Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor

Yang Xiao1, Judi Ramiscal1, Kaska Kowanetz2, Chris Del Nagro1, Shiva Malek3, Marie Evangelista2, Elizabeth Blackwood1, Peter K. Jackson4, Thomas O’Brien1

Departments of Translational Oncology1, Research Diagnostics2, Biochemical Pharmacology3, and Research Oncology4, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA

*Corresponding Author:
Thomas O’Brien,
Department of Translational Oncology,
Genentech
1 DNA Way,
South San Francisco, CA, 94080
obrien.tom@gene.com
Keywords: CHK1, GNE-783, p53, gemcitabine, chemopotentiatio

Word Count: 4,945

Abstract: 248

Figures Count = 6, Table Count = 0, Reference Count = 39

Supplement Figure Count = 3, Supplement Table Count = 4

Running Title: Preferred chemoreagents for combining with CHK1 inhibitors

Conflict of interest: All authors are current or former employees of Genentech.

Financial Information: This research was not supported by external funding i.e none of the authors received external funding to support this research.
ABSTRACT

Here we report that GNE-783, a novel Checkpoint Kinase-1 (CHK1) inhibitor, enhances the activity of gemcitabine by disabling the S- and G2-cell cycle checkpoints following DNA damage. Using a focused library of 51 DNA damaging agents, we undertook a systematic screen using three different cell lines to determine which chemotherapeutics have their activity enhanced when combined with GNE-783. We found that GNE-783 was most effective at enhancing activity of antimetabolite based DNA damaging agents; however, there was a surprisingly wide range of activity within each class of agents. We next selected six different therapeutic agents and screened these in combination with GNE-783 across a panel of cell lines. This revealed a preference for enhanced chemopotentiation of select agents within tumor types, as, for instance, GNE-783 preferentially enhanced the activity of temozolomide only in melanoma cell lines. Additionally, although p53 mutant status was important for the overall response to combinations with some agents, our data indicate that this alone was insufficient to predict synergy. We finally compared the ability of a structurally related CHK1 inhibitor, GNE-900, to enhance the in vivo activity of gemcitabine, CPT-11, and temozolomide in xenograft models. GNE-900 significantly enhanced activity of only gemcitabine in vivo, suggesting that strong chemopotentiation in vitro can translate into chemopotentiation in vivo. In conclusion, our results demonstrate that selection of an appropriate agent to combine with a CHK1 inhibitor needs to be carefully evaluated in the context of the genetic background and tumor type in which it will be used.
INTRODUCTION

The Checkpoint Kinase 1 (CHK1) activates the S- and G2-checkpoints in response to DNA damage which prevents cells from entering mitosis with damaged DNA (1). Inactivation of CHK1 following DNA damage is a very attractive therapeutic strategy as it promotes cells to prematurely enter mitosis and undergo mitotic catastrophe (1). Based on this strategy a select number of CHK1 inhibitors have progressed into clinical trials and are being evaluated for their ability to enhance the activity of DNA damaging agents (2).

In response to stretches of single strand DNA, cells activate ATR (Ataxia telangiectasia mutated- and Rad3-related protein kinase) which phosphorylates and activates CHK1 (3, 4). A critical function of CHK1 is to phosphorylate a number of downstream targets (including CDC25A) to prevent cell cycle progression into mitosis (1). Numerous CHK1 small molecule inhibitors have been identified (5) and used to verify the essential role of CHK1 in maintaining the G2-checkpoint response following DNA damage (6-9).

The tumor suppressor p53 is primarily responsible for activation of the G1- and to a lesser extent, the G2-checkpoint response in cells experiencing DNA damage (10). Following DNA damage phosphorylation of p53 results in its enhanced stabilization and a corresponding increase in expression of its downstream transcriptional targets (11). One of these targets, p21, is required for repressing the activity of the cyclin-cdk kinase complex (12) and thus cells with wild-type p53 can activate the G1- and G2-checkpoints in response to stress. However, cells lacking p53 accumulate at the G2/M boundary due to activation of CHK1 (10). Thus, inhibition of CHK1 in p53 deficient cells exposed to a DNA damaging agent promotes rapid by-pass of both
the G1- and G2-checkpoints and cells proceed into mitosis with unrepaired DNA damage and rapidly undergo cell death.

Many of the studies describing CHK1 inhibitors have used a limited number of chemotherapeutics including gemcitabine (6, 13-17), SN-38 (6, 13, 16-18), camptothecin (13, 18, 19), cytarabine (16), cisplatin/carboplatin (16), hydroxyurea (14, 16), topotecan (6), or ionizing radiation (8, 19-21). As these agents span different classes of DNA damaging agents, it suggests that a CHK1 inhibitor may have broad utility. However, there was no systematic analysis of the ability of a single CHK1 inhibitor to effectively combine with a wide range of chemotherapeutics.

Given the role that both p53 and CHK1 have in establishing the G1- and G2-checkpoints in response to DNA damage, it was proposed that inhibition or knockdown of CHK1 in cells that are p53 deficient would sensitize these cells to chemotherapeutic agents. While this has been shown using genetically matched p53 wild-type or small numbers of mutant cell lines (6, 8, 19, 20, 22, 23), there was no systematic evaluation of the importance of p53 status to chemopotentiation of a wide range of agents.

Here we evaluate the ability of a CHK1 inhibitor, GNE-783, to potentiate the activity of 51 different chemotherapeutics across a range of cell lines. We find that GNE-783 preferentially potentiates the activity of anti-metabolite based DNA damaging agents and potentiation is greater in cells lacking wild-type p53 activity. Moreover, a detailed analysis of a select number of agents reveals that p53 mutation alone is not sufficient to predict synergy. Thus, our results reveal that predicting cellular response to CHK1 inhibitor/chemotherapeutic combinations depends upon multiple factors, with p53 status being only one of these.
Material and Methods

Cell lines: Cell lines were obtained from ATCC and stored at early passage in a central cell bank; lines were authenticated by short tandem repeat (STR) and genotyped upon re-expansion. HCT116 p53 genetically matched cell lines (10) were obtained from Horizon Discovery Inc.

Cell based assays: Cells were exposed to a dose titration of each agent or with a fixed-dose (1 μM) or dose titration (from 0.04μM to 10 μM) of GNE-783 for 72hrs and viability measured by Celltiter Glo (Promega). AZD7762 was screened at 100nM (~EC₁₀) (data shown in Fig. 2B). For assays with TMZ and GNE-783 or GNE-900, cells were treated with a dose titration of TMZ (from 0.1μM to 1 mM) and a dose titration (from 0.04 μM to 10 μm) of GNE-783 or GNE-900 for 72hrs. Viability was measured by Celltiter Glo (Promega). Bliss scores were calculated as described (24).

Cells were fixed in 1% paraformaldehyde and stained with BD Perm/wash buffer; intracellular flow staining was performed with anti-phospho-histone H3-AF488 (#3465; Cell Signaling Technologies). Flow cytometry collection was performed on an LSRII flow cytometer (BD Biosciences) and data was analyzed using FlowJo software (TreeStar Inc.).

Antibodies and western analysis: Western blots were performed with a Li-COR Odyssey system (IRDye secondary antibody and blocking buffer). Antibodies used: CHK1 (Cell Signaling Technology #2360), CHK1-S345 (Cell Signaling Technology #2341), γH2AX (Millipore, #05-636), PARP1-p25 (Epitomics, #1051-1), TUBULIN (Santa Cruz, #32293).
In vivo efficacy studies: All *in vivo* studies were approved by Genentech’s Institutional Animal Care and Use Committee (IACUC) and adhere to the NIH Guidelines for the Care and Use of Laboratory Animals. Xenograft models were established by subcutaneous injection of tissue culture tumor cells into NCR nude mice (Taconic Laboratories). Animals were divided into groups (n=10/group) when tumors reached a mean volume of 150-300 mm³. GNE-900 (20 or 40 mg/kg) was administered by oral gavage (PO, formulated in 25% hydroxypropyl-β-cyclodextrin (HP-β-CD)/50 mM sodium citrate pH 3.3 or 0.5% w/v methylcellulose/0.2% v/v Tween 80 in reverse osmosis water (MCT)) 24 hours after intraperitoneal (IP) administration of gemcitabine (60 mg/kg, saline vehicle; Q3Dx4). CPT-11 was delivered by intraperitoneal injection (50 mg/kg; saline vehicle, Q4Dx4) with GNE-900 doses administered 24 hr later. TMZ was administered by oral gavage (PO, MCT vehicle, QDx5) at 68 mg/kg; GNE-900 was administered 4 hr following each TMZ dose; GNE-900 was administered 4 hr following each TMZ dose.

Tumor volumes were determined using digital calipers (Fred V. Fowler Company, Inc., Newton, MA) using the formula (L x W x W)/2. Curve fitting was applied to Log₂ transformed individual tumor volume data using a linear mixed-effects (LME) model with the R package nlme, version 3.1-97 in R v2.13.0 (R Development Core Team 2008; R Foundation for Statistical Computing; Vienna, Austria). Tumor growth inhibition (%TGI) was calculated as the percentage of the area under the fitted curve (AUC) for each drug treated group per day relative to vehicle control animals, such that %TGI = 100 x (1 – (AUC_{treatment}/day)/(AUC_{vehicle}/day)). 100% TGI is characterized as tumor stasis whereas a TGI >100% indicates tumor regression. 95% Confidence intervals (C.I.) were defined by the lower and upper range of %TGI values for each drug treatment group. Tumor size and body weight were recorded twice weekly over the
course of the study. Mice with tumor volumes \(\geq 2000 \text{ mm}^3 \) or recorded body weight loss \(\geq 20\% \) from their weight at the start of treatment were promptly euthanized.
RESULTS

GNE-783 is a selective CHK1 inhibitor

Through a combination of high-throughput screening followed by structure based design, GNE-783 was identified as a novel small molecule CHK1 kinase inhibitor (Fig 1A) (25) with an IC\textsubscript{50} of 0.001 μM and with ~444-fold selectivity against CHK2 (IC\textsubscript{50} of 0.44 μM)(Fig 1B). To examine the broader selectivity of GNE-783, it was screened at 100 nM against a panel of 71 kinases, and found to only inhibit two kinases by >80%, one of which was CHK1 (Supplement Table S1). Moreover, GNE-783 displayed >400-fold selectivity against key relevant kinases involved in cell cycle progression (Fig. 1B). Consistent with the selectivity of this compound, GNE-783 had minimal single agent activity in HT-29 cells at concentrations as high as 10 μM in a 72-hour proliferation assay (Fig. 1C). Exposing HT-29 cells to gemcitabine and GNE-783 continuously for 72 hours enhanced gemcitabine activity (Fig 1D).

DNA damage and cell cycle distribution was examined at various times by flow cytometry following exposure of cells to gemcitabine and either DMSO, 0.1 μM or 1 μM GNE-783. Compared to DMSO or GNE-783 alone, gemcitabine treatment modestly increased the percentage of \(\gamma \)H2AX positive cells (to ~20%) within 15 hours (Fig. 1E). In contrast, cells exposed to gemcitabine/GNE-783 contained high levels of DNA damage (~75% of cells within 15 hours were \(\gamma \)H2AX positive) (Fig. 1E). Additionally, cells exposed to gemcitabine/GNE-783 showed a significant increase in the percentage of cells staining positive for phosphorylated ser-10 on histone H3 (p-HH3) within 15 hours (Fig. 1F), consistent with cells entering mitosis. Moreover, an increase in the sub-2N population was observed within 15-30 hours (Fig. 1G),
indicating enhanced cell death. Thus, our data indicates that GNE-783 enhances gemcitabine induced DNA damage, promotes premature entry into mitosis, and increases cell death.

GNE-783 preferentially enhances the activity of anti-metabolite agents in HT-29 cells

A variety of reports have shown that CHK1 small molecule inhibitors can potentiate the activity of DNA damaging agents such as gemcitabine, 5-FU, and SN-38 (6, 13-17, 26); however, there is no reported systematic analysis that compared the ability of a single CHK1 inhibitor to potentiate the activity of a wide range of DNA damaging agents.

Here we compiled a library of 51 different agents spanning alkylating, anthracycline, anti-metabolite, crosslinking, topoisomerase, and anti-mitotic agents. Each agent was titrated either in the presence or absence of 1 μM GNE-783 and assayed to determine if GNE-783 would potentiate its cytotoxic activity. Synergy was quantified using a Bliss analysis (24), which compares the observed activity of the two agents when combined to their predicted effect if they are only additive. Our data revealed that CHK1 signaling plays a critical role in the cellular response to some DNA damaging agents, as, for example, GNE-783 predominantly enhanced activity of anti-metabolite based agents, in particular gemcitabine and cladribine (Fig 2A; Supplement Table S2). Interestingly, even within a single class of DNA damaging agents such as antimetabolites, there is a wide range in the ability of GNE-783 to potentiate their activity, indicating that CHK1 has a differential role in the response to each agent. This library was also screened using AZD-7762, a structurally diverse CHK1 small molecule inhibitor (6). The profile of chemopotentiation of AZD-7762 strongly correlated with the profile obtained with GNE-783.
(spearman \(r = 0.87 \), p-value < 0.001, \(n = 51 \)) (Fig 2B-C; Supplement Table S2), supporting the conclusion that synergy of these chemotherapeutics with GNE-783 is due to \(CHK1 \) inhibition.

To verify these findings, we combined an 8-point dose titration of selected agents with a 9-point dose titration of GNE-783 in HT-29 cells (Supplement Fig. S1) and confirmed that GNE-783 strongly enhanced the activity of gemcitabine and cladribine (Bliss scores of 3698 ± 55 and 1919 ± 24, respectively). Our primary screen (Fig. 2A) showed an intermediate bliss score for SN-38 (topoisomerase inhibitor) and a low score for Temozolomide (TMZ), and our follow-up experiment confirmed these observations with modestly enhanced activity of SN-38 (1056 ± 57) compared to low or no enhanced activity of TMZ (29 ± 18) (Supplement Fig. S1A).

To verify that that enhanced activity of various chemotherapeutics is consistent with \(CHK1 \) inhibition, we examined levels of DNA damage and cleavage of Poly-ADP ribose polymerase (\(PARP \)) in HT-29 cells. Within 24 hours, GNE-783 enhanced levels of \(\gamma-H2AX \) levels (a marker of double strand breaks) when combined with gemcitabine, cladribine, SN-38, and, to a lesser extent TMZ (Fig. 2D). Combinations that resulted in high Bliss scores tended to have the largest differential between \(PARP \) cleavage in the absence or presence of GNE-783 at 48 hours. Also, at 48 hours levels of \(\gamma H2AX \) have decreased in the samples combining GNE-783 with Gemcitabine, Cladribine and SN-38, which is likely due to the fact that cells with high levels of DNA damage may have already undergone cell death (as observed for gem/GNE-783 within 30 hours, Fig. 1G). Thus, our pathway analysis confirms that combinations that result in high Bliss scores correlate with enhanced DNA damage and \(PARP \) cleavage.
Synergy between Gemcitabine and GNE-783 is greater in p53 deficient cells

As our initial screen used HT-29 cells which are p53 mutant (R273H) (27), we expanded this screen to other cell lines to evaluate the importance of p53 status to chemopotentiation. We found that GNE-783 enhanced the activity of gemcitabine more efficiently in p53 deficient HCT116 cells compared to genetically matched p53 wild-type cells (Supplement Fig. S1B). Also, gemcitabine activity is better enhanced in p53 deficient HCT116 cells when CHK1 protein is depleted by siRNA (Supplement Fig. S1C). When we screened our focused library we found that HCT116 cells (wild-type p53) tend to have lower Bliss scores in general than genetically matched p53 null cells (Fig. 3A; Supplement Table S3), and, as observed in p53 mutant HT29 cells, anti-metabolite agents showed significantly greater Bliss scores in p53 null cells. Additionally, synergy between GNE-783 and anthracyclines, topoisomerase inhibitors and mitotic inhibitors is greater in p53 null cells compared to p53 wild-type cells (Supplement Table S3).

To broaden this analysis, we screened a panel of 24 cell lines of various tumor types to determine if potentiation of gemcitabine activity by GNE-783 correlated with p53 mutation status. Cell lines harboring mutations in p53 generally showed stronger synergy between gemcitabine and GNE-783 than cell lines with functional p53 (p-value = 0.03) (Fig. 3B-C, Supplement Table S4). While there is a trend that p53 mutant cell lines are more resistant to gemcitabine (shown as an EC25 as an EC50 could not be determined for many cell lines) (Fig. 3D), the difference is not significant (p-value = 0.41). Thus, lack of synergy does not correlate with the ability of these cells to respond to gemcitabine. Moreover, GNE-783 has minimal single agent activity in these cell lines, thus sensitivity to GNE-783 does not correlate with p53 status (Fig. 3E).
GNE-783 can be broadly combined with key standard of care chemotherapeutics across cell lines

We then evaluated if the correlation between p53 status and chemopotentiation would apply to other chemotherapeutics when assessed across a broader panel of tumor cell lines. For this analysis we used a set of standard chemotherapeutics that included gemcitabine and 5-FU (both anti-metabolites), carboplatin (a crosslinking agent), SN-38 (a topoisomerase inhibitor), TMZ (an alkylating agent), and taxol (a mitotic inhibitor). Each of these agents displayed a wide range of potentiation with GNE-783 across these cell lines (Fig. 4A, Supplement Table S4).

Potentiation of only gemcitabine (Fig. 3C) and SN-38 (Fig. 4B) activity with GNE-783 was greater (p-values <0.05) in p53 deficient cell lines than in wild-type cell lines. While combining GNE-783 with TMZ, carboplatin, or 5-FU showed better synergy in p53 deficient cell lines, this was not statistically significant in our panel of cell lines; there is minimal potentiation of taxol activity with GNE-783. In general, p53 status did not correlate with single agent activity of each DNA damaging agent (p-values ≥0.05), with the single exception of carboplatin (p-value = 0.04), where p53 deficient cell lines were more resistant to carboplatin (Fig. 4C). It’s not clear if this correlation would hold up across a broader panel of cell lines.

GNE-783 potentiation of TMZ is enhanced in p53 mutant melanoma cells.

Even though TMZ did not show significant synergy in combination with GNE-783 in HT-29 cells (Fig 2A, Supplement FigS1), it did show potentiation with GNE-783 in a small number of p53 mutant cell lines (Figure 4B). Upon closer examination, we found that melanoma cell lines tended to respond better to a combination of GNE-783/TMZ than all other cell lines (Fig. 5A, p-value = 0.041). Given that TMZ is used for the treatment of metastatic melanoma (28), we explored this combination across a
panel of 15 melanoma cell lines using a full combination dose matrix (9 x 9) of each compound (Fig. 5B) and found that p53 mutant cell lines were more sensitive to the combination than wild-type cells (Fig. 5C).

Activation of CHK1 to varying levels, as evident by an increase in levels of phosphorylation of CHK1 serine-345, was observed in all melanoma cell lines in response to TMZ or GNE-783 (Fig. 5D). In cell lines with high levels of potentiation (A2058, MDA-MB-435, 624MEL), we also observed an increase in γH2AX levels in the presence of both agents compared to either agent alone (Fig. 5D). In cell lines with low levels of potentiation, γH2AX levels did not increase between single agent and combination treatment (Fig. 5D).

Robust chemopotentiation in vitro translates into enhanced efficacy in vivo

Further optimization of our GNE-783 chemical series lead to the discovery of GNE-900 (Supplement Fig S2A), which has a similar in vitro profile but has improved pharmacokinetic properties and supports efficient chemopotentiation in vivo (29). GNE-900 can be effectively combined with Gemcitabine or SN38 in HT29 cells and with TMZ in A2058 cells (Supplement Fig. S2B). GNE-900 can also effectively combine with TMZ across the same panel of melanoma cell lines as tested in Fig5B, and, like GNE-783, displays better synergy in p53 deficient cell lines (Supplement Fig. S2C).

To understand how our in vitro findings relate to chemopotentiation in vivo, we compared the ability of GNE-900 to enhance the in vivo response of three different chemotherapeutics with varying levels of synergy with CHK1 Inhibition in vitro. In an HT-29 xenograft model, GNE-900 in combination with gemcitabine produced a more robust in vivo response that gemcitabine alone (Fig. 6A,
Supplement Fig S3A); combining GNE-900 and gemcitabine resulted in Tumor Growth Inhibition (TGI) of 116% (lower:upper CI of 102:136) which was statistically different to the TGI obtained with gemcitabine alone (61%; lower:upper CI of 29:83). In contrast, combining GNE-900 with CPT-11 (the pro-drug formulation of SN-38, which showed modest chemopotentiation in vitro) resulted in a TGI of 93% (lower:upper CI of 63-112), which was only modestly better, but not statistically significant, than obtained with CPT-11 alone (82%TGI: lower:upper CI of 34:100 (Fig. 6B, Supplement Fig. S3B).

Finally, we evaluated the ability of GNE-900 to enhance the activity of TMZ in the A2058 xenograft tumor model (Fig. 6C, Supplement Fig. S3C). TMZ alone is effective in this model and resulted in an 87% TGI (lower:upper CI of 53:105) when administered orally for 5 days. In comparison, the combination of TMZ and GNE-900 resulted in TGI of 111% (lower:upper CI of 97:128), which is not statistically different. In all in vivo models there was minimal body weight loss during treatment (Supplement Fig. S3D-F).

Our results suggest that robust chemopotentiation in vitro may be required to observe enhanced efficacy in vivo. Even though animals exposed to GNE-900/CPT-11 or GNE-900/TMZ did not result in a statistical improvement in TGI versus animals exposed to either agent alone, there was an increase in the number of animals displaying a partial response in the combination treated animals (Supplement Fig. S3A-C), suggesting that these combinations may be modestly more effective than either CPT-11 or TMZ alone.
DISCUSSION

CHK1 is implicated in a wide range of activities including DNA damage (1), initiation of DNA replication (30, 31), DNA replication fork progression (32), mitotic spindle checkpoint (33), and regulating activity of the spleen tyrosine kinase (long form) in hepatocellular carcinoma (34). There is a great deal of interest in *CHK1* as a therapeutic target given its ability to enhance the activity of some DNA damaging agents and numerous *CHK1* inhibitors are undergoing clinical evaluation (2). However, there was no systematic study comparing the ability of a single *CHK1* inhibitor to potentiate the activity of different types of DNA damaging agents, nor was there a good understanding of the importance of p53 for chemopotentiation.

CHK1 inhibitors have been shown to enhance the activity of gemcitabine both *in vitro* and *in vivo* (6, 13-17), and *CHK1* inhibitors are being clinically evaluated to determine if they can increase the response to gemcitabine (2). Gemcitabine and cytarabine (both anti-metabolite based agents) induce replication fork stalling, which was shown to activate the *ATR/CHK1* signaling pathway (35) and we find that both agents can be effectively combined with GNE-783 (Supplement Table S2). Moreover, *CHK1* is induced in AML samples from patients infused with cytarabine (36), and a combination of cytarabine and the *CHK1* inhibitor (SCH900776) is undergoing evaluation in the clinic (37). Consistent with *CHK1* being important in the cellular response to these agents, we found that activity of anti-metabolite based DNA damaging agents was preferentially enhanced in p53 deficient cells compared to all other classes of DNA damaging agents (Fig 2, 3). Interestingly, the ability of GNE-783 to enhance the activity of DNA damaging agents was more dependent on the specific agent and the mechanism by which cells respond to the type of DNA damage, rather than on the class of agent used.
Furthermore, it can be difficult to predict which combinations may be effective as we found that some
combinations are only effective in certain tumor types.

We screened 5 other agents across a broad panel of cell lines, and found that combining GNE-783 with gemcitabine generated an overall better response than with any of the other agents (Fig. 4A); moreover, GNE-783 preferentially enhanced the activity of gemcitabine and SN-38 in p53 mutant cell lines. Additionally, GNE-783 enhanced the activity of TMZ, but this predominantly occurred in p53 deficient melanoma cell lines (Fig. 5A-C). Our data is consistent with previous reports showing that p53 deficiency improves response to chemopotentiation with a CHK1 inhibitor (6, 8, 19, 20, 22, 23), although it has also been shown that BRCA, XRCC3, DNA-PK (38), and CYCLIN B1 (39) levels may also influence the effectiveness of combining a CHK1 inhibitor with a DNA damaging agent. Thus, while p53 mutant cell lines tend to have a better response to some combinations with GNE-783 it also indicates that p53 deficiency alone may not be sufficient to ensure a robust response.

We evaluated the ability of the Chk1 inhibitor, GNE-900 (Supplement Fig. S2) (29), to enhance the activity of three different standard of care therapeutics in tumor xenograft models. For gemcitabine, CPT-11, and TMZ we chose a dose that was within ~2-fold of their MTD in these xenograft models. Thus, we designed our in vivo studies to closely approximate how these chemotherapeutics may be used in the clinic i.e. at or close to their MTD. Combining GNE-900 with gemcitabine significantly reduced tumor growth in an HT-29 model compared to gemcitabine alone (Fig. 6A). In contrast, there was no statistically significant difference in TGI when GNE-900 was combined with CPT-11 or TMZ versus either agent alone (Fig. 6B-C); however, there was an increase in the number of animals that displayed a partial response in the combination groups compared to animals treated with CPT-11 or TMZ alone (Supplement Fig. S3A-C). While it’s possible that using
lower doses of each chemotherapeutic would potentially favor a positive effect with combination treatment, we believe the way we designed our experiments would be more informative in understanding the potential for a positive benefit in the clinic. It’s also possible that the dosing regimen used in these studies may not be optimal, either for the chemotherapeutic or for the timing of administration of GNE-900. Additionally, these combinations may result in enhanced efficacy in other tumor xenograft models not tested here. Nevertheless, our data suggests that robust chemopotentiation in vitro may be required in order to translate into enhanced efficacy in vivo.

In conclusion, our results indicate that p53 status can clearly impact the ability of a CHK1 inhibitor to potentiate the activity of some chemotherapeutics, most noticeably gemcitabine and SN-38. However, while p53 status may increase the likelihood of a robust response it is not sufficient, as many p53 deficient cell lines do not display synergy with these same combinations. Our results also have implications for the selection of preferred combinations to pursue in vivo, as without rigorous cell line profiling in a relevant panel of cell lines, it is difficult to predict how effective a specific combination will be.
ACKNOWLEDGEMENTS

We would like to thank the in vivo cell culture and dosing groups for their support of in vivo efficacy studies and the gCell group (Richard Neve, Suresh Selvaraj, and Mamie Yu) for cell line maintenance.
REFERENCES

FIGURE LEGENDS

Figure 1: The CHK1 inhibitor GNE-783 promotes enhanced DNA damage and premature mitotic entry in HT-29 cells when combined with gemcitabine. A) Structure of GNE-783. B) The IC₅₀ values (μM) for GNE-783 against CHK1 and other kinases involved in cell cycle control. C) A dose titration of GNE-783 in a 72 hour proliferation assay (mean ± SEM, n=6). D) The graph illustrates a dose titration of gemcitabine in the presence or absence of 0.64 μM GNE-783 (mean ± SD, n=2). E-G) The addition of GNE-783 (0.1 or 1 μM) to 0.01 μM gemcitabine increases the percentage of cells staining positive for γH2AX (E), histone H3 phospho-Serine10 (F), or the percentage of cells with a sub-2N DNA content, in a time and concentration dependent manner. Quantitation was performed by FACS cell cycle analysis (mean ± SD, n=2).

Figure 2: CHK1 inhibition preferentially enhances the activity of anti-metabolite based DNA damaging agents in HT-29 cells. The ability of GNE-783 (A) or AZD-7762 (B) to potentiate the activity of each agent was assessed by Bliss analysis, and the calculated Bliss score for each combination is shown. C) Scatter plot analysis of the bliss scores obtained for GNE-783 and AZD-7762 in HT29 cells (spearman r = 0.87, p<0.001, n=51). D) Western Blot analysis of γ-H2AX, cleaved PARP (PARP-p25), and TUBULIN in response to DMSO or GNE-783 (1 μM) in combination with Gemcitabine (1 μM), Cladribine (10 μM), SN-38 (0.1 μM), and TMZ (500 μM) at 24 and 48 hours.

Figure 3: Synergy between gemcitabine and GNE-783 is p53 dependent. A) A library of 51 agents was screened with DMSO or 2 μM GNE-783 in genetically matched HCT116 cell lines. The ability of GNE-
783 to potentiate the activity of each chemotherapeutic agent was assessed by Bliss analysis, and the Bliss score for each combination is shown. B) A panel of 24 cell lines was screened using a dose titration of gemcitabine and GNE-783. The average and standard deviation associated with each bliss score is shown (n=2-9 for each cell line). C) Bliss scores (panel B) were grouped according to the p53 status of each cell line. D-E) The calculated EC25 for gemcitabine (D) or the EC50 for GNE-783 (E) for each cell line was grouped according to p53 status.

Figure 4: The ability of GNE-783 to potentiate a select set of chemotherapeutics was assessed across a panel of 24 cell lines. A) GNE-783 was tested for its ability to potentiate the activity of gemcitabine, carboplatin, SN-38, 5-FU, TMZ, and taxol across a panel of cell lines. The associated Bliss score for each combination in each cell line is shown (n=2-6 for each combination). B) The ability of GNE-783 to potentiate the activity of each agent was compared based on the p53 status of each cell line. C) Correlation of single agent activity with p53 status for each cell line.

Figure 5: Potentiation of TMZ with GNE-783 is enhanced in melanoma cell lines in a p53 dependent manner. A) Melanoma cell lines support enhanced potentiation of TMZ activity by GNE-783 compared to other cell lines. B) 15 melanoma cell lines were screened with TMZ and/or GNE-783 and Bliss scores are shown (average ±SD, n=3). C) Bliss scores for each cell line (panel B) were grouped according to the p53 status of each cell line. D) Pathway response as assessed by western blot analysis for CHK1, pCHK1-S345, and γH2AX in the indicated melanoma cell lines following treatment with TMZ (500 μM), GNE-783 (1 μM), or both for 24 hours. Bliss scores and p53 status for each cell line are indicated.
Figure 6: *In vivo* evaluation of the ability of GNE-900 to enhance the activity of Gemcitabine, CPT-11, and TMZ in tumor xenograft models. **A)** GNE-900 enhances the activity of gemcitabine in an HT-29 xenograft model. Gemcitabine (60 mg/kg) was administered IP once every three days (Q3D) for a total of 4 doses. GNE-900 was administered orally at 20 or 40 mg/kg 24 hours following gemcitabine (n=10 animals per group). **B)** Combination of GNE-900 and CPT-11 in an HT-29 xenograft model. CPT-11 was administered at 50 mg/kg IP every four days (Q4D) for a total of 4 doses. GNE-900 was administered orally at 20 mg/kg 24 hours following CPT-11 (n=10 animals/group). **C)** Combination of GNE-900 and TMZ in an A2058 xenograft model. TMZ was administered at 68 mg/kg orally daily for 5 days (QDx5) for one cycle. GNE-900 was administered orally at 40 mg/kg 4 hours following TMZ (n=10 animals/group).
Figure 1

A) Structure of GNE-783

B) Table of IC

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC_{50} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chk1</td>
<td>0.001</td>
</tr>
<tr>
<td>Chk2</td>
<td>0.444</td>
</tr>
<tr>
<td>Aurora A</td>
<td>1.82</td>
</tr>
<tr>
<td>Aurora B</td>
<td>0.84</td>
</tr>
<tr>
<td>CDK1/CyclinB</td>
<td>0.528</td>
</tr>
<tr>
<td>CDK2/CyclinA</td>
<td>0.456</td>
</tr>
<tr>
<td>Plk1</td>
<td>0.993</td>
</tr>
</tbody>
</table>

C) HT29

HT29 Cell Death

D) EC_{50} = 10 nM

E) % Cells γH2AX Positive

F) % Cells phospho-H3 Positive

G) Cells with sub-2N DNA content

on November 6, 2017. © 2013 American Association for Cancer Research. mct.aacrjournals.org Downloaded from
Figure 2

A) GNE-783

B) AZD-7762

C)

$r = 0.87$

D)

<table>
<thead>
<tr>
<th></th>
<th>24hr</th>
<th>48hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMSO</td>
<td>Gem</td>
</tr>
<tr>
<td>GNE-783:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Gem</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Clad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\gamma H2AX$

$PARP-p25$

$TUBULIN$
Figure 4

A) Scatter plot showing the Bliss Score for different drugs. The x-axis represents various drugs: Gemcitabine, Carboplatin, SN38, 5-FU, TMZ, and Taxol. The y-axis shows the Bliss Score ranging from 0 to 300. Each point represents a sample, and the bars indicate the mean.

B) Graphs showing the Bliss Score for GNE-783/Carboplatin, GNE-783/TMZ, GNE-783/SN38, GNE-783/5FU, and GNE-783/Taxol. The results are presented for WT and Mutant cells, with p-values indicated for each comparison.

C) Graphs showing EC50 values for SN-38, TMZ, Carboplatin, 5-FU, and Taxol. The EC50 values are shown for WT and Mutant cells, with p-values indicating statistical significance.
Figure 5

A) & B)

<table>
<thead>
<tr>
<th>WT</th>
<th>Mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bliss Score</td>
<td>Bliss Score</td>
</tr>
<tr>
<td>melanoma</td>
<td>others</td>
</tr>
</tbody>
</table>

C)

GNE-783/TMZ

<table>
<thead>
<tr>
<th>p = 0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TMZ + GNE-783</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bliss Score</td>
</tr>
<tr>
<td>p = 0.041</td>
</tr>
</tbody>
</table>

D)

<table>
<thead>
<tr>
<th>A2058</th>
<th>MDA435</th>
<th>624MEL</th>
<th>RPMI7951</th>
<th>537MEL</th>
<th>SK23</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMZ:</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G783:</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pCHK1-S345</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHK1</td>
</tr>
<tr>
<td>γH2AX</td>
</tr>
<tr>
<td>TUBULIN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p53:</th>
<th>Bliss:</th>
</tr>
</thead>
<tbody>
<tr>
<td>mut 352</td>
<td>mut 207</td>
</tr>
</tbody>
</table>

Downloaded from mct.aacrjournals.org on November 6, 2017. © 2013 American Association for Cancer Research.
Figure 6

A) HT29

- Vehicle
- Gem (60 mg/kg, Q3Dx4)
- GNE-900 (40 mg/kg)
- Gem + GNE-900 (40 mg/kg)
- Gem + GNE-900 (20 mg/kg)

B) HT29

- Vehicle
- CPT-11 (50 mg/kg)
- GNE-900 (20 mg/kg)
- CPT-11 + GNE-900

C) A2058

- Vehicle
- TMZ (68 mg/kg)
- GNE-900 (40 mg/kg)
- TMZ + GNE-900
Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor

Yang Xiao, Judi Ramiscal, Kaska Kowanetz, et al.

Mol Cancer Ther Published OnlineFirst September 13, 2013.

Updated version

Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-13-0404

Supplementary Material

Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/09/13/1535-7163.MCT-13-0404.DC1

Author Manuscript

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.