Journal: Molecular Cancer Therapeutics

Paclitaxel-Hyaluronic Nano-Conjugates Prolong Overall Survival in a Preclinical Brain Metastases of Breast Cancer Model

Rajendar K. Mittapalli1, Xinli Liu1, Chris E. Adkins1, Mohamed I. Nounou1, Kaci A. Bohn1, Tori B. Terrell1, Hussaini S. Qhattal1, Werner J. Geldenhuys2, Diane Palmieri3, Patricia S. Steeg3, Quentin R. Smith1, and Paul R. Lockman1*

1 Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106.
2 Department of Pharmaceutical Sciences, Northeast Ohio Medical University, College of Pharmacy, Rootstown, OH, 44272.
3 Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD

The authors declare no conflict with this work.

Corresponding Author:
*Paul R. Lockman, BSN, Ph.D.
Department of Pharmaceutical Sciences
Texas Tech University, Health Sciences Center
1406 S. Coulter Dr.
Amarillo, Texas, 79106-1712
806-356-4750 ext 227
email: paul.lockman@ttuhsc.edu

Funding for this study was provided by the Department of Defense, Breast Cancer Research Program, grant W81 XWH-062-0033 (to P.S. Steeg, D. Palmieri, Q.R. Smith and P.R. Lockman).
Abstract:

Brain (CNS) metastases pose a life-threatening problem for women with advanced metastatic breast cancer. It has recently been shown that the vasculature within preclinical brain metastasis model markedly restricts paclitaxel delivery in ~90% of CNS lesions. Therefore to improve efficacy, we have developed ultra-small hyaluronic acid (HA) paclitaxel nano-conjugates (~5kDa) that can passively diffuse across the leaky blood-tumor barrier and then be taken up into cancer cells (MDA-MB-231Br) via CD44 receptor mediated endocytosis. Utilizing CD44 receptor-mediated endocytosis as an uptake mechanism allowed paclitaxel to bypass p-glycoprotein mediated efflux on the surface of the cancer cells. *In vitro* cytotoxicity of the conjugate and free paclitaxel were similar in that they 1) both caused cell cycle arrest in the G2/M phase 2) demonstrated similar degrees of apoptosis induction (cleaved caspase) and 3) had similar IC50 values when compared to paclitaxel in MTT assay. A preclinical model of brain metastases of breast cancer using intracardiac injections of Luc-2 transfected MDA-MB-231Br cells was used to evaluate *in vivo* efficacy of the nanoconjugate. The animals administered with HA-paclitaxel nanoconjugate had significantly longer overall survival compared to the control, and paclitaxel treated group (p<0.05). This study suggests that the small molecular weight (MW) HA-paclitaxel nano-conjugates can improve standard chemotherapeutic drug efficacy in a preclinical model of brain metastases of breast cancer.
Introduction:

The incidence of brain metastases is increasing and represents an emerging cause of mortality in women with metastatic breast cancer (1, 2). Current therapeutic options involving chemotherapy, surgery, and or radiation have generally had limited efficacy in eradicating metastatic lesions (3, 4). A major reason for the failure of chemotherapy is that the normal blood-brain barrier (BBB) and the resultant blood-tumor barrier (BTB) limit drug distribution to sub-therapeutic levels (5, 6). To overcome poor drug distribution to metastatic lesions, we report here the formulation of small HA-paclitaxel nanoconjugate that uses a passive targeting mechanism to increase drug distribution into the tumor interstitial space and an active targeting mechanism to improve the intracellular uptake of paclitaxel into the metastatic cancer cells.

The intact BBB is the vascular interface between the blood and brain, and protects the central nervous system (CNS) from harmful toxins, by acting as a physical, enzymatic, and transport barrier. This barrier functionally limits brain penetration of many small and large therapeutic molecules (7). It has been suggested that >98% of CNS drugs fail to go into clinical trials due to poor brain penetration (8). In contrast, the BTB (the vasculature within and potentially immediately adjacent to a brain metastasis) is generally more permeable than the BBB. In our previous work (5), it was observed that BTB in metastatic lesions is permeable enough to allow initial paracellular diffusion of a ~ 4 kDa dextran into brain metastases.

To take advantage of the increased paracellular permeability, we have conjugated paclitaxel to an ~3-5 kDa polymerized hyaluronic acid (HA), which mimics the size of the dextrans which were able to penetrate the metastatic lesions (5). We hypothesize that this polymer conjugate of paclitaxel will increase drug concentrations in the metastatic lesions by 1) allowing paracellular diffusion of the paclitaxel-conjugate from blood through the BTB openings...
to the tumor interstitial space and 2) paclitaxel will no longer be subject to various BBB and BTB efflux transporters [e.g., p-glycoprotein (P-gp), breast cancer resistance protein (BCRP)] that normally limit paclitaxel brain and tumor distribution (9, 10).

We hypothesize that, once the paclitaxel conjugate is in the tumor interstitial space, the ultra-small nano-conjugate (~2-3 nm) actively targets the metastatic cancer cell by CD44 receptor-mediated endocytosis (11, 12). CD44 (clusters of differentiation 44) is a cell surface receptor that binds to HA and undergoes receptor-mediated endocytosis to internalize HA(13). CD44 has been shown to be overexpressed in many tumors including breast and metastatic brain (14-18). The polymeric HA exhibits a number of properties as an ideal drug carrier system. HA is water soluble, biocompatible, and as a polysaccharide, it has multiple different functional groups for potential chemical conjugation (11, 19-21) with numerous chemotherapeutic agents such as doxorubicin and paclitaxel (22-25). Consequently, we propose the use of HA to target CD44 mediated endocytosis as a novel BTB transit pathway (Fig. 1).

In this report, we demonstrate that the synthesized HA-paclitaxel nanoparticulate conjugate is 1) able to bypass P-gp efflux transporters at the BTB and the 231Br metastatic cancer cells, 2) internalized into tumor cells via CD44 receptor-mediated endocytosis, 3) causing G2/M cell cycle arrest and cytotoxicity at levels similar to free paclitaxel, and 4) significantly increasing the median survival time in a preclinical model of triple negative brain metastasis of breast cancer.
Materials and Methods:

Chemicals: Ultra low molecular weight HA was purchased from R&D systems (~ 4-5 kDa) (Minneapolis, MN, USA). 14C-paclitaxel (specific activity 75.6 mCi/mmole) was purchased from Moravek Biochemicals Inc. (Brea, CA, USA). Paclitaxel and Texas Red hydrazide were purchased from Molecular Probes Invitrogen (Eugene, Oregon, USA). Cyclosporin A was purchased from Toronto Research Chemicals Inc. (Toronto, Canada). 2-chloro-1-methyl pyridinium iodide, triethylamine, 4-dimethyl aminopyridine (DMAP), dicyclohexyl carbodiimide (DCC), poly (ethylene glycol) dimethyl ether (dmPEG) (MW: 2000 Da), Cremophor EL, and anhydrous dimethyl sulfoxide (DMSO) were purchased from Sigma Aldrich Inc. (St.Louis, MO, USA). All other chemicals used were of analytical grade and used as supplied.

Cell culture: Human breast cancer cells MCF-7 and P-gp over expressing, adriamycin-resistant, MCF-7/AdrR cells were kindly donated by Dr. US Rao, Texas Tech University Health Sciences Center, Amarillo TX (26, 27). The cells were maintained in Dulbecco's modified Eagle's medium, supplemented with 10% (v/v) fetal bovine serum and antibiotics (penicillin, 100 U/mL; and streptomycin, 100 μg/mL). Luc-2 transfected human MDA-MB-231Br cells were kindly provided by Dr. Patricia Steeg from the National Cancer Institute (not authenticated by our laboratory). The cells were maintained in Dulbecco's modified Eagle's medium, supplemented with 10% (v/v) fetal bovine serum. Cells were grown in a 37°C humidified incubator with 5% CO$_2$.

Western blot: The protein concentrations after lysis of cells were quantified using a BCA pierce assay kit (Pierce; Rockford, IL). Protein samples (20 μg per lane) were resolved by SDS-
polyacrylamide gel electrophoresis and transferred to PVDF membranes. Membranes were blocked with 5% non-fat dry milk for 1 hr, after which membranes were incubated with anti-CD44 antibody at 4°C overnight. Membranes were then washed and incubated with respective HRP-conjugated secondary antibodies. Proteins were visualized using SuperSignal West Pico Chemiluminescence system (Pierce, Rockford, IL USA).

Immunocytochemistry (ICC): Cells were grown to ~70% confluency on tissue culture treated cover slips. Cells were fixed with ice-cold acetone methanol (1:1, v/v), washed with PBS, and then incubated with 5% goat serum for 1 hr. Then the cells were incubated overnight with an anti CD44 antibody (Cell signaling technologies; Beverly, MA, USA) at a dilution of 1:200. The primary antibody was removed by repetitive washings with PBS. Afterwards, cells were incubated with nuclear stain DAPI and Alexa Fluor conjugated secondary antibodies (Molecular Probes Invitrogen, Eugene, Oregon, USA) for 1 hr. Fluorescent images were taken with an Olympus IX81 microscope (Center Valley, PA).

Conjugation of HA with paclitaxel or Texas Red: Paclitaxel was conjugated to hyaluronic acid using a previously published method (Fig. 2) (28). Initially, a nano-complex between HA and dmPEG was formed (28). The HA polymer used was purified and desalted, where, 1g of HA (~4-5 kDa) was dissolved in 100 mL of deionized water, and dialyzed for 24 hr (MWCO: 1kDa), after which the sample was lyophilized. Then the desalted HA, and dmPEG (MW: 2000 Da) (at a molar ratio of 1:10) were dissolved in deionized water and stirred for 8 hrs and then lyophilized to give a white cotton like product. Then the HA/dmPEG was conjugated to paclitaxel using DMAP/DCC as a coupling agent. The hydroxyl groups of paclitaxel were conjugated to the
carboxylic groups of HA to form an acid-cleavable ester linkage. HA/dmPEG, DCC, DMAP were added to DMSO and the resulting solution was stirred at room temperature for 1 hr. Afterwards, paclitaxel in DMSO was added to the above mixture and stirred under N₂ at 40°C for 48 hrs. The final product was transferred to a dialysis bag (MWCO: 1kDa) and dialyzed against DMSO for 24 hrs, followed by 48 hrs against water, and the resulted compound was lyophilized. The yield of conjugates was approximately 60%. Particle size of HA-paclitaxel conjugate was measured by dynamic light scattering using a Malvern Zetasizer Nano ZS90 (Malvern Inc., Westborough, MA). The size measurement was carried out at a concentration of 7.0 mg/mL of conjugate in PBS at room temperature. ¹H-NMR spectra of HA-paclitaxel conjugate was obtained by Bruker NMR spectrometer (Bruker, Germany) using deuterated DMSO-d6 (Fig. S1).

The amount of paclitaxel conjugated to HA was determined by HPLC using a 50:50 mixture of acetonitrile and water as cosolvent. Eluted compounds were detected at 227 nm using a UV-vis detector. Free paclitaxel was used as standard to generate a standard curve and the paclitaxel conjugated to HA was determined to be 8% (w/w%). This level of conjugation was slightly smaller than previous reported (10.8%) (28).

Fluorescent conjugates of HA were also synthesized by condensation of Texas Red hydrazide to HA as previously described (29). Briefly, HA was activated with 2-chloro-1-methyl pyridinium iodide and triethylamine. Then Texas Red hydrazide (5 mg in 1 mL of DMSO) was added and the mixture was refluxed for 24 hrs, followed by 48 hr dialysis against water at 4°C, and the resulting compound was lyophilized.
Cellular uptake and Competitive inhibition studies: For competitive inhibition studies, the MDA-MB-231Br cells were incubated in 2 mL of serum free media containing HA (0.625 µM) with HA conjugates for 90 minutes. For fluorescent microscopy studies with HA-TX Red, the cells were washed twice in PBS and fixed with ice-cold acetone: methanol (50:50). The intracellular accumulation of HA-TX Red was visualized using an Olympus IX81 stereo microscope. For 14C-HA-paclitaxel studies, after incubation period the cells were washed in PBS, followed by lysis in RIPA lysis buffer. The radioactivity in cell lysates was determined using a Beckman liquid scintillation counter. To determine if the formulation bypassed P-gp efflux; P-gp over expressing cells, grown in 12-well plates, were utilized to determine the cellular uptake of 14C-paclitaxel and 14C-HA-paclitaxel. Cells were washed three times with PBS, then incubated with or without 10 µM cyclosporin A (a classical p-gp inhibitor) for 30 min in serum free media. Then the tracers were added and further incubated for 60 min. The cells were washed three times with ice cold PBS, and cell lysis was accomplished using lysis buffer. The amount of tracer in cell lysates was determined using a Beckman liquid scintillation counter with appropriate correction for quench, background and efficiency. An aliquot of cell lysates was utilized to determine protein content.

Receptor mediated endocytosis of HA-paclitaxel nanoconjugates in 231Br cells: 231Br cells were seeded in 12-well plates at the density of 5 x 10^4 cells per well and incubated for 24 hr. After checking for confluency, media was aspirated from the wells and cells were washed with PBS three times. The cells were incubated with different endocytic inhibitors [methyl-β-cyclodextrin (5 mM), chlorpromazine hydrochloride (10 µg/mL) and nystatin (25 µg/mL)], for 30 min. Then 14C-HA-Paclitaxel was added to each well and incubated for 60 min. After
incubation, treatment solutions were aspirated and cells were washed three times with ice-cold PBS. Then the cells were lysed with RIPA lysis buffer and an aliquot of lysate was transferred to scintillation vial containing scintillation fluid. Amount of 14C-HA-Paclitaxel present in the lysate was determined by counting the $dpms$ (disintegrations per minute) using scintillation counter. Uptake of 14C-HA-Paclitaxel was normalized with respect to total protein content determined using Bradford Assay.

Cell cycle analysis using flow cytometry: 231Br cells were grown to ~70% confluency and treated with equimolar concentrations of either paclitaxel or HA-paclitaxel for 24 hrs. After treatment, cells were trypsinized, centrifuged, washed twice with PBS, and then fixed with 70% ice cold ethanol for 24 hrs. Fixed cells were washed twice in PBS to remove excess ethanol, after which cells were incubated at 37°C with DNA staining solution containing propidium iodide (50 µg/mL). Cells were analyzed with a FACS Scanner flow cytometer (BD Biosciences: NJ, USA).

In vitro cytotoxicity: 231Br cells were seeded at a density of 10^4 cells per well in 48 well plates. Cytotoxicity was determined by treating the cells with equimolar concentrations of either paclitaxel or HA-paclitaxel for 48 hrs. Cell viability was determined using MTT assay. 60 µl (2mg/ml) of dimethyl thiazolyl diphenyl tetrazolium salt (MTT) in 1X PBS was added to the the cells, which were incubated for an additional 4 hours at 37°C. Afterward, the media was removed and 250 µl DMSO was added to each well to dissolve the formazan crystals. The absorption was measured at 570 nm using a BioTek Instrument ELx800™ microplate reader. Each sample was prepared in triplicate and the data were reported as mean ± SEM. The percentage cell viability of each sample was determined relative to the control (untreated) cells.
In vivo efficacy of HA-paclitaxel nanoconjugates: The anti-metastatic activity of the conjugate was determined in a preclinical model of brain metastasis of breast cancer. The 231Br breast cancer cell line was previously selected for brain tropism (BR) based upon multiple rounds of in vivo passage in immune compromised mice (1, 30). To develop brain metastases, immune compromised NuNu female mice were anesthetized with isofluorane (0.5-2%) and inoculated with 1.75×10^5 human 231Br/100 μL into the left cardiac ventricle in serum-free media using a stereotaxic apparatus (Stoelting: IL, USA). Tumors seeded the brain and developed lesions over ~2–6 weeks, or until neurological symptoms appeared. Three days after the tumor cell injection, animals were randomly divided into one of the three treatment groups: control, paclitaxel, or HA-paclitaxel. The animals were treated with vehicle alone or paclitaxel or HA-paclitaxel [6 mg/kg (paclitaxel equivalent), once a week, intravenously for five doses]. Paclitaxel was dissolved in a vehicle composed of a 1:1 blend of Cremophor EL (polyethoxylated castor oil) and ethanol was then diluted (7 parts of saline to 3 parts of blend) with normal saline for administration. HA-paclitaxel was dissolved in normal saline. All the formulations were prepared freshly on the day of dosing. Animals were monitored over a period of 90 days for neurologic symptoms at which point bioluminescence was performed and animals sacrificed. All animal experiments were performed in accordance with approved animal use and care protocols.

Histological confirmation (cresyl violet staining): Brain sections were rehydrated briefly, fixed in 4% paraformaldehyde (4°C), and subsequently washed. Cresyl violet stain (0.1% cresyl violet acetate) was added to each section for 15 minutes then rinsed with distilled water and placed in
ethanol of increasing concentrations (70%, 95%, and 100%) for differentiation of stain. Slides were then placed in xylene for clearing, air dried, and mounted with DPX medium.

Bioluminescence: Accuracy of left cardiac ventricle injection was confirmed using bioluminescent imaging at 24 hr post-injection with cells. Briefly, animals were injected with D-Luciferin (150 mg/kg, i.p.) and 10-15 minutes later were imaged utilizing a Caliper Lumina XR imager and Living Image® software (Xenogen, Alameda, CA) with a 5-minute image acquisition. After development of neurological symptoms (within 90 day window), animals were imaged for bioluminescent signal to confirm presence of tumor in brain.

Statistics: Data in all experiments represent mean ± SEM. Experiments were analyzed using ANOVA followed by Bonferonni’s multiple comparison’s test. For the survival data, 24 h after intra-cardiac injection animals were verified to have BLI signal from brain and were then randomized to the three groups. A Kaplan-Meier curve was obtained and a log-rank value was determined. A significance level of p <0.05 was used for all experiments. (GraphPad® Prism 5 software).
Results:

CD44-HA as a novel BTB transit pathway: CD44 is an extensively studied adhesion molecule that binds HA found in the extracellular matrix (11). Once HA is bound to the CD44 receptor, CD44 undergoes receptor mediated endocytosis to internalize HA (13). In this study, the ability of 231Br cells to internalize the ~3-5kDa HA-paclitaxel conjugate through the CD44 receptor-mediated endocytosis pathway was investigated as a novel method to improve the uptake of paclitaxel. CD44 was observed to have a relatively high degree of expression in 231Br cells (Fig. 3A and 3B). Further, this cellular phenotype was retained *in vivo* in brain metastatic lesions (Fig. 3C). Consequently, we hypothesized that conjugation of HA to normally impermeant molecules would permit their uptake into brain metastases.

After we observed the presence of CD44 in our model system, we conjugated HA to Texas Red, a sensitive marker of BBB and BTB permeability (5) to quantify uptake of HA polymers within the 231Br cells. Fluorescent conjugates of HA were synthesized by condensation of Texas Red hydrazide to HA (Fig. 2). The HA-TX Red conjugate accumulated in the 231Br cells over a 90 min incubation (Fig. 4A). Cellular accumulation of the HA-TX Red conjugate was inhibited by ~50% with the addition of 0.625 µM of unlabeled large molecular weight (1600kDa) HA [p<0.05; (−)HA (100.0 ± 34.4 %); (+)HA (48.4 ± 25.2 %)] due to competitive inhibition at the CD44 receptor (Fig. 4A; left bars).

To determine if the HA-CD44 interaction was capable of delivering therapeutically relevant concentrations of drugs into experimental brain metastases, similar studies were conducted with HA conjugated to paclitaxel. The HA/dmPEG was conjugated to paclitaxel using DMAP/DCC as a coupling agent (Fig. 2). The HA-¹⁴C-paclitaxel conjugate accumulated in the metastatic cells and was inhibited by the presence of free HA (Fig. 4A; right bars) [p<0.05; (−)HA (100.0 ± 34.4 %); (+)HA (48.4 ± 25.2 %)].
HA (100.0 ± 31.2 %); (+)HA (51.8 ± 4.2 %)] due to competitive inhibition. These data suggest HA-conjugation facilitates cellular uptake via receptor-mediated endocytosis of both Texas Red and paclitaxel.

Mechanisms of cellular internalization: To address the mechanisms of cellular internalization of the HA-paclitaxel conjugate, we observed the uptake of HA-^{14}C-paclitaxel in 231Br cells for 60 minutes in the presence of three endocytosis inhibitors, methyl-β-cyclodextrin (5 mM), chlorpromazine hydrochloride (10 µg/mL) and nystatin (25 µg/mL). In separate experiments, the inhibition of clathrin mediated endocytosis (31) with chlorpromazine hydrochloride (10 µg/mL) and the inhibition of caveolae mediated uptake with nystatin (25 µg/mL) (32) did not alter the cellular uptake of ^{14}C-HA-Paclitaxel. However, inhibition of the CD44 lipid raft pathway (33) by Methyl-β-Cyclodextrin (MβCD, 5 mM) (34) reduced the cellular uptake of ^{14}C-HA-Paclitaxel by approximately 50% compared to control (Fig. 4B, p<0.05). The data further confirms an active mechanism is present which facilitates uptake of the HA-paclitaxel conjugate into the cell.

To test whether the HA conjugates would also bypass P-gp, the uptake of ^{14}C-paclitaxel and HA-^{14}C-paclitaxel in P-gp overexpressing cells in the presence or absence of the P-gp inhibitor cyclosporine A was determined. Fig. 5 shows that ^{14}C-paclitaxel uptake in 231Br cells is significantly (~7-8 fold; p<0.0001) increased in the presence of cyclosporine A [(−)cyclosporin A (0.97 ± 0.45 μCi/gm); (+)cyclosporin A (6.5 ± 1.7 μCi/gm)]. Furthermore, the uptake of HA-^{14}C-paclitaxel is significantly (p<0.05) higher than the ^{14}C-paclitaxel control (~12 fold: 11.6 ± 2.1 μCi/gm) and is not further increased by the addition of cyclosporine A (Fig. 5).
This suggests that the HA conjugate bypasses P-gp and may enhance delivery of paclitaxel in metastatic brain lesions.

HA-Paclitaxel conjugates brain metastatic cells cytotoxicity: Paclitaxel acts by binding and stabilizing the microtubules, which ultimately results in a G₂/M arrest of the cell cycle (35, 36). To determine whether HA-paclitaxel retained the same chemotherapeutic activity as paclitaxel, a cell cycle analysis was performed for both compounds using flow cytometry. Briefly, 231Br cells were treated with equimolar paclitaxel (100 nM) concentrations of either paclitaxel or HA-paclitaxel for 24 hrs after which the cells were stained with propidium iodide and DNA content was analyzed. As shown in Fig. 6A, both paclitaxel and HA-paclitaxel caused significant (n=3, p<0.05) cell cycle arrest at the G₂/M phase (70.0 ± 12.2% and 56.0 ± 10.2% of cells respectively) as compared to control (17.0 ± 7.0%). Further, after paclitaxel and HA-paclitaxel treatment, there was a similar degree of apoptosis as evidenced by cleaved caspase-3 staining (data not shown). Paclitaxel and HA-paclitaxel had similar (p>0.05) *in vitro* cytotoxicity towards the 231Br breast cancer cell line with an IC₅₀ of 3.3 nM for HA-paclitaxel and 4.4 nM for free paclitaxel (Fig. 6B).

In vivo efficacy of HA-paclitaxel: In the final set of experiments, the HA-paclitaxel conjugate was evaluated for *in vivo* efficacy in a preclinical model of brain metastases of breast cancer. One day after the intra-cardiac injection of the 231Br cell lines, animals were imaged using bioluminescence to verify the presence of metastatic cells in the brain region (Fig. S2). After verification, animals were randomized to one of three groups; vehicle, intravenous paclitaxel (6 mg/kg) or intravenous HA-paclitaxel (6 mg/kg paclitaxel equivalent). Animals were
treated weekly for five doses. In the animals receiving the HA-paclitaxel conjugate, overall survival was longer compared to control (p=0.0345, by log rank test) and paclitaxel treated groups (p=0.0283, by log rank test). Similarly, lesion burden in brain was significantly decreased in the HA-paclitaxel group compared with the control and paclitaxel groups (p<0.05) using bioluminescence imaging (Fig. 7A). The median survival time was 37, 42, and 49 days for control, paclitaxel, and HA-paclitaxel respectively (Fig. 7B). Terminal bioluminescence imaging was verified by histology in animals (representative image shown in Fig. S3).
Discussion:

Brain metastases pose a significant problem for women with advanced breast cancer. Younger age HER-2 and triple-negative status may be the greatest risk factor for CNS metastasis development (37). Triple-negative patients who develop CNS metastases have approximately one half the time between initial diagnosis and cerebral relapse (22 vs. 51 months), and a significantly decreased survival time after initial diagnosis (4 vs. 8-15 months) (37). While there has been work completed on developing new drugs to treat brain metastases of breast cancer, clinical trials of standard, novel and combinatorial chemotherapeutic regimens have been consistently disappointing. One aspect of this problem is that the brain remains, at least in part, a sanctuary site by the continued presence of some fraction of the BBB. New methods to traverse the BBB may hold widespread promise for the development of effective brain metastasis treatments and preventatives.

Herein, we present data demonstrating that the widely expressed receptor-ligand pair CD44 and HA may be engineered small enough to pass through the leaky vasculature of the BTB and still retain the ability to be taken up into cancer cells via receptor mediated endocytosis. Further, the HA-paclitaxel nanoconjugate bypasses P-gp efflux mechanism in 231Br cells and accumulates intracellularly to a greater degree than free paclitaxel. Ultimately, the HA-paclitaxel inhibits the cell cycle at G2/M phase, induces apoptosis and induces cytotoxicity at similar concentrations of free paclitaxel. In vivo efficacy studies showed that the median survival of mice improved significantly with HA-paclitaxel in breast metastasis to brain tumor model.

This novel formulation facilitates paclitaxel accumulation in 231Br cells through receptor mediated endocytosis and bypasses p-gp efflux transporters present on the cell membrane.
Similar to other tumor cell lines, the 231Br cell line overexpresses CD44 (38, 39) and is able to internalize a HA-drug conjugate. This type of active targeting has been used previously to increase cellular uptake of doxorubicin loaded liposomes (~20 fold) (40). However, this work is different from most prior studies, in that the other studies utilized high molecular weight HA (>75 kDa) as the drug carrier (28, 41-43). We chose to use the smaller molecular weight HA since our previous work demonstrated that in the preclinical model a ~ 4kDa dextran was able to accumulate in numerous metastatic lesions, but the 70kDa dextran had a more limited penetration (5). Importantly, the size of our formulation was observed to be in two distinct populations; one of 2-3 nm and the other at approximately 80 nm. We believe that the smaller conjugates can self-assemble into larger particles similar in structure to a lipid membrane. Based upon previous work, it is unlikely that the larger particles enter into the brain metastases. It is likely that the single molecules, as well as single molecules released from the aggregates are the active component and responsible for the effect.

One concern in using the lower molecular weight HA is the binding affinity of HA to CD44, which depends on the number of disaccharides present on the HA molecule (44). However, our data demonstrated that the ultra-low molecular weight HA polymer used in this study to conjugate to paclitaxel retained the ability to be internalized into the cell via receptor-mediated endocytosis. These data are consistent with previous studies demonstrating oligomers of HA with as low as 4 to 14 sugar residues, were still able to undergo receptor-mediated endocytosis (44).
Paclitaxel, has low water solubility (13) and has limited brain distribution primarily due to the BBB efflux transporter, P-gp (10, 45, 46). Several strategies have been employed to circumvent P-gp at BBB, including chemical modification, (47) encapsulating in nanoparticles (48) and conjugating to peptide vectors (49-52). Our data suggest that HA-paclitaxel bypasses P-gp, and the cellular uptake of the conjugate is ~10 fold greater than that of free paclitaxel. These data are in agreement with prior reports, where the conjugation of drugs such as doxorubicin and paclitaxel to peptides resulted in decreased affinity of the compound for P-gp at BBB (52, 53). For example, ANG1005, a conjugate of angiopep-2 with three molecules of paclitaxel showed ~5 fold increase in brain uptake than free paclitaxel in P-gp knockout mice (54, 55). Similarly, when doxorubicin was conjugated to a peptide (penetratin), the brain parenchymal accumulation was increased ~4-5 times greater than doxorubicin (56).

Paclitaxel stabilizes microtubules and interferes with the G2 and M phases of the cell cycle (35, 36, 57). Our data demonstrate that HA-paclitaxel causes a similar arrest at the G2/M phase of cell cycle. Further, the HA-paclitaxel conjugate had a slightly lower IC50 in the 231Br cells than that of free paclitaxel. From these data, we speculate that HA-paclitaxel retains similar cytotoxicity mechanisms as that of paclitaxel. This may be possible since the HA-conjugate is designed to be cleaved by cytosolic hyaluronase enzymes (58) into HA and free paclitaxel, which has the ability to act on microtubules. Although it is entirely possible the HA-paclitaxel conjugate can act on the microtubules without being enzymatically cleaved.

The overarching goal of this work was to determine if our ultra-small nanoconjugate would have efficacy in a preclinical triple negative brain metastases of breast cancer model. In
agreement with our previous reports (5) paclitaxel did not improve the median survival time (Control: 37 days; paclitaxel: 42 days p=0.4524). However, as shown in Fig. 7B HA-paclitaxel significantly improved the overall survival time from 37 days to 49 days (p=0.035). To best of our knowledge, this is the first report to show the in vivo efficacy of HA-paclitaxel bioconjugate in a preclinical model of brain metastases of breast cancer. It is of interest, that 24 hours after intracardiac injection of the Luc-2 transfected 231Br cells, most animals had luminescent signal only in the brain region, while a few animals had bioluminescent signal in the kidney, liver and bladder region. We speculate that the 231Br cells when injected, rapidly seed the brain (within 24 h) and most if not all remaining metastatic cells are cleared from the body.

The results presented in this manuscript suggest that low molecular weight HA could be effective in delivering drug to brain metastases of breast cancer. Further work should be completed to determine if this platform is effective in the delivering other chemotherapeutics or potentially combinatorial therapy. These data could be used in the development of other preclinical studies evaluating pharmacokinetics and toxicity.
Acknowledgements:

We acknowledge Dr. Liangxi Li in the Department of Pharmaceutical Sciences, Texas Tech University for helping synthesis of conjugates; Dr. M. Zeller in the Department of Chemistry, Youngstown University (Youngstown OH), for assisting with the NMR spectroscopy data.
References:

Figure Legends:

Figure 1: Schematic diagram of HA-paclitaxel nanoconjugates hypothetical mechanism of action using CD44 receptor-mediated endocytosis.

Figure 2: Chemical structure and synthetic scheme for HA-Paclitaxel. Briefly, in the first step the sodium hyaluronic acid was desalted using dialysis against water. In the second step, a nanocomplex was formed between HA and dmPEG. In the last step, the HA-dmPEG complex was conjugated to paclitaxel using a carbodiimide reaction.

Figure 3: CD44 is expressed on the cell surface in 231Br cells. Relative expression (A) of CD44 in 231Br cells compared to T47D cells which do not express the receptor. (B) Immunocytochemistry suggests membrane distribution of CD44. (C) Representative image demonstrating that a high degree of CD44 expression is retained in 231Br brain metastases *in vivo*.

Figure 4: HA-TX Red and \(^{14}\)C-HA-paclitaxel accumulate in 231Br cells via CD44 receptor-mediated endocytosis. (A) The *in vitro* uptake of HA-TX Red and \(^{14}\)C-HA-Paclitaxel was reduced ~50% by the presence of free 1600kDa HA (0.625 μM) which effectively competes for CD44 receptor-mediated endocytosis. (B) Pharmacological inhibition of clathrin mediated endocytosis by incubation with chlorpromazine hydrochloride (10 μg/mL) for 30 minutes and caveolae mediated endocytosis uptake by 25 μg/mL nystatin did not inhibit HA-paclitaxel uptake into 231Br cells (p>0.05). However, inhibition of the lipid raft endocytosis pathway with 5 mM methyl-β-cyclodextrin significantly reduced the uptake of \(^{14}\)C-HA-paclitaxel into 231Br cells as
compared to control (p<0.01). These data suggest the conjugate is actively taken into 231Br cells via CD44 mediated endocytosis. Data represent Mean ± SEM; n=6. A *, **, and ***, represent significant p values of p< 0.05, 0.01, and 0.001 respectively.

Figure 5: HA-paclitaxel bypasses P-gp mediated efflux of paclitaxel. In control experiments, an ~8 fold increase in 14C-paclitaxel cellular accumulation was observed in presence of the P-gp inhibitor, cyclosporine A (10 µM) in 30 min *in vitro* uptake experiments (left bars). In contrast cellular uptake of 14C-HA-paclitaxel was ~11 fold greater than control 14C-paclitaxel uptake and was not reduced by the presence of 10 µM cyclosporine A (right bars). Data represent Mean ± SEM; n=6. A *, **, and ***, represent significant p values of p< 0.05, 0.01, and 0.001 respectively (ANOVA).

Figure 6: Paclitaxel and HA-paclitaxel exert similar cytotoxicity profiles. (A) Representative cell cycle analysis graphs of control, paclitaxel (100 nM) treated and HA-paclitaxel (100 nM paclitaxel equivalent) treated 231Br cells. Both paclitaxel and HA-paclitaxel caused significant (n=3, p<0.05) cell cycle arrest at the G2/M phase (70 ± 12% and 56 ± 10% of cells respectively) as compared to control (17 ± 7%). (B) *In vitro* cytotoxicity of HA-paclitaxel and paclitaxel in 231Br cells. 231Br cell cultures were incubated with paclitaxel or HA-paclitaxel for 48 hrs at concentrations ranging from 0.1 nM to 10 µM. The number of viable cells at 48 hrs was determined using MTT assay. Data represent Mean ± SEM; n=6 for all points. IC$_{50}$ was calculated using log dose response curve (P>0.05).
Figure 7: HA-paclitaxel formulation prolongs overall survival. (A) Significant decrease in metastatic lesion burden as measured by BLI was observed in the HA-paclitaxel treated groups compared with control and paclitaxel (p<0.05). (B) Median survival was prolonged as determined by the log rank test in the HA-paclitaxel group compared to control (p = 0.35) and the paclitaxel treated group (p = 0.28); n=7 for all groups.
Mittapalli et al, Figure 1
Mittapalli et al, Figure 2

Sodium Hyaluronic acid

Hyaluronic acid

Hyaluronic acid–dmPEG Complex

Paclitaxel
DCC/DMAP in DMSO

dialysis

Hyaluronic acid–Paclitaxel

Downloaded from mct.aacrjournals.org on June 24, 2017. © 2013 American Association for Cancer Research.
Mittapalli et al, Figure 3

A

T47D

MDA-MB-231Br

CD44

Actin

B

10 μm

C

100 μm

Red: CD44

Blue- DAPI Nuclear Stain

MDA-MB-231Br
Her-2 Tumor
Mittapalli et al, Figure 4

A

- **(-) Hyaluronic Acid**
-
- **(+) Hyaluronic Acid**

Cellular Accumulation (% of Control)

- HA-TX Red
- 14C-HA-Paclitaxel

- *: p < 0.05
- **: p < 0.01

B

- Control
- Chlorpromazine
- Methyl-$eta$-Cyclodextrin
- Nystatin

% HA-Paclitaxel Uptake

- **: p < 0.01
- ns: not significant
Mittapalli et al, Figure 5
Mittapalli et al, Figure 6

A
- Control
 - G0/G1: 62%
 - S: 13%
 - G2/M: 24%

- Taxol
 - G0/G1: 9.7%
 - S: 6.6%
 - G2/M: 82.4%

- HA-Taxol
 - G0/G1: 22%
 - S: 13%
 - G2/M: 66%

B
- Paclitaxel (IC50 - 4.4 nM)
- HA-Paclitaxel (IC50 - 3.3 nM)
Mittapalli et al, Figure 7

A

Fold increase in Average Photons w.r.t day 21

Time (Days)

B

Percent survival

Time (Days)

- Control
- Paclitaxel
- HA-Paclitaxel
Molecular Cancer Therapeutics

Paclitaxel-Hyaluronic Nano-Conjugates Prolong Overall Survival in a Preclinical Brain Metastases of Breast Cancer Model

Rajendar K Mittapalli, Xinli Liu, Chris E Adkins, et al.

Mol Cancer Ther Published OnlineFirst September 3, 2013.

Updated version
Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-13-0132

Supplementary Material
Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2013/09/03/1535-7163.MCT-13-0132.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.