colorectal cancer therapeutics.

OSI-906 (cis-3-[8-amino-1-(2-phenylquinolin-7-yl)imidazo[1,5-a]pyrazin-3-yl]-1-methyl cyclobutanol) is a small molecule that binds to the ATP-binding pocket of tyrosine kinase receptors, causing dual inhibition of both IGF-1R and insulin receptor (IR; ref. 12). Tissue culture and xenograft studies have confirmed the antitumor properties of OSI-906 in several types of human cancer cells, including lung (13), colon (14, 15), liver (16), and ovarian (17). However, like other receptor tyrosine kinases that have been tested as therapeutic targets, tumor cells frequently develop resistance to IGF-1R inhibitors. Recently, in a study of 27 colon tumor cell lines responding to OSI-906 treatment, Pitts and colleagues (15) classified cell lines with an IC₅₀ value of ≤1.5 μmol/L as sensitive and cell lines with an IC₅₀ value of ≥5.0 μmol/L as resistant. A similar result was also reported by Flanigan and colleagues (14) using PQIP (cis-3-[3-(4-methyl-piperazin-1-yl)-cyclobutyl]-1- (2-phenyl-quinolin-7-yl)- imidazo[1,5-a] pyrazin-8-ylamine), an OSI-906 derivative. Consistent with the cell culture system, OSI-906 showed robust antitumor activity in the GEO (sensitive cell) xenografts, but did not significantly inhibit tumor growth in RKO (resistant cell) xenograft (14, 15). The mechanism that resistant cells deter the growth inhibition by OSI-906 is unknown.

Programmed cell death 4 (Pdcd4), a tumor suppressor, is frequently downregulated in several cancerous tissues compared with adjacent normal tissues, including colorectal cancer (18). Immunohistochemical studies showed that a high Pdcd4 protein level correlates with good prognosis in patients with colorectal cancer (18), suggesting that Pdcd4 expression level is an important factor for colorectal cancer patient survival. Overexpression of pdcd4 cDNA inhibits 12-O-tetradecanoylphorbol-13-acetate

¹Department of Cancer Biology and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky. ²Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky. ³Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, Kentucky.

Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).

Y. Zhang and Q. Wang contributed equally to this article.

Corresponding Author: Hsin-Sheng Yang, University of Kentucky, College of Medicine, 350 HSRB, 800 Rose Street, Lexington, KY 40536. Phone: 859-323-6684; Fax: 859-323-1059; E-mail: hyang3@uky.edu

doi: 10.1158/1535-7163.MCT-14-0648

©2015 American Association for Cancer Research.

www.aacrjournals.org
generated as described previously (26). Cells were incubated at
GEO-shLacZ (GEO-L), and GEO-shPdcd4 (GEO-P) cells were
expressing pdcd4 (20). Consistent with these observations, transgenic mice over-
expressing pdcd4 in mice led to increased DMBA/TPA–induced papilloma formation and carcinoma incidence (21). Knockout of Pdcd4 in mice inhibited tumor invasion and metastasis. In colorectal cancer cells, ectopic expression of pdcd4 suppressed invasion (23, 24), whereas knockdown of Pdcd4 expression resulted in epithelial-to-mesenchymal transition (25), promoted invasion in cultured cells (26, 27), and increased liver metastasis when cells were orthotopically injected into nude mice (25). These findings suggest that Pdcd4 is able to inhibit both tumor promotion and progression stages.

In this study, we examined the effects of Pdcd4 expression level on OSI-906 sensitivity in colorectal cancer cells. We found that Pdcd4 enhances the chemosensitivity of OSI-906 in colorectal cancer cells through inactivation of p70S6K1. OSI-906 in combination with p70S6K1 siRNA or p70S6K1 kinase inhibitor, PF-4708671, sufficiently inhibits cell growth in vitro and in vivo, suggesting that inhibition of both IGF-1R and p70S6K1 activation is a promising strategy to overcome the resistance to the IGF-1R inhibitor for colorectal cancer therapeutics.

Materials and Methods

Drug
OSI-906 and BMS-754807 were purchased from Chemie Tek. PF-4708671 was obtained from Selleckchem. All drugs were dissolved in DMSO at 10 mmol/L and stored at −20°C for in vitro studies. For in vivo studies, both OSI-906 and PF-4708671 were dissolved in 25 mmol/L tartaric acid.

Cell culture
The colon GEO and RKO cells were generously provided by Dr. Douglas Boyd (MD Anderson Cancer Center, Houston, TX), and the rest cell lines were purchased from the ATCC. GEO, HT29, RKO, and HCT116 cells were grown in McCoy’s medium. LoVo, SW480, SW620, and Colo205 cells were cultured in RPMI-1640 medium. CaCo2 cells were cultured in Eagle’s Minimum Essential Medium. All medium was supplemented with 10% FBS, 2 mmol/L l-glutamine, and 100 U/mL penicillin-streptomycin. HT29-shLacZ (HT29-L), HT29-shPdcd4 (HT29-P), GEO-shLacZ (GEO-L), and GEO-shPdcd4 (GEO-P) cells were generated as described previously (26). Cells were incubated at 37°C in a humidified atmosphere of 5% CO2 in air. All cell lines were not tested and authenticated by the authors.

Overexpression of Pdcd4 and knockdown of S6K
For overexpression of Pdcd4, 5 × 10^5 cells were plated onto a 100-mm dish and transfected with 2.5 μg of pcDNA3.1–Pdcd4 plasmid (or 2.5 μg of pcDNA3.1 plasmid) using 7.5 μL of PolyJet DNA In Vitro Transfection Reagent (SignaGen Laboratories) according to the manufacturer’s protocol. For knockdown of p70S6K, 3.5 × 10^5 cells were seeded onto a 60-mm dish and transfected with 1 μL of 10 μmol/L p70S6K siRNA (or p70S6K2 siRNA; Santa Cruz Biotechnology), using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) according to the manufacter’s protocol. After 48 hours, cells were collected for proliferation and Western blot analyses.

Cell proliferation and apoptosis assays
The effects of OSI-906 or the combination of OSI-906 and PF-4708671 on cell proliferation was determined with XTT and clonogenic assays. XTT assays were performed as described previously using the Cell Proliferation Kit II (XTT; Biotium, Inc.; ref. 28). For clonogenic assays, cells (1 × 10^5 cells/well) were seeded on a 6-well plate and subsequently treated with drugs as indicated in the legends of figures 4 and 5. After 1 week of incubation, cells were stained with 1% crystal violet, and the number of colonies was counted and recorded.

Apoptosis assays were performed using the Annexin V–FITC Apoptosis Kit (Biolegend). Briefly, 1 × 10^6 cells were washed with PBS twice and then resuspended in Annexin V–binding buffer. The cell suspension (100 μL) was subsequently added with 5 μL of Annexin V–FITC solution and 10 μL of propidium iodide solution. After incubation for 15 minutes at room temperature, 400 μL of Annexin V–binding buffer was added to the cell suspension and subsequently assayed for apoptotic cell distribution using a FacsCalibur cell analyzer (BD Biosciences).

Western blot analysis
Western blot analysis was performed as described previously (26). The following antibodies were used: Pdcd4 (1:2,500 dilutions), phospho-p70S6K1(Thr389), phospho-AKT(Ser473), p70S6K1, p70S6K2 (1:500 dilutions), AKT, phospho-MDM2, phospho-S6, S6, phospho-4E-BP1(Thr37/46), 4E-BP1, caspase-3. The antibodies without specific dilution factor were used at 1:1,000 dilutions. Pdcd4 antibody was generated as described previously (26). The p70S6K2 antibodies were purchased from Thermo Fisher Scientific, cleaved caspase-3 antibody was purchased from Abcam, and the rest of the antibodies were purchased from Cell Signaling Technology. The band intensity of the target protein was quantified using VisionWork LS image acquisition and analysis software (IVP).

In vivo xenograft study
Five- to 6-week-old female athymic nude mice (Hsd:Athymic Nude-Foxn1nu) were purchased from Harlan. Mice were maintained in the facility of University of Kentucky under specific pathogen-free conditions. Animal care procedures and experimental protocols were approved by the Institutional Animal Care and Use Committee based on guidelines from the NIH, Bethesda. All mice were fed with a commercial diet, given water ad libitum and subjected to a 12-hour light/12-hours dark cycle. HT29-L, HT29-P, and HCT116 cells (1 × 10^6 cells) in a logarithmic growth phase were harvested and resuspended in PBS. For each mouse, five million cells were injected s.c. into the flank using a 23-gauge needle. Mice were monitored daily for signs of toxicity and weighed twice weekly. Tumor size was evaluated every 3 days by caliper measurements. Tumor volume was calculated using the following formula: volume = (length × width^2)/0.52. When tumors reached 150 to 300 mm^3, mice were randomly assigned to the following groups (5 mice/group). For injection of HT29-L and HT29-P cells, mice were treated with vehicle (25 mmol/L tartaric acid) or OSI-906 (30 mg/kg) for 12 days. For injection of HCT116 cells, mice were treated with (i) vehicle (25 mmol/L tartaric acid); (ii) OSI-906 alone (30 mg/kg); (iii) PF-4708671.
alone (60 mg/kg); and (iv) OSI-906 (30 mg/kg) + PF-4708671 (60 mg/kg) and treated with drugs orally for 14 days. Vehicle and OSI-906 are given once per day and PF-4708671 is given once every other day. Twenty-four hours after the last treatment, the mice were sacrificed and the tumor weights were measured. It has been reported that treating mice with 25 to 75 mg/kg of OSI-906 per day significantly inhibits tumor growth without toxic effects (29). Thus, we chose the dose of OSI-906 at 30 mg/kg per day. The dosage of PF-4708671 at 60 mg/kg was chosen on the basis of the amount of OSI-906 we used for in vitro study and the fact that the IC_{50} value of OSI-906 is about twice that of the IC_{50} value of OSI-906 (29, 30). We treated mice with OSI-906 and PF-4708671 every other day to reduce the potential toxicity. In fact, mice treated with OSI-906 (30 mg/kg), PF-4708671 (60 mg/kg), or OSI-906 (30 mg/kg) + PF-4708671 (60 mg/kg) for 14 days showed no evidence of toxicity, that is, body weight loss more than 15%, decreased food intake, or diarrhea.

Immunohistochemical analysis and TUNEL assay

The tissue samples were fixed with 4% neutral-buffered paraformaldehyde, embedded in paraffin, and sectioned into 4-μm slices. IHC analysis with Ki-67 antibody was carried out as described previously (25). The TUNEL assay was performed using the ApopTag Peroxidase In Situ Apoptosis Detection Kit (EMD Millipore) according to the manufacturer’s protocol. The apoptosis index and proliferation index were calculated as number of cells with positive TUNEL and Ki-67 staining per 500 cells counted × 100%, respectively.

Statistical analysis

For longitudinal tumor volume data, pairwise comparisons of interest were accomplished by linear mixed models on the log_{10} transformation of the mean growth curve of the percentage of tumor volume. For tumor weight data, pairwise comparisons of interest were accomplished by two-sample t tests. Adjustment in P values due to multiple pairwise comparisons was performed using the Holm procedure. Data are shown as the mean ± SD with at least four replicates (n ≥ 4) except semiquantification of Western blot analyses (n ≥ 2). Adjusted P values less than 0.05 were considered statistically significant. All statistical modeling and tests were performed by SAS version 9.3 and R version 3.0.1.

Results

The level of Pdcd4 expression correlates with the chemosensitivity to OSI-906 in colorectal cancer cells

To test whether Pdcd4 expression correlates with the sensitivity to OSI-906, an IGF-1R/IR inhibitor, we examined the Pdcd4 expression levels in four OSI-906-sensitive and four OSI-906-resistant colon cell lines. As shown in Fig. 1A, the Pdcd4 protein level in sensitive cells (HT29, Caco2, Colo205, and GEO) is much higher than in resistant cells (HCT116, RKO, SW480, and LoVo), implying that the Pdcd4 expression level correlates with the chemosensitivity to OSI-906 in colorectal cancer cells.

If Pdcd4 expression level is crucial for tumor cell sensitivity to OSI-906, altering the Pdcd4 level should affect the chemosensitivity to OSI-906 treatment. First, we overexpressed pcd4 cDNA in resistant (HCT116, RKO, SW480, and LoVo) and sensitive cells (HT29, Caco2, Colo205, and GEO) and measured the IC_{50} value of OSI-906. As shown in Fig. 1B, HCT116 cells were transduced with lentiviral particles containing shRNA (HT29-L and GEO-L). After 24 hours, cells were plated onto 96-well plates and exposed to different concentrations of OSI-906. After 72 hours, the cell viability was determined using XTT. The absorbance at 0 μmol/L is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.05) versus control. C, knockdown of Pdcd4 in sensitive cells reduces sensitivity to OSI-906. Cells were transfected with empty vector (SW480-C and HCT116-C) or pcd4 expression plasmid (SW480-Pdcd4 and HCT116-Pdcd4). After 48 hours, cells were plated onto 96-well plates and exposed to different concentrations of OSI-906. After 72 hours, the cell viability was determined using XTT. The absorbance at 0 μmol/L is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.05) versus control. D, cells were plated onto 96-well plates and exposed to different concentrations of BMS-754807. After 72 hours, the cell viability was determined using XTT. The absorbance at 0 μmol/L is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.05) versus control. Each experiment was repeated at least twice. The representative data are shown.
OSI-906–resistant SW480 and HCT116 cells and treated cells with OSI-906 from 0 to 5 μmol/L for 72 hours. SW480 and HCT116 cells were chosen because of their low level of endogenous Pdcd4 (Fig. 1A). Overexpression of Pdcd4 enhanced the chemosensitivity of OSI-906 in SW480 and HCT116 cells (SW480-Pdcd4 and HCT116-Pdcd4) in both XTT assays (Fig. 1B) and clonogenic assays (Supplementary Fig. S1A). OSI-906 showed no significant effect on proliferation of cells expressing empty vector (SW480-C and HCT116-C). We also treated control and Pdcd4-overexpressing cells with OSI-906 at 5 μmol/L from 1 to 6 days. The Pdcd4-overexpressing cells treated with OSI-906 displayed slower proliferation than empty vector–expressing cells treated with OSI-906 (Supplementary Fig. S2). Next, we knocked down Pdcd4 expression in sensitive (HT29 and GEO) cells. Pdcd4 knockdown cells (HT29-P and GEO-P) exhibited resistance to OSI-906 comparing with control cells (HT29-L and GEO-L; Fig. 1C and Supplementary Fig. S1B). Pdcd4 knockdown cells were generated by transducing cells with lentiviral particles containing pCd4 shRNA as described previously (26). These results suggest that the level of Pdcd4 expression is critical in sensitizing tumor cells to the antiproliferative effect of OSI-906.

We also evaluated whether Pdcd4 enhances cell sensitivity to another potent IGF-1R/IR inhibitor, BMS-754807 (31). As shown in Fig. 1D, BMS-754805 inhibits proliferation more efficiently in SW480 cells with Pdcd4 overexpression than in control cells. Conversely, knockdown of Pdcd4 in HT29 cells abolished the growth inhibitory effect of BMS-754807. These results further demonstrate that Pdcd4 enhances cell sensitivity to the IGF-1R inhibitor.

Tumors derived from Pdcd4 knockdown cells resist OSI-906

To further validate our in vitro results, we tested the efficacy of OSI-906 in inhibiting growth of tumors derived from HT29-L and HT29-P in vivo. As expected, OSI-906 (30 mg/kg, daily) dramatically inhibited tumor growth in mice injected with HT29-L (sensitive) cells (Fig. 2A, closed circle). However, OSI-906 did not significantly inhibit the growth of HT29-P (resistant) cells derived tumors (Fig. 2A, closed square) when compared with vehicle-treated mice (Fig. 2A, open square; \(P = 0.639 \)). The increased rate of tumor volume over time in HT29-L+OSI-906 is significantly slower than HT29-P+OSI-906 (\(P = 0.045 \)). In addition, treatment of OSI-906 for 12 days also showed significant decrease in tumor weight in HT29-L–derived tumors compared with vehicle-treated HT29-L–derived tumors (\(P = 0.008 \)) and OSI-906–treated HT29-P–derived tumors (\(P < 0.001 \); Fig. 2B and C). These findings are consistent with the results observed in vitro with OSI-906 treatment, in which cells with low Pdcd4 level resist OSI-906 treatment.

Pdcd4 inhibits OSI-906–induced phosphorylation of p70S6K1 in colorectal cancer cells

To understand the mechanism by which Pdcd4 affects the chemosensitivity of OSI-906 in colorectal cancer cells, SW480 cells expressing empty vector (SW480-C) and Pdcd4 (SW480-Pdcd4) were treated with 5 μmol/L, the minimal IC\(_{50}\) value for the resistant cells (15), of OSI-906 for 0 to 72 hours. The OSI-906 efficiently inhibits AKT phosphorylation in all tested cells, indicating that the drug functions properly (Fig. 3A). Interestingly, p70S6K1 phosphorylation was increased in SW480-C, but not in SW480-Pdcd4 cells with OSI-906 treatment for 48 and 72 hours (Fig. 3A and Supplementary Fig. S3). The elevated p70S6K1 phosphorylation after OSI-906 treatment was also observed in parental SW480 and HCT116 cells (Fig. 3B and Supplementary Figs. S4 and S5). The increase in p70S6K1 phosphorylation in SW480-C cells correlates with the increase in phosphorylation of MDM2, a downstream target of p70S6K1 (32, 33). The activation of p70S6K1 is not likely through the feedback activation of AKT, because phosphorylation of AKT was inhibited after a 48- and 72-hour treatment of OSI-906. As seen in SW480 cells,
overexpression of pdc4 cDNA in HCT116 cells also inhibited OSI-906–induced phosphorylation of p70S6K1 (Supplementary Fig. S6). To further confirm that Pdcd4 inhibits OSI-906–induced phosphorylation of p70S6K1, we treated HT29-L and HT29-P cells with 5 μmol/L of OSI-906. As shown in Fig. 3C and Supplementary Fig. S7, Pdcd4 knockdown increased phosphorylation of both p70S6K1 and MDM2 after OSI-906 treatment. The elevated p70S6K1 phosphorylation upon OSI-906 treatment when Pdcd4 is knocked down was also observed in GEO cells, another OSI-906–sensitive cell line (Supplementary Fig. S8). These data indicate that prolonged treatment of OSI-906 increased p70S6K1 phosphorylation in resistant cells, which can be reversed by Pdcd4.

Figure 3.
Pdcd4 enhances cell sensitivity to OSI-906 via suppression of p70S6K1 phosphorylation. A–C, Western blot analyses were performed using cell extracts from various cells treated with OSI-906 (5 μmol/L) for 0 to 72 hours. A, overexpression of Pdcd4 in OSI-906–treated SW480 cells inhibits p70S6K1 phosphorylation and increases cleaved caspase-3 level. B, phosphorylation of p70S6K1 is increased in SW480 and HCT116 cells upon OSI-906 treatment. C, Pdcd4 knockdown enhances p70S6K1 phosphorylation, but decreases cleaved caspase-3 level in OSI-906–treated HT29 cells. D and E, the Pdcd4 level correlates with OSI-906–induced apoptosis. Cells were treated with or without OSI-906 (5 μmol/L) for 72 hours, and the apoptotic cells were determined using Annexin V assays. Each experiment was repeated at least twice. The representative data are shown.
Consistent with the increase in cell survival signal (phospho-p70S6K1 and phospho-MDM2), the level of cleaved caspase-3 was barely detectable in SW480-C cells treated with OSI-906 for 48 and 72 hours. However, the level of cleaved caspase-3 increased in SW480–Pdcd4 cells with same treatment (Fig. 3A, lanes 3 and 4 vs. 7 and 8, and Supplementary Fig. S3), suggesting that Pdcd4 inhibits phosphorylation of p70S6K1 leading to the increased apoptosis in response to OSI-906 treatment. Conversely, the cleaved caspase-3 level was barely detected in Pdcd4 knockdown cells (HT29-P) whereas it was increased in the control cells (HT29-L) after OSI-906 treatment for 48 and 72 hours (Fig. 3C, lanes 3 and 4 vs. 7 and 8, and Supplementary Fig. S7). To verify that Pdcd4 enhances the apoptosis induced by OSI-906 treatment, Annexin V assay was performed. As

Figure 4.
Knockdown of p70S6K1 but not p70S6K2 enhances cell sensitivity to OSI-906. A, Western blot analysis shows the effective knockdown of p70S6K1 in HT29-P and SW480 cells. B and C, knockdown of p70S6K1 enhances the cell sensitivity to OSI-906. Cells were treated with OSI-906 (5 μmol/L) for 0 to 6 days, and the cell viability was determined using XTT. The absorbance at day 0 is designed as 100%. Results are expressed as mean ± SD (n = 4); * , significant difference (P < 0.05) versus scrambled + OSI or siS6K1. D, Western blot analysis shows the effective knockdown of p70S6K2 in HT29-P and SW480 cells. E and F, knockdown of p70S6K2 has no effects on cell sensitivity to OSI-906. The assay was carried out as in B and C. The absorbance at day 0 is designed as 100%. Results are expressed as mean ± SD (n = 4). G, knockdown of S6K1 enhances the inhibitory effect of OSI-906 on colony formation. Cells were treated with or without OSI-906 (5 μmol/L) for 7 days. Data, mean ± SD (n = 3); * , significant difference (P < 0.001). The representative images are shown at the bottom. Each experiment was repeated at least twice. The representative data are shown.
shown in Fig. 3D, apoptosis increased approximately 12-fold in HCT116–Pdcd4 cells compared with that in control cells (HCT116–C) with OSI-906 treatment (20.25 vs. 1.76). Subjected to the same OSI-906 treatment, Pdcd4 knockout (HT29-P) cells showed a slight decrease in apoptosis when compared with HT29-L cells (Fig. 3E, 15.53 vs. 11.38). These results suggest that Pdcd4 facilitates the apoptotic effects of OSI-906 treatment in cells.

Collectively, these findings indicate that colorectal cancer cells gain resistance to OSI-906, at least in part, through the activation of p70S6K1. These results also show that Pdcd4 inhibits OSI-906-induced p70S6K1 phosphorylation to render cells sensitive to OSI-906–induced apoptosis. We also noted that the total protein level of p70S6K1 was decreased in the Pdcd4-overexpressing cells, but increased in the Pdcd4 knockdown cells (Fig. 3A and C, and Supplementary Figs. S3, and S6–S8). Because Pdcd4 has been demonstrated to interact with translation initiation factor 4A (eIF4A) and inhibit protein translation (34–37), it needs to further investigate whether Pdcd4 regulates p70S6K1 translation.

Knockdown of p70S6K1 boosts the sensitivity to OSI-906 in colorectal cancer cells

The data presented above suggest that p70S6K1 is the key regulator for OSI-906 chemosensitivity in colorectal cancer cells. We thus knocked down p70S6K1 in HT29-P and SW480 cells. The p70S6K1 siRNA successfully knocked down approximately 50% of p70S6K1 in both HT29-P and SW480 cells (Fig. 4A). Knockdown of p70S6K1 slightly reduced cell proliferation in both HT29-P and SW480 cells (open circle vs. open square in Fig. 4B and C). However, p70S6K1 knockdown cells treated with OSI-906 (5 μmol/L) showed a significant reduction of proliferation in HT29-P and SW480 cells comparing with the scrambled siRNA transfected cells (closed circle vs. closed square in Fig. 4B and C). In contrast, successful knockdown of p70S6K2 in HT29-P and SW480 cells (Fig. 4D) showed no effect on proliferation in the presence or absence of OSI-906 (Fig. 4E and F). In addition, colony formation significantly decreased by OSI-906 treatment following transfection with s6k1 siRNA, but not s6k2 or scrambled siRNA (Fig. 4G). These results suggest that p70S6K1, but not p70S6K2, regulates the chemosensitivity of OSI-906 in colorectal cancer cells.

The combination of OSI-906 and PF-4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906–resistant colorectal cancer cells in vitro and in vivo

Because knockdown of p70S6K1 enhances cell sensitivity to OSI-906, we decided to test whether the combination of OSI-906 and a p70S6K1 inhibitor, PF-4708671, can efficiently inhibit the growth of OSI-906–resistant cells. We treated HCT116 cells with (i) vehicle (DMSO), (ii) OSI-906 (5 μmol/L), (iii) PF-4708671 (10 μmol/L), and (iv) OSI-906 (5 μmol/L) + PF-4708671 (10 μmol/L) for various amounts of time. As shown in Fig. 5A, HCT116 cells treated with OSI-906 alone (closed square) or PF-4708671 alone (open circle) slightly inhibited cell growth. In contrast, proliferation in HCT116 cells was significantly inhibited after a 2-day treatment with the combination of OSI-906 and PF-4708671 (closed circle). A similar result was also observed when SW480 cells were treated with the combination of OSI-906 and PF-4708671 (Fig. 5B). Colony formation also significantly reduced in OSI-906+PF-4708671–treated cells comparing with vehicle, OSI-906 alone, or PF-4708671 alone treated HCT116 or SW480 cells (Fig. 5C and D). OSI-906 and PF-4708671 efficiently inhibited phosphorylation of AKT and ribosomal protein S6, respectively, in both HCT116 and SW480 cells (Fig. 5E and Supplementary Figs. S9 and S10), indicating that both drugs function properly. It has been reported that PF-4708671 can inhibit the kinase activity of p70S6K1 as evidenced by decreased phosphorylation of ribosomal protein S6, even though p70S6K1 phosphorylation is increased (30). Cells treated with OSI-906+PF-4708671 reduced OSI-906–induced p70S6K1 activation and MDM-2 phosphorylation, and consequently increased in levels of cleaved caspase-3 (Fig. 5E and Supplementary Figs. S9 and S10). These findings further support the notion that inhibition of p70S6K1 overcomes the OSI-906 resistance in colorectal cancer cells.

To further validate the results of in vitro study, we used the most stringent model of HCT116 cells derived tumor xenograft model, to test the efficacy of the combination of OSI-906 and PF-4708671 on inhibiting tumor growth in vivo. The tumor growth rate in mice treated with the combination of OSI-906+PF-4708671 was significantly slower than that of OSI-906 alone (P = 0.0189) or PF-4708671 alone (P = 0.0165) treated mice (Fig. 6A, closed circle vs. closed square or open circle). The average tumor volume in the OSI-906+PF-4708671–treated mice was approximately 50% of that in mice treated with OSI-906 (P = 0.0056) or PF-4708671 alone (P < 0.001) at the end of a 15-day treatment (Fig. 6A). Similarly, the tumor weights from OSI-906+PF-4708671–treated mice (filled column) were approximately 50% of that in mice treated with OSI-906 alone (slashed column, P < 0.001) or PF-4708671 alone (gridded column, P < 0.001; Fig. 6B and C). On the basis of the data observed in Fig. 6A, the three-way interaction of two drugs and time in the linear mixed model is not significant (P = 0.728), which suggests that OSI-906 and PF-4708671 were additive effect. To confirm that a combined treatment of OSI-906+PF-4708671 enhances apoptosis and reduces proliferation in vivo, the tumor tissue sections were subjected to apoptosis and proliferation assays. The tumor tissues from OSI-906+PF-4708671–treated mice showed the most TUNEL-positive staining and the least Ki-67–positive staining (Fig. 6D). Tumors from OSI-906–treated mice showed increased TUNEL staining. Interestingly, tumors from PF-4708671–treated mice showed no change in apoptosis, but decrease in proliferation (Fig. 6D–F). The apoptosis index and proliferation index of tumors from OSI-906+PF-4708671–treated mice were 197% and 76%, respectively (Fig. 6E and F). These findings suggest that the combination of OSI-906 and PF-4708671 overcomes the OSI-906 resistance and offers a feasible clinical testing for colorectal cancer treatment.

Discussion

In this study, we have shown that Pdcd4 expression level plays a key role in sensitizing colorectal cancer cells to OSI-906 treatment (Figs. 1 and 2). We also found that Pdcd4 enhances OSI-906 chemosensitivity through inhibition of p70S6K1 activation in colorectal cancer cells (Fig. 3). Knockdown or inhibition of p70S6K1 has significantly increased the efficacy of OSI-906 in inhibiting colorectal cancer cells growth in cultured cells and xenograft (Figs. 4–6). Thus, the combination of OSI-906 and the p70S6K1 inhibitor, PF-4708671, will inhibit growth of both OSI-906–sensitive and –resistant colorectal cancer cells. Results from our preclinical models offer a strong rationale for applying the combination of OSI-906 and p70S6K1 inhibitors, PF-4708671, to colorectal cancer therapeutics.
Our data suggested that the increased p70S6K1 phosphorylation in resistant cells (SW480 and HCT116) plays a critical role in OSI-906 resistance. The p70S6K, composed of p70S6K1 and p70S6K2 isoforms, is a serine/threonine kinase, which has been demonstrated to promote cell survival and protein translation (38, 39). It has been suggested that activation of p70S6K1 promotes cell survival through phosphorylation of MDM2 at Ser166 (33). Phosphorylation of MDM2 results in polyubiquitination and degradation of p53, and thereby inhibits p53-dependent apoptosis (40). In agreement with this scenario, resistant cells (SW480, HCT116, SW480-C, and HCT116-C) treated with OSI-906 for 48 and 72 hours showed increase in
Phosphorylation of p70S6K1, concomitant increase in phosphorylation of MDM2, and decrease in cleaved caspase-3 and apoptosis (Fig. 3 and Supplementary Figs. S3–S8). The OSI-906–induced phosphorylation of p70S6K1 and MDM2 was inhibited, and thereby cleaved caspase-3 and apoptosis was increased when Pdcd4 was overexpressed in the resistant cells. In addition to colorectal cancer cells, the elevation of phospho-p70S6K level was also observed in the IGF-1R

Figure 6.
The combination of OSI-906 and PF-4708671 significantly inhibits the growth of HCT116-derived tumor in nude mice. Nude mice (5 mice/group) were s.c. injected with HCT116 cells and treated with vehicle (25 mmol/L tartaric acid), OSI-906 (30 mg/kg) alone, PF-4708671 (60 mg/kg) alone, or OSI-906 (30 mg/kg) + PF-4708671 (60 mg/kg) for 15 days. A, tumor volumes were measured using calipers; *, significant difference (P < 0.001) versus vehicle or PF-4708671 alone after a 15-day treatment; #, significant difference (P < 0.01) versus OSI-906 alone after a 15-day treatment. B, image of tumors after a 15-day treatment. C, average tumor weight of each group after a 15-day treatment; *, significant difference (P < 0.001) versus vehicle, OSI-906 alone, or PF-4708671 alone. D, tumor sections were examined for DNA fragmentation (TUNEL) or stained with Ki-76 antibody. The representative images are shown. The brown color indicates the positively stained cells; scale bar, 50 μm. E and F, the apoptosis index (E) and proliferation index (F) were calculated as number of TUNEL- and Ki-67–positive cells per 500 cells counted, respectively. Two independent tumors were chosen with counting three areas each. The representative data are shown and expressed as the mean ± SD; *, significant difference (P < 0.005).
Pdcd4 from proteasome degradation through inhibition of p70S6K1 inhibitor PF-4708671 suppressed tumor growth significantly greater than either agent alone by the end of the 15-day study (Fig. 6). It is noteworthy that Pdcd4 protein level also greatly enhanced the efficacy of OSI-906 in inhibiting the growth of colon tumor SW480 and HCT116 cells (Figs. 4 and 5), suggesting that combinational targeting both IGF-1R and p70S6K1 is a promising strategy for colorectal cancer therapeutics. This concept was further supported by an HCT116 xenograft study in which the combination of OSI-906 and the p70S6K1 inhibitor PF-4708671 suppressed tumor growth significantly greater than either agent alone by the end of the 15-day study (Fig. 6). It is noteworthy that Pdcd4 protein level also increases in PF-4708671–treated SW480 and HCT116 cells (data not shown), which might be due to the prevention of Pdcd4 from proteasome degradation through inhibition of p70S6K1 activation (42). Elevation of Pdcd4 has been demonstrated to bind with eIF4A and inhibit protein translation, which preferentially inhibits translation of mRNA possessing secondary structures at 5′ untranslated region (5′UTR) with free energy (ΔG) higher than −44.8 kcal/mol (34, 35, 37). The ΔG value of the partial 5′UTR in p70S6K1 is −82.30 kcal/mol (as calculated with the mfold program). It is, thus, possible that Pdcd4 directly regulates the translation of p70S6K1, which needs further investigation.

The findings that knockdown or inhibition of p70S6K1 greatly enhanced the efficacy of OSI-906 in inhibiting the growth of colon tumor SW480 and HCT116 cells (Figs. 4 and 5), suggesting that combinational targeting both IGF-1R and p70S6K1 is a promising strategy for colorectal cancer therapeutics. This concept was further supported by an HCT116 xenograft study in which the combination of OSI-906 and the p70S6K1 inhibitor PF-4708671 suppressed tumor growth significantly greater than either agent alone by the end of the 15-day study (Fig. 6). It is noteworthy that Pdcd4 protein level also increases in PF-4708671–treated SW480 and HCT116 cells (data not shown), which might be due to the prevention of Pdcd4 from proteasome degradation through inhibition of p70S6K1 activation (42). Elevation of Pdcd4 has been demonstrated to inhibit AP-1 and β-catenin–dependent transcription (23, 26, 43). Thus, cells treated with PF-4708671 may inhibit p70S6K1 activity directly and inhibit AP-1 and β-catenin transcription indirectly through Pdcd4. Because HCT116 cells are metastatic when cells were injected into nude mice (44), suppression of tumor growth in HCT116 xenograft by combined treatment of OSI-906 and PF-4708671 implies that this combination has a broad spectrum in inhibiting colorectal cancer, that is, inhibiting both primary and metastatic colon tumor growth. The efficacy of the combined treatment of OSI-906 and PF-4708671 in inhibiting metastatic colon tumor growth needs to be further studied.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: Q. Wang, H.-S. Yang
Development of methodology: Y. Zhang
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Y. Zhang, Q. Wang
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L. Chen, H.-S. Yang
Writing, review, and/or revision of the manuscript: Y. Zhang, Q. Wang, H.-S. Yang
Study supervision: H.-S. Yang

Acknowledgments
The authors thank Jennifer Rogers for critical reading and editing the article.

Grant Support
This work was supported by NCI/NIH grant R01CA129015 and NCRR/NCATS grant UL1TR000117 (to H.-S. Yang), and NCI/NIH center core support grant P30CA177558 (to L. Chen).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 1, 2014; revised December 15, 2014; accepted December 31, 2014; published OnlineFirst January 8, 2015.

References
9. McKinley ET, Bugaj JE, Zhao P, Guleruey S, Mantis C, Gokhale PC, et al. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual inhibitor–resistant breast MCF7 cells (41). These findings collectively suggest that OSI-906 resistance in colorectal cancer cells is at least partially contributed by activation of p70S6K1.
It has been reported that p70S6K1 is able to phosphorylate Pdcd4 at Ser67 and subsequently leads to proteasome degradation of Pdcd4 (42). Interestingly, our data also suggest that Pdcd4 can regulate p70S6K1 phosphorylation because overexpression of Pdcd4 in the resistant cells (SW480 and HCT116) inhibited phosphorylation of p70S6K1 induced by OSI-906 treatment, whereas knockdown of Pdcd4 in the sensitive cells (HT29 and GEO) enhanced OSI-906–induced phosphorylation of p70S6K1 (Fig. 3 and Supplementary Figs. S3, and S6–S8). These findings reveal a feedback mechanism of the regulation between Pdcd4 and p70S6K1. We also noted that overexpression of Pdcd4 decreased p70S6K1 protein levels (Fig. 3A and Supplementary Figs. S3 and S6) and knockdown of Pdcd4 elevated p70S6K1 protein levels (Fig. 3C and Supplementary Figs. S7 and S8). Pdcd4 has been demonstrated to bind with eIF4A and inhibit protein translation, which preferentially inhibits translation of mRNA possessing secondary structures at 5′ untranslated region (5′UTR) with free energy (ΔG) higher than −44.8 kcal/mol (34, 35, 37). The ΔG value of the partial 5′UTR in p70S6K1 is −82.30 kcal/mol (as calculated with the mfold program). It is, thus, possible that Pdcd4 directly regulates the translation of p70S6K1, which needs further investigation.

The findings that knockdown or inhibition of p70S6K1 greatly enhanced the efficacy of OSI-906 in inhibiting the growth of colon tumor SW480 and HCT116 cells (Figs. 4 and 5), suggesting that combinational targeting both IGF-1R and p70S6K1 is a promising strategy for colorectal cancer therapeutics. This concept was further supported by an HCT116 xenograft study in which the combination of OSI-906 and the p70S6K1 inhibitor PF-4708671 suppressed tumor growth significantly greater than either agent alone by the end of the 15-day study (Fig. 6). It is noteworthy that Pdcd4 protein level also increases in PF-4708671–treated SW480 and HCT116 cells (data not shown), which might be due to the prevention of Pdcd4 from proteasome degradation through inhibition of p70S6K1 activation (42). Elevation of Pdcd4 has been demonstrated to inhibit AP-1 and β-catenin–dependent transcription (23, 26, 43). Thus, cells treated with PF-4708671 may inhibit p70S6K1 activity directly and inhibit AP-1 and β-catenin trans-

Molecular Cancer Therapeutics

Inhibition of p70S6K1 Activation by Pdcd4 Overcomes the Resistance to an IGF-1R/IR Inhibitor in Colon Carcinoma Cells

Yan Zhang, Qing Wang, Li Chen, et al.

Mol Cancer Ther Published OnlineFirst January 8, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-14-0648

Supplementary Material Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2015/01/09/1535-7163.MCT-14-0648.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.