Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer

Yezi Zhu1,2, Chengfei Liu1, Nagalakshmi Nadiminty1, Wei Lou1, Ramakumar Tummala1, Christopher P. Evans1,3, and Allen C. Gao1,2,3

Abstract

Docetaxel is the first-line standard treatment for castration-resistant prostate cancer. However, relapse eventually occurs due to the development of resistance to docetaxel. To unravel the mechanism of acquired docetaxel resistance, we established docetaxel-resistant prostate cancer cells, TaxR, from castration-resistant C4-2B prostate cancer cells. The IC50 for docetaxel in TaxR cells was about 70-fold higher than parental C4-2B cells. Global gene expression analysis revealed alteration of expression of a total of 1,604 genes, with 52% being upregulated and 48% downregulated. ABCB1, which belongs to the ATP-binding cassette (ABC) transporter family, was identified among the top upregulated genes in TaxR cells. The role of ABCB1 in the development of docetaxel resistance was examined. Knockdown of ABCB1 expression by its specific shRNA or inhibitor resensitized docetaxel-resistant TaxR cells to docetaxel treatment by enhancing apoptotic cell death. Furthermore, we identified that apigenin, a natural product of the flavone family, inhibits ABCB1 expression and resensitizes docetaxel-resistant prostate cancer cells to docetaxel treatment. Collectively, these results suggest that overexpression of ABCB1 mediates acquired docetaxel resistance and targeting ABCB1 expression could be a potential approach to resensitize docetaxel-resistant prostate cancer cells to docetaxel treatment. Mol Cancer Ther; 12(9); 1–8. ©2013 AACR.

Introduction

Prostate cancer is the most common diagnosed cancer and second most frequent cause of cancer-related death among the men in the United States. Most of the patients with prostate cancer will initially respond to androgen deprivation therapy. However, almost all of them will relapse due to development of castration-resistant prostate cancer (CRPC; refs. 1, 2). Docetaxel is the first-line standard treatment for CRPC. Docetaxel is a cytotoxic antimicrotubule agent that binds to β-tubulin and prevents microtubule depolymerization, resulting in inhibition of mitotic cell division which leads to apoptotic cell death (3). However, relapse eventually occurs due to the development of resistance to docetaxel.

The molecular mechanisms of the acquired docetaxel resistance in prostate cancer cells are incompletely understood. Studies to understand the underlying mechanisms of docetaxel resistance have uncovered several potential mechanisms of docetaxel resistance in prostate cancer (4, 5). Alterations of β-tubulin isotypes, especially the increase in isotypes III and IV, has been shown to be correlated with docetaxel resistance (6). Alterations of cell survival factors that inhibit chemotherapy-induced apoptotic cell death are associated with docetaxel resistance (7). Several different groups have reported that overexpression of Bcl-2 (8) and induction of clusterin by pAkt (9, 10) are related to docetaxel resistance in prostate cancer. Aberrant activation of central transcriptional factors such as NF-κB also plays an important role in the development of resistance. Recent studies have shown that inhibition of NF-κB resensitizes docetaxel-resistant PC-3 cells to taxane-induced apoptosis (11). Furthermore, reduced intracellular drug concentration through alteration of multidrug resistance (MDR) genes is another mechanism associated with the acquired resistance to chemotherapy (12).

To further understand the molecular mechanisms of the acquired docetaxel resistance and explore potential therapeutic strategies for docetaxel-resistant CRPC, we generated docetaxel-resistant prostate cancer cells from castration-resistant C4-2B prostate cancer cells. We identified ABCB1 gene upregulation as a common mechanism involved in acquired docetaxel resistance. In addition, we show that apigenin, a natural product of the flavone
family, inhibits ABCB1 expression and resensitizes docetaxel-resistant prostate cancer cells to docetaxel treatment by enhancing apoptotic cell death.

Materials and Methods
Cell culture and reagents
DU145 cells were obtained from the American Type Culture Collection (ATCC). All experiments with cell line were conducted within 6 months of receipt from ATCC or resuscitation after cryopreservation. ATCC uses short tandem repeat (STR) profiling for testing and authentication of cell lines. C4-2B cells were kindly provided and authenticated by Dr. Leland Chung (Cedars-Sinai Medical Center, Los Angeles, CA). The cells were cultured in RPMI-1640 medium containing 10% complete FBS with 100 U/mL penicillin and 0.25 mg/mL streptomycin and maintained at 37°C in a humidified incubator with 5% CO2. C4-2B cells were incubated with gradually increasing concentrations of docetaxel. Cells that survived the maximum concentration of docetaxel were stored for further analysis and referred to as TaxR cells. Parental C4-2B cells were passaged alongside the docetaxel-treated cells as an appropriate control. Docetaxel-resistant TaxR cells were maintained in 5 nmol/L docetaxel-containing medium. Docetaxel (CAS#114977-28-5) was purchased from TSZ CHEM. Apigenin (CAS#520-36-5) and Elacridar (CAS#143664-11-3) were purchased from Sigma-Aldrich. Antibodies against ABCB1, p53, phospho-p53, cleaved PARP, and GAPDH were obtained from Santa Cruz Biotechnologies.

Plasmids and cell transfection
Lentivector-based ABCB1 shRNA constructs were obtained from Open Biosystems. TaxR cells were transiently transfected with shRNA specific against ABCB1 or shGFP as vector control using Attractene transfection reagent (QIAGEN). TaxR shABCB1 and vector stable clones were selected with 2.0 μg/mL puromycin within 3 weeks after being transfected with ABCB1 shRNA or control vector and then maintained in culture medium containing 2.0 μg/mL puromycin.

Preparation of whole-cell extracts
Cells were harvested, washed with PBS twice, and lysed in high-salt buffer [10 mmol/L HEPEs (pH 7.9), 0.25 mol/L NaCl, 0.1% NP-40] supplemented with protease inhibitors (Roche). Protein concentration was determined with Coomassie Plus Protein Assay Kit (Pierce).

Western blot analysis
Equal amounts of cell protein extracts were loaded on 8% or 10% SDS-PAGE, and proteins were transferred to nitrocellulose membranes. After blocking in 5% non-fat milk in 1 × PBS/0.1% Tween-20 at room temperature for 1 hour, membranes were washed three times with 1 × PBS/0.1% Tween-20. The membranes were incubated overnight with primary antibodies at 4°C. Proteins were visualized by enhanced chemiluminescence kit (Millipore) after incubation with the appropriate horseradish peroxidase-conjugated secondary antibodies.

Real-time quantitative reverse transcription-PCR
Total RNA was extracted with TRIzol (Invitrogen) reagent. One microgram RNA was digested using RQ1 DNase (Promega). The resulting product was reverse transcribed with random primers using Im-Prom II Reverse transcriptase (Promega). The newly synthesized cDNA was used to conduct real-time PCR. The reaction mixture contained 4 μL cDNA template and 0.5 μmol/L specific primers for ABCB1 (Forward: 5'-ATGCT CTGGC TTCT CTGAT GGA-3'; Reverse: 5'-ATGGC GATCC TCTGC TTCTG CCCAC-3'), GAPDH primers were used as an internal control. The expression levels of ABCB1 were normalized to GAPDH. The experiments were repeated three times with triplicates.

Cell growth assay
C4-2B and TaxR cells were seeded in 12-well plates at a density of 1 × 105 cells per well. Cells were treated as indicated and total cell numbers were counted using Coulter cell counter.

Cell death ELISA
C4-2B and TaxR cells were seeded in 12-well plates at a density of 1 × 105 cells per well and were treated as indicated. DNA fragmentation in the cytoplasmic fraction of cell lysates was determined using Cell Death Detection ELISA Kit (Roche) according to the manufacturer’s instructions. Apoptotic cell death was measured at 405 nm.

Clonogenic ability assay
C4-2B and TaxR cells were treated with dimethyl sulfoxide or different doses of docetaxel for 6 hours. A total of 1 × 103 cells were then plated in 100 mm dish for 14 days. The cells were fixed with 4% formaldehyde for 10 minutes and then stained with 0.5% crystal violet for 30 minutes, and the numbers of colonies were counted.

cDNA microarray analysis
Twenty-four hours after plating of 1 × 105 C4-2B and TaxR cells, total RNA was isolated using TRIzol Reagent (Invitrogen) and purified with Eppendorf phase-lock-gel tube. RNA quality of all samples was tested by RNA electrophoresis to ensure RNA integrity. Samples were analyzed by the Genomics Shared Resource (UC Davis Medical Center, Sacramento, CA) using the Affymetrix Human Gene 1.0 ST array. Microarray data have been deposited at GEO with the accession number GSE47040.

Statistical analyses
All data are presented as means ± SD. Differences between multiple groups were determined using one-way ANOVA followed by the Scheffé procedure for comparison of means. P < 0.05 was considered significant.
Results

Development and characterization of a docetaxel-resistant prostate cancer cell line

We previously showed that docetaxel induces p53 phosphorylation in docetaxel-sensitive LNCaP and C4-2B cells, but fails to induce p53 phosphorylation in docetaxel-resistant DU145 cells (13). To further confirm these findings, we established a docetaxel-resistant cell line, TaxR, from C4-2B cells by culturing C4-2B cells in docetaxel in a dose-escalation manner (starting from 0.1 nmol/L). After 9-month selection, cells were able to divide freely in 5 nmol/L docetaxel. To test the effect of docetaxel treatment on parental C4-2B and TaxR cell viability, cell growth assay was conducted. Both cell lines were treated with increasing concentrations of docetaxel for 24 hours. As shown in Fig. 1A, C4-2B cells are sensitive to docetaxel treatment with an IC_{50} of 2 nmol/L, whereas TaxR cells are much more resistant to docetaxel with an IC_{50} of 140 nmol/L, about 70-fold increase over parental C4-2B cells. To determine whether docetaxel induces p53 phosphorylation in TaxR cells, TaxR cells and parental C4-2B cells were treated with increasing doses of docetaxel and cell lysates were isolated for Western blot analysis. As shown in Fig. 1B, docetaxel treatment induces p53 phosphorylation in C4-2B cells, but not in TaxR cells, consistent with previous report that p53 phosphorylation is associated with docetaxel sensitivity in prostate cancer cells.

The effect of docetaxel on clonogenic ability of both C4-2B and TaxR cells was determined. The clonogenic ability of TaxR cells was significantly higher than that of parental C4-2B cells in response to docetaxel treatment (Fig. 2A and B). To test the ability of docetaxel to induce apoptotic cell death in prostate cancer cells, C4-2B and TaxR cells exposed to 5 nmol/L docetaxel for 48 hours were examined by apoptosis-specific ELISA assay as described in Materials and Methods. Docetaxel at 5 nmol/L concentration induced significant apoptotic cell death in parental C4-2B cells but had little effect on TaxR cells (Fig. 2C and D).

ABC1 is overexpressed in TaxR cells

Several mechanisms have been proposed for docetaxel resistance in prostate cancer, such as alteration in β-tubulin isotypes, reduced intracellular concentration of drug through alteration of MDR genes and alteration of cell survival factors and transcription factors (6–10). To identify genes responsible for docetaxel resistance in TaxR cells, global gene expression analysis by cDNA microarrays (~28,000 genes) was conducted using mRNA from parental C4-2B and TaxR cells. Gene expression analysis revealed that a total of 1,604 genes were altered in TaxR cells with 52% being upregulated and 48% downregulated. The 1,604 genes that are altered in TaxR cells were compared with the public database generated from docetaxel-resistant DU145DR and Rv1DR cells (14). Only 9 genes altered by docetaxel were found to be overlapping in the three-gene data sets (Fig. 3A). ABC1, which belongs to the ATP-binding cassette (ABC) transporter family, was identified among the top upregulated genes in TaxR cells, which is also among the 9 overlapped genes in the three-gene datasets. To verify microarray analysis, total RNAs were isolated from C4-2B and TaxR cells, and ABC1 mRNA level was measured using specific primers by qRT-PCR. As shown in Fig. 3B, ABC1 mRNA was highly expressed in TaxR cells but was not detectable in parental C4-2B. ABC1 protein expression was analyzed by Western blotting in whole-cell extracts of parental C4-2B and TaxR cells. Figure 3C showed that ABC1 was overexpressed in TaxR cells but was not detectable in parental C4-2B cells. These data suggested that ABC1 is overexpressed in docetaxel-resistant TaxR cells at both mRNA and protein levels.

Downregulation of ABC1 reverses docetaxel resistance

Having identified that ABC1 is overexpressed in docetaxel-resistant TaxR cells, we next tested whether overexpression of ABC1 leads to docetaxel resistance in TaxR cells. As shown in Fig. 4A, inhibition of ABC1 expression by ABC1 shRNA resensitized TaxR cells to docetaxel treatment. Figure 4B confirmed that ABC1 protein expression was knocked down by ABC1 shRNA. This observation was confirmed in another docetaxel-resistant DU145-R cell line, in which knockdown of ABC1 expression by ABC1 shRNA reversed docetaxel resistance (Supplementary Fig. S1). To further confirm that downregulation of ABC1 could restore sensitivity to docetaxel, we established stable transfectant TaxR cells expressing ABC1 by transfecting ABC1 shRNA.
ABCB1 shRNA. Two independent clones (clones No. 2 and No. 30) with ABCB1 downregulation were selected for further analysis (Fig. 4C). As shown in Fig. 4D, downregulation of ABCB1 increased the sensitivity of TaxR cells to docetaxel treatment. The IC50 of docetaxel was reduced from 140 nmol/L (vector control of parental TaxR cells) to about 20 nmol/L in both clone No. 2 and No. 30. Furthermore, we used ABCB1 inhibitor, Elacridar, to test whether inhibition of ABCB1 activity reverses docetaxel resistance in TaxR cells. As shown in Fig. 4E, treatment with 0.5 μmol/L Elacridar for 24 hours resensitized TaxR cells to docetaxel treatment, leading to both growth inhibition (Fig. 4E) and induction of apoptosis (Fig. 4F). Collectively, these data suggested that while ABCB1 overexpression enhances docetaxel resistance, inhibition of ABCB1 expression resensitizes prostate cancer cells to docetaxel treatment.

Apigenin downregulates ABCB1 expression and reverses docetaxel resistance

As downregulation of ABCB1 reverses docetaxel resistance, we attempted to search for agents that can inhibit
ABCB1 expression and therefore increase docetaxel sensitivity. Apigenin (4',5,7-trihydroxyflavone), a natural product belonging to the flavone family, has the ability to modulate multidrug resistance genes and induce apoptosis in prostate cancer cells (15). We tested whether apigenin inhibits ABCB1 expression in docetaxel-resistant TaxR cells. TaxR cells were treated with increasing concentrations of apigenin. Total proteins were extracted after 48 hours of exposure and assessed by Western blot analysis. As shown in Fig. 5A, apigenin downregulates ABCB1 protein expression in a dose-dependent manner.

To examine whether apigenin could reverse docetaxel resistance in TaxR cells, TaxR cells were treated with 20 nmol/L docetaxel alone or in the combination with 10 μmol/L apigenin. As shown in Fig. 5B, docetaxel alone at 20 nmol/L had little effect on cell growth, apigenin alone at the concentration of 10 μmol/L reduced TaxR cell growth by about 10% to 20%, whereas the combination of 20 nmol/L docetaxel and 10 μmol/L apigenin reduced growth of TaxR cells by about 50%. Cell death ELISA showed that the combination of apigenin and docetaxel induced apoptotic cell death (Fig. 5C and D). The combination treatment also induced cleavage of PARP, a marker of apoptotic cell death, as shown by Western blot analysis.
These results show that apigenin restores docetaxel sensitivity of TaxR cells, suggesting that treatment with a combination of apigenin and docetaxel could be a potential strategy to overcome docetaxel resistance in castration-resistant prostate cancer.

Discussion

Docetaxel is used as first-line treatment for patients with castration-resistant prostate cancer that failed bicalutamide therapy. However, relapse eventually occurs due to the development of resistance to docetaxel. In this study, we generated a docetaxel-resistant prostate cancer cell subline, TaxR, from parental castration-resistant C4-2B cells. We identified ABCB1, which belongs to the ATP-binding cassette (ABC) transporter family, as the top upregulated gene in TaxR cells through global gene expression analysis and expression validation. Knockdown of ABCB1 expression by its specific shRNA or the inhibitor, Elacridar, resensitized docetaxel-resistant TaxR cells to docetaxel. In addition, we show that apigenin, a natural product of the flavone family, inhibits ABCB1 expression and resensitizes docetaxel-resistant TaxR cells to docetaxel treatment.

Several docetaxel-resistant prostate cancer cell lines have been generated including PC-3, DU145, and CWR22Rv1 (11, 14, 16). Using these docetaxel-resistant cell models, several genes have been identified to be associated with docetaxel resistance. Overexpression of Notch and Hedgehog signaling has been found to be linked to docetaxel resistance in DU145 and CWR22Rv1 cells (14). Downregulation of CDH1 and IFIH1 has been identified in docetaxel-resistant PC-3 and DU145 cells and verified in prostate tumors from docetaxel-resistant patients (16). We generated the TaxR docetaxel-resistant cell line from C4-2B cells cultured in media containing docetaxel for a long period of time. The cells are about 70-fold more resistant to docetaxel compared with parental C4-2B cells, with an IC50 of 140 nmol/L docetaxel. Interestingly, in addition to docetaxel, TaxR cells are resistant to paclitaxel, but not to doxorubicin (Fig. 6). This may be due to different mechanisms of action between taxane (docetaxel and paclitaxel) family (microtubule stabilization) and doxorubicin (DNA intercalation and topoisomerase II inhibition). Using global gene expression analysis, we identified ABCB1 as a top upregulated gene in TaxR cells versus parental C4-2B cells. Data analysis of public data bases generated from docetaxel-resistant DU145DR and Rv1DR cells showed that ABCB1 is also overexpressed in both DU145DR and Rv1DR cells (14), suggesting that overexpression of ABCB1 is a common mechanism involved in acquired docetaxel-resistant prostate cancer. Functional validation studies showed that inhibition of ABCB1 expression resensitized TaxR cells to docetaxel.
The results show that resensitization of TaxR cells to docetaxel treatment by downregulation of ABCB1 may have potential clinical implications. ABCB1 (P-glycoprotein, or MDR1) belongs to the ATP-binding cassette (ABC) transporters that use the energy of ATP hydrolysis to transport substrates including alkaloids, anthracyclines and taxanes across cell membranes and diminish efficacy of the drug (17). Early studies showed that increased expression of ABCB1 confers resistance to chemotherapeutic agents including docetaxel (11, 18, 19). In addition, ABCB1 expression is directly correlated with prostate tumor grade and stage (20). It is possible that while patients respond initially to docetaxel treatment, ABCB1 expression is induced by docetaxel and subsequently transports docetaxel across cell membranes, thus diminishing efficacy and resulting in development of resistance. Together with the results showing that ABCB1 is overexpressed in docetaxel-resistant TaxR cells and downregulation of ABCB1 expression increases docetaxel sensitivity, induction of expression of ABCB1 by docetaxel may be one of the key mechanisms that are responsible for the acquired docetaxel resistance, and targeting ABCB1 expression could be a valid strategy to augment docetaxel efficacy and enhance the duration of treatment.

Overcoming docetaxel resistance presents a huge challenge to the treatment and management of docetaxel-resistant CRPC. On the basis of our finding that downregulation of ABCB1 resensitizes docetaxel-resistant prostate cancer to docetaxel treatment, we attempted to identify inhibitors of ABCB1 and tested their ability to overcome docetaxel resistance. Toward this goal, we have identified apigenin, a natural product belonging to the flavone family, as an inhibitor of ABCB1. Apigenin, 4', 5, 7-trihydroxyflavone, has gained particular interest in recent years because of its low cytotoxicity and significant effects on cancer cells versus normal cells (21, 22). The antitumor effects of apigenin have been identified in a wide variety of malignant cells including prostate (15, 23, 24), melanoma (25, 26), breast (27, 28), leukemia (29), lung (30), and colon (31). Apigenin acts on a broad range of molecular signaling including suppression of the PI3K-Akt pathway in breast cancer (27, 28), induction of G2–M arrest by modulating cyclin-CDK regulators and MAPK activation (32), and alteration of the expression levels of proapoptotic factors like Bax/Bcl2, which leads to caspase activation and PARP cleavage (23). More recently, apigenin has been shown to be able to sensitize cancer cells to taxane-induced apoptotic death by promoting the accumulation of ROS in a caspase-2–dependent manner (33). Our findings showing that apigenin inhibits ABCB1 expression and overcomes docetaxel resistance provide additional evidence that apigenin may play a role in the management of CRPC after failure of docetaxel therapy.

Collectively, these results suggest that overexpression of ABCB1 may be a potential mechanism that is responsible for docetaxel resistance in prostate cancer and that targeting ABCB1 expression may be an attractive approach to resensitize docetaxel-resistant prostate cancer cells to docetaxel.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: Y. Zhu, C.P. Evans, A.C. Gao
Development of methodology: Y. Zhu, R. Tummala, C.P. Evans, A.C. Gao
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Y. Zhu, C. Liu, A.C. Gao
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Y. Zhu, C. Liu, C.P. Evans, A.C. Gao
Writing, review, and/or revision of the manuscript: Y. Zhu, N. Nadimity, R. Tummala, C.P. Evans, A.C. Gao
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Y. Zhu, C. Liu, W. Lou, A.C. Gao
Study supervision: Y. Zhu, C.P. Evans, A.C. Gao

Grant Support
This work is supported in part by grants NIH/NCI CA140468, CA118887, DOD PCRP PC080538 (to A.C. Gao), U.S. Department of Veterans Affairs, Office of Research and Development VA Merits I01 BX000526 (to A.C. Gao), and by resources from the VA Northern California Health Care System (Sacramento, CA). The UC Davis Comprehensive Cancer Center Genomics Shared Resource is supported by Cancer Center Support Grant P30 CA93373-01 from the NCI.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 20, 2013; revised May 31, 2013; accepted June 17, 2013; published OnlineFirst July 16, 2013.
References

27. Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through pro-apoptotic degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-depen-

28. Long X, Fan M, Bigsby RM, Niewold TP. Apigenin inhibits antiestro-

Molecular Cancer Therapeutics

Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer

Yezi Zhu, Chengfei Liu, Nagalakshmi Nadiminty, et al.

Mol Cancer Ther Published OnlineFirst July 16, 2013.

Updated version Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-13-0208

Supplementary Material Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/07/17/1535-7163.MCT-13-0208.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.