Developing Lipid Nanoparticle-based siRNA Therapeutics for Hepatocellular Carcinoma Using an Integrated Approach

Leiming Li¹, Rongqi Wang¹, Denise Wilcox¹, Aparna Sarthy¹, Xiaoyu Lin¹, Xiaoli Huang¹, Lu Tian, Prasad Dande, Robert D Hubbard¹, Todd M Hansen¹, Carol Wada¹, Xiaobin Zhao², William M Kohlbrenner¹, Stephen W. Fesik¹, Yu Shen¹*

¹Cancer Research, Global Pharmaceutical Research and Development, Abbott, 100 Abbott Park Road, Abbott Park, IL 60064
²Global Pharmaceutical and Analytical Sciences, Abbott, 100 Abbott Park Road, Abbott Park, IL 60064

Running title: Developing siRNA therapy for Hepatocellular Carcinoma

Keywords: siRNA, RNAi, therapy, delivery, cancer

*Address correspondence to: Yu Shen, Email: yu.shen@abbott.com, Phone: 847-936-1128

Conflict of interest: The authors declare no conflict of interest.

Financial information: This work was supported by Abbott Laboratories’ internal R&D fund.
Abstract

Successful siRNA therapeutics requires the optimal integration of multiple components, including an efficient delivery system, a disease indication that is appropriate for siRNA-based therapy, and a potent and non-toxic siRNA against a robust therapeutic target. Although all currently available delivery systems have limitations, it is important to recognize that a careful selection of the disease indication, therapeutic target, and siRNA molecule could partially compensate for deficiencies associated with the delivery system and makes it possible to advance a therapeutic siRNA regimen with an imperfect delivery platform. In this study, we presented the development of siRNA therapeutics for hepatocellular carcinoma using an integrated approach, including the development of an efficient lipid nanoparticle delivery system, the identification of a robust therapeutic target that do not trigger liver toxicity upon target knockdown, and the selection of potent and non-immunogenic siRNA molecules against the target. The resulting siRNA-containing lipid nanoparticles produced significant anti-tumor efficacy in orthotopic hepatocellular carcinoma models, and thus, represent a promising starting point for the development of siRNA therapeutics for hepatocellular carcinoma.
Introduction

Short interfering RNA (siRNA) represents a promising novel therapeutic modality for the treatment of cancer(1). However, delivering siRNA to tumors using clinically acceptable delivery strategies remains a major technical hurdle(2, 3). Over the last 10 years, various proof-of-concept successes of in vivo siRNA delivery to tumors have been reported using delivery vehicles such as liposomes, cationic polymers and other materials(4-10). To select the most promising delivery platform for the development of siRNA therapeutics, we evaluated the majority of available delivery technologies for their abilities to deliver siRNA into tumors using the previously-described positive-readout tumor models(11). From these analyses, lipid nanoparticles such as Stable Nucleic Acids Lipid Nanoparticles (SNALP) emerged as the most promising platform for tumor delivery via systemic administration. SNALP is a lipid nanoparticle of ~100 nm in size and has a close to neutral surface charge (12-14). It consists of cholesterol, DSPC, D-Lin-DMA and PEG-C-DMA. Among these components, the neutral lipids DSPC and cholesterol are commonly used in many liposome formulations for maintaining liposome structure whereas, PEG-C-DMA and D-Lin-DMA are unique components of SNALP that are critical for its in vivo delivery efficiency(15, 16).

Although delivery is often the primary focus of most therapeutic siRNA programs, it is important to recognize that a successful siRNA drug requires an optimal integration of multiple components: an efficient delivery system, a potent non-toxic siRNA, a robust therapeutic target, and a carefully selected disease indication. Because all current delivery technologies have various limitations, a careful selection of the disease indication, disease target, and siRNA sequences will likely be required to
compensate for deficiencies associated with current delivery technologies in order to maximize the chances of success.

Here we report the development of a siRNA-based approach for the treatment of hepatocellular carcinoma using an integrated approach, including the discovery of a siRNA delivery system that has equivalent tumor delivery efficiency but reduced adverse effect compared with SNALP, and the identification of therapeutic targets and siRNA molecules that allow selective targeting of liver tumors without triggering overt liver toxicity. The resulted siRNA-containing lipid nanoparticles produced robust anti-tumor efficacy in an orthotopic hepatocellular carcinoma model, and thus, represents a promising starting point for the development of siRNA therapies for HCC.

Materials and Methods

Reagents and cell lines. The positive readout reporter cell line, Tet-ODC-Luc, and the TetR siRNA used in the study were previously described(11). HepG2 and HuH7 cells were obtained from ATCC more than 10 years ago. Aliquots of low passage cells from original purchasing were kept in liquid nitrogen and were revived and cultured at conditions suggested by the vendor. The revived cells were passaged in culture for less than 3 months before replaced with a newly revived batch for experiments. D-Lin-DMA, PEG-C-DMA, and various proprietary cationic lipids and PEG lipids were synthesized at Abbott(17). The poly (I:C) was purchased from Sigma (St. Louis, MO). Human RAN antibody was obtained from Cell Signaling (Beverly, MA).

Lipid nanoparticle formulation. SNALP was prepared according to the literature-described procedure (7). D-Lin-DMA and PEG-C-DMA were formulated with
DSPC, Cholesterol, and siRNA using a 25:1 lipid/siRNA ratio and a 48/40/10/2 molar ratio of Cholesterol/D-Lin-DMA/DSPC/PEG-C-DMA. The resulted SNALP liposomes have similar characteristics to what was described in the literature (80 nm -100 nm in size, PDI <0.1, and a close to neutral zeta potential). Lipid nanoparticles containing in-house lipids were prepared using a needle injection method that was described earlier(18). Briefly, solutions of lipid mixtures were prepared in ethanol, injected into siRNA-containing citrate buffer through a 27-gauge needle. The resulted particle suspension was then diluted in phosphate buffered saline (PBS, pH 7.4) followed by 4 cycles of diafiltration against PBS, sterile filtered and stored at 4 °C.

Tumor models, animal dosing, and bioluminescence imaging analysis. The animal studies were carried out in accordance with internal Institutional Animal Care and Use Committee (IACUC) guidelines at Abbott Laboratories. All animals were obtained from Charles River Laboratory. TetR-ODC-Luc, HepG2, or HuH7 cells were inoculated into the liver of 6 to 8 week-old Scid female mice to create various liver tumor models. For *in vivo* knockdown evaluation in the positive-readout model, treatments were started 3–4 weeks after tumor inoculation for liver tumors. Mice bearing the TetR-ODC-Luc-derived liver tumors were imaged on day 1, administrated with lipid nanoparticles on day 1 and day 2 (i.v., 2.5 mg siRNA/kg), and re-imaged on day 4 (48 hours after the last dose). *In vivo* bioluminescence imaging and analysis were conducted on the IVIS 200 system using the Living Image acquisition and analysis software (Caliper Life Science, Hopkinton, MA) as previously described(11). Briefly, after intra-peritoneal injection of luciferin (Promega, Madison, WI) at 150 mg/kg, mice were anesthetized with isofluorane. Four minutes after the injection of luciferin, a series of time-lapse images
were acquired at 2 minutes intervals in a total of 10 minutes. Regions of interest (ROI) were drawn around the tumors and signal intensity was quantified as the sum of photon counts per second within the ROI after the subtraction of background luminescence. The peak reading during the 10-minute imaging period was used for calculating the signal ratio before and after siRNA delivery. For anti-tumor efficacy studies, lipid nanoparticles were administrated 72 hours after cancer cell inoculation (i.v., 2.5 mg siRNA/kg, twice/week for three weeks). At the end of the efficacy trial, mice were humanly euthanized, and liver tumor nodules were surgically excised and weighted. For mice without visible tumors, the tumor weight was recorded as 0.

Separate liposomes from liposome /serum mixture. Sepharose column was prepared by adding Sepharose CL-4B (Sigma, St. Louis, MO) into 1.2ml plastic column (Bio-Rad, Hercules, CA) followed by centrifugation at 1000 rpm for 1 minute (Beckman ALGRA 6R). The Sepharose column was further washed once with 0.2ml PBS. Freshly prepared column was loaded with 100ul of liposome/fetal bovine serum mixture and centrifuged at 1000 rpm for 1 minute to collect the elute for MS analysis.

In vivo tolerability assessment. Lipid nanoparticles containing different siRNAs were administrated to non-tumor-bearing *Scid* females via intravenous injection at 2.5 mg siRNA/kg, twice/week, for three weeks. At the end of the study, mice were humanely euthanized, serum ALT and AST levels were determined, and liver morphology was examined. Lipid nanoparticles that triggered significant increase of ALT or AST levels (>4 fold over untreated control group), or >10% weight loss, or gross liver morphology changes (e.g. liver color change, liver fibrosis, etc.) were designated as intolerable.

Determinination of siRNA-mediated immune response. Lipid nanoparticles
containing different siRNAs were intravenously administrated at 2.5 mg siRNA/kg. Serum samples were harvested 2 hours after dosing, and the levels of a panel of cytokines and chemokines were determined using a multiplex assay (Luminex, Austin, TX).

Results

Impact of PEG shields on \textit{in vitro} and \textit{in vivo} activities of lipid nanoparticles. The PEG lipid engrafts on lipid nanoparticles to form a PEG shield that tends to limit particle clearance by the reticular endothelial system, and therefore, is an essential component for modulating the PK properties that are critical for \textit{in vivo} delivery. To better understand the impact of PEG shielding on \textit{in vitro} and \textit{in vivo} activities of lipid nanoparticles, we created SNALP-like lipid nanoparticles that contain PEG molecules with C14 (PEG-DMPE), C16 (PEG-DPPE), and C18 (PEG-DSPE) lipid anchors. These lipid nanoparticles encapsulate a siRNA targeting tet repressor (siTetR), thus allowing convenient \textit{in vitro} and \textit{in vivo} testing using the previously described TetR-ODC-Luc cells, a positive-readout cell line where successful delivery of siTetR into cells leads to an increase of luciferase activity(11). Incubating lipid nanoparticles containing PEG-DMPE with TetR-ODC-Luc resulted in a robust increase of luciferase reporter activity, indicating efficient delivery of the tetR siRNA into these cells. Lipid nanoparticles containing PEG-DPPE and PEG-DSPE only exhibited moderate and marginal activities, suggesting that these particles deliver siRNAs into cells less efficiently (Figure 1A). Surprisingly, the \textit{in vivo} activities of lipid nanoparticles containing different PEG lipids exhibited an opposite trend. Particles with PEG-DPPE and PEG-DPSE triggered an increase of luminescence in an orthotopic liver tumor model created using the TetR-ODC-Luc cells, indicating successful delivery of the TetR siRNA into tumors. In
contrast, particles with PEG-DMPE appeared to be inactive *in vivo* (Figure 1B).

PEG-lipids on liposome can interact with plasma proteins and be extracted/exchanged to plasma proteins, resulting in the deshielding of liposome. The deshielded “naked” liposomes will have vastly different pharmacokinetic properties compared to liposomes with PEG shields. We suspected that the PEG shield anchored by DMPE, DPPE, or DSPE may deshield differently and consequently affect the pharmacokinetics property and *in vivo* delivery efficiency of liposomes. To test this hypothesis, we examined the deshielding property of various lipid nanoparticles by incubating the lipid nanoparticles with serum, recovering intact particles overtime using Sepharose spin columns, and quantifying remaining PEG-lipid on the particle. As shown in Figure 1C, PEG-DMPE quickly dissociated from lipid nanoparticle; whereas, no apparent deshielding was observed in the same time frame for PEG-DPPE and PEG-DSPE. Consistent with their rapid deshielding, the PEG-DMPE-containing particles quickly disappeared from systemic circulation after intravenous administration (a >50% reduction of circulating particles within 5 minutes and nearly 90% reduction of circulating particles at 60 minutes). In contrast, the PEG-DPPE- and PEG-DSPE-containing particles stayed in circulation for a much longer period of time (>70% particles remained in circulation at 5 minutes and nearly 40% particles remained in the circulation at 60 minutes) (Figure 1D). Collectively, these results indicate that PEG shielding can have a dramatic effect on the *in vitro* and *in vivo* activities of lipid nanoparticles, and optimal tumor delivery will require a properly anchored PEG shield to achieve the right balance between cellular activities and *in vivo* PK/tissue distribution properties.
Development of novel lipid nanoparticles via a two-step screen. In view of the impact of PEG shielding on \textit{in vitro} and \textit{in vivo} activities, we designed a two-step approach for the development of novel lipid nanoparticle delivery systems. In the first step, novel cationic lipids were formulated with DSPC, Cholesterol, and PEG-cholesterol to form “rapid-deshielding” lipid nanoparticles for \textit{in vitro} determination of transfection activity. Due to its short cholesterol anchor, PEG-cholesterol is expected to shed quickly from the particle under tissue culture conditions, yielding a “naked” particle for active transfection. Therefore, the PEG-cholesterol-shielded lipid nanoparticles allow us to examine the “intrinsic” ability of the cationic lipid to mediate siRNA transfection without interference from the PEG shield. An example of the \textit{in vitro} screen is shown in Figure 2A, where different lipids were formulated into PEG-Cholesterol-shielded nanoparticles containing the tetR siRNA and tested for transfection activities in the TetR-ODC-Luc cells. Nanoparticles containing cationic lipid A-066 induced a robust increase of luciferase activity, suggesting that A-066 may be a promising component for developing novel siRNA delivery systems.

In the second step, cationic lipids that show promise from \textit{in vitro} screen were used to form nanoparticles containing various commercial or proprietary PEG lipids. These nanoparticles were then screened \textit{in vivo} using the positive-readout tumor models to identify the appropriate PEG shields for a particular cationic lipid. An example of the \textit{in vivo} screen is shown in Figure 2B. A-066 was formulated with DSPC/Cholesterol, different PEG lipids and the TetR siRNA. The resulting nanoparticles were tested for siRNA delivery using the TetR-ODC-Luc cell-derived orthotopic liver tumor model. A number of nanoparticles induced a significant increase of luminescent signal, indicating
successful siRNA delivery into tumors. Among these, the A-066-derived nanoparticles containing PEG shields formed by TMH400, PEG-DPG, or PEG-DMG appeared to exhibit the best in vivo activity. These stepwise in vitro and in vivo screens led to the identification of a number of promising cationic lipids and PEG lipids for siRNA delivery(17).

Once a promising pair of cationic lipid and PEG lipid was identified, formulation optimization was carried out by varying the percentage of cationic lipid or PEG-lipid, using different neutral lipids, or altering formulation conditions such as processing temperature, buffer pH, etc. These formulation variants were then tested for various physiochemical properties and for in vivo delivery efficiency in the TetR-ODC-Luc liver tumor models to select the best candidate (18). From these studies, nanoparticles containing A-066/TMH400/DSPC/Cholesterol at a 40/2/10/48 molar ratio and a total lipid/siRNA ratio of 25:1 emerged as one of the most active in vivo formulations that also maintain desirable properties such as excellent formulation reproducibility, uniform 100 nm particle size with PDI<0.1, a close to neutral surface charge, and more than 6 months stability in PBS etc (data not shown).

A-066/TMH400 exhibits similar tumor delivery efficiency as SNALP but triggers less adverse effects. Because SNALP is perceived as one of the best siRNA delivery system in the field, we compared A-066/TMH400 nanoparticles with SNALP for their abilities to deliver siRNA into tumors and their potential adverse impact on the liver, a major target tissue for lipid nanoparticles. A-066/TMH400 containing the tetR siRNA (A-066/TMH400-siTetR) produced a similar or better degree of target knockdown compared to SNALP-siTetR in the positive readout model (Figure 3A). Intravenous
administration of A-066/TMH400 containing a siRNA targeting the human Ran gene (A-066/TMH400-hRAN) also knocked down Ran to a similar extent as SNALP-hRAN in the HepG2 liver tumors (Figure 3B). Furthermore, intravenous administration of A-066/TMH400-hRAN (2 mg siRNA/kg, i.v., twice/week for three weeks) produced robust anti-tumor efficacy in the HepG2 liver tumor model. The degrees of tumor growth inhibition produced by A-066/TMH400-hRAN is at least equivalent, if not better, compared to what was obtained in the same model using SNALP-hRAN with the same dose and schedule in our earlier studies (23% T/C by A-066/TMH400-hRAN vs. 31% by SNALP-hRAN, comparing efficacy in Figure 3C with efficacy in our earlier report(19).

Interestingly, although A-066/TMH400 and SNALP delivered siRNA into tumors with largely equivalent efficiency, their impact on the liver appeared to be different. In a 3-day liver toxicity study, intravenous administration of SNALP containing a control siRNA (SNALP-NTC) for two consecutive days induced high levels of the liver enzymes ALT and AST at doses of 5 mg/kg or higher (Figure 4A) and caused a pronounced discoloring of the liver (data not shown), indicating that SNALP caused liver damage at these doses. In contrast, neither significant induction of liver enzymes nor liver color change was observed for A-066/TMH400-NTC at all doses, suggesting that the A-066/TMH400 nanoparticles are better tolerated (Figure 4A, right). To understand the different tolerability between SNALP and A-066/TMH400, we produced SNALP and A-066/TMH400 lipid nanoparticles containing an Alexa647-labeled siRNA so that fluorescent siRNA signals can be quantified as an indirect measurement of the amount of nanoparticles in circulation and in the liver. Higher concentrations of the fluorescent siRNA was detected in A-066/TMH400 treated mice versus SNALP treated mice at both
8 and 24 hours after intravenous injection of A-066/TMH or SNALP containing the Alexa647-labeled TetR siRNA at 5 mg siRNA/kg, indicating that A-066/TMH400 stayed in circulation longer than SNALP. In addition, less amounts of the fluorescent siRNA were detected in the liver of A-066/TMH400-treated mice versus SNALP-treated mice, suggesting that A-066/TMH400 may accumulate less in the liver than SNALP, which could partially explain the better tolerability A-066/TMH400 compared to SNALP (Figure 4B, left panel and 4C). Interestingly, the differences in circulating time and liver accumulation between A-066/TMH400 and SNALP became more pronounced in rats, suggesting that A-066/TMH400 and SNALP may potentially have greater tolerability differences in larger animals (Figure 4B, right panel and 4C).

Selection of therapeutic targets and siRNA molecules. Although lipid nanoparticles are by far the most efficient siRNA delivery system in our hands, they are far from ideal regarding their tumor delivery efficiency. For example, we have shown previously that SNALP-like lipid nanoparticles only deliver siRNAs to areas adjacent to tumor blood vessel, and consequently, high degrees of tumor vascularization is often required for efficient siRNA delivery (19). In fact, when SNALP was used for siRNA delivery, even in the highly vascularized HepG2 liver tumors, significant target knockdown was only observed using a hyper-potent Ran siRNA (EC50 = 0.09 nM) but not a fairly potent Bcl-XL siRNA (IC50 = 0.9 nM). In contrast, robust target knockdown in the liver was observed using the same Bcl-XL siRNA, suggesting that SNALP delivers siRNA more efficiently into liver than tumor (data not shown). Taken all together, we believe that with the limitations of current delivery systems, significant therapeutic benefit will most likely be obtained in highly vascularized tumors (e.g. HCCs) using an
exceptionally potent siRNA against a very robust therapeutic target. In addition, the therapeutic siRNA should be highly selective in killing tumor cells relative to liver cells in order to avoid the toxicity associated with target inhibition in the liver.

The *in vivo* efficacy/toxicity profile of a therapeutic siRNA ultimately reflects the combination of three inter-connected factors that include: 1) potency of the best available siRNA, 2) the biological robustness of the underlying targets for cancer cells, and 3) the selectivity for cancer over liver cells. Thus, we employed an empirical approach that takes these three factors into consideration for the selection of therapeutic targets and siRNA molecules. This approach encompasses the following steps: 1) identify potent cross species siRNA (human/mouse) against chosen targets, 2) determine the *in vivo* tolerability of siRNA-containing lipid nanoparticles (2.5 mg siRNA/kg, i.v. twice/week for three weeks) to eliminate targets that cause liver damage or other tolerability issues when knocked down, 3) for siRNA-containing lipid nanoparticles that are well tolerated, assess the anti-tumor efficacy in an orthotopic liver tumor model to identify efficacious target and siRNA molecules, and 4) confirm that the observed anti-tumor efficacy does not result from immune stimulation by examining the ability of each lipid nanoparticle to trigger siRNA-mediated immune response. An example of our target selection process is shown in Table 1 and Figure 5. In this example, 13 candidate targets were first selected based on literature reports or internal siRNA library screening results. In silico siRNA sequence selection was then carried out using a proprietary siRNA scoring algorithm, and the top 50 algorithm-selected siRNAs for each target were transfected into Hela cells at different concentrations to determine their abilities to induce target knockdown at the mRNA level. Contrary to the conventional wisdom that potent siRNAs can be easily
identified for a given target, we failed to obtain any siRNAs that meet our potency criteria (IC\(_{50} < 1\text{nM}\)) for either the human or mouse homologues of Aurora B, KNTC, and KIF11. Considering that target knockdown in tumors will likely require very potent siRNAs as indicated by the failure of the Bcl-XL siRNA (IC\(_{50} = 0.9\text{nM}\)) to knockdown its target in the HepG2 liver tumors, the low potency siRNAs against Aurora B, KNTC, and KIF11 are not suitable for further evaluation of potential anti-tumor efficacy produced by inhibiting these targets. Although highly potent siRNAs targeting human K-Ras and BIRC5 genes were obtained, we failed to identify siRNAs targeting their mouse homologues with our desired potency, thus preventing us from evaluating the potential toxicity associated with inhibiting these targets. For the 8 targets that have potent, cross species siRNAs available, lipid nanoparticles containing siRNAs against RPL37A, PRS21, PSMA2, PSMD2, and RAN (2 siRNAs/target) caused severe toxicity as judged by liver color change, significant elevation of ALT, AST, and significant body weight loss. Although lipid nanoparticles containing the EIF3S6 siRNA (EIF3S6_1.14) did not trigger any obvious adverse effects in the tolerability screen in healthy mice, the same particles caused multiple deaths in mice carrying the orthotopic HuH7 liver tumors during efficacy trials (data not shown). We suspect that the HuH7 liver tumor burden may exacerbate the adverse effect of knocking down EIF3S6 in the liver, resulting in a reduction of tolerability in tumor-bearing mice. Collectively, these results further highlight the needs of identifying therapeutic targets that, upon knockdown, do not adversely affect liver function. Among siRNAs that are well tolerated, lipid nanoparticles containing the siRNA targeting CDCA1 (CDCA1_1.2) significantly inhibited the growth of the orthotopic HuH7 liver tumor, and lipid nanoparticles
containing the siRNA targeting NHP2L1 (NHP2L1_1.1) also exhibited moderate tumor growth inhibition. In contrast, no anti-tumor efficacy was observed for siRNAs targeting KRAS and BIRC5 (Figure 5A). A testing of cytokines/chemokines in mice treated with various lipid nanoparticles revealed that the lipid nanoparticles containing NHP2L1_1.1 caused a moderate increase of several cytokines/chemokines, making it difficult to distinguish whether the observed anti-tumor efficacy is truly target related or resulted from siRNA-mediated immune stimulation. In contrast, no significant cytokine/chemokine induction was observed using lipid nanoparticles containing CDCA1_1.2, indicating that the anti-tumor efficacy produced by A-066/TMH400-CDCA1_1.2 is unlikely due to siRNA-mediated immune response (Figure 5B). Accordingly, A-066/TMH400-CDCA1_1.2 represents a promising starting point for the development of siRNA-based therapy for HCC.

Discussion

The lack of clinically relevant methods for delivering siRNA into tumors remains a major technical hurdle for the development of therapeutic siRNA for oncology indications. In order to deliver siRNA into tumors via the systemic route, the delivery system need to satisfy the following requirements: 1) protects siRNA from nuclease degradation in circulation, 2) exhibits a proper PK and tissue distribution profile to deliver siRNA to disease-relevant organs/tissues, and 3) facilitates efficient uptake of siRNA into target cells and releases siRNA into cytoplasm to knockdown the target. Technical solutions for each individual requirement largely exist owning to several decades of research on gene delivery technologies. However, to integrate all solutions
into one delivery system is highly challenging. In particular, properties that are beneficial for cellular activities such as highly positive surface charge and high fusogenicity are often detrimental for PK properties that are critical for \textit{in vivo} performance. Conversely, attempts to stabilize/shield nanoparticles in the bloodstream to improve the PK and tissue distribution profile often reduce the ability of nanoparticles to enter cells or escape from endosome, leading to a reduction or loss of cellular activity. Some of these issues were exemplified by the differential \textit{in vitro} and \textit{in vivo} activities of lipid nanoparticles with various PEG shields. As shown in Figure 1, nanoparticles with the optimal \textit{in vitro} activity did not exhibit any meaningful activity \textit{in vivo} likely due to their poor PK properties; whereas particles without \textit{in vitro} activity turn out to be highly active \textit{in vivo}.

It has been shown that the strength of the interaction between the anchor moiety on PEG and the membrane lipids determines the rate and extent of PEG-Lipid extraction/exchanging to plasma proteins. PEG-lipids with longer acyl chain confer stronger interaction with membrane lipids thus less likely to be extracted/exchanged, and consequently, PEGs with longer lipid anchor are often associated with a slower rate of deshielding(16, 20-22). Our results suggest that PEG-DMPE may be shed rapidly to expose the “naked” lipid particle consisting of fusogenic lipid D-Lin-DMA, which allows it to fuse with the cell membrane to achieve efficient siRNA transfection \textit{in vitro}. On the other hand, rapid deshielding of PEG-DMPE may led to a fast clearance of lipid nanoparticles \textit{in vivo}, which likely prevents it from reaching tumors in sufficient quantify and causes suboptimal \textit{in vivo} delivery. By contrast, lipid nanoparticle containing PEGs with longer lipid anchors (PEG-DPPE and PEG-DSPE) may deshield slowly, causing diminished \textit{in vitro} activity. However, these well-shielded nanoparticles stay in the
circulation longer and thus have better chance to reach the tumor site via the Enhanced Permeability and Retention (EPR) effect. These lipid nanoparticles eventually deshield inside tumors and result in successful *in vivo* delivery. These results suggest that a successful delivery system needs to strike an exquisite balance between the cellular activity and the *in vivo* PK/tissue distribution properties in order to obtain optimal delivery efficiency *in vivo*. To find the right balance, changes made on the delivery system need to be tested *in vivo* to determine whether the alteration is beneficial or detrimental. The previously described positive-readout tumor model provides a convenient tool for relatively rapid *in vivo* screening of delivery formulations. Using this model, we screened hundreds of lipid nanoparticles for tumor delivery and identified A-066/TMH400 as a promising delivery system for the development of a siRNA therapy for cancer treatment. It is noteworthy that TMH400 and A-066 are structurally similar to PEG-C-DMA and D-lin-DEA, a close analog of D-lin-DMA. Nonetheless, the final lipid nanoparticles made of A-066/TMH400 exhibited a significantly different toxicity profile compared to SNALP, indicating that small changes on lipid structure could potentially result in unexpected significant differences in the nanoparticles.

Lipid nanoparticles delivered siRNA into tumors more efficiently than many other delivery systems reported in the literature, but still have their limitations such as the preferential delivery to liver vs. tumor and the inability to deliver siRNA to areas farther away from tumor vasculature. With these limitations, proper selection of disease indications, disease targets, and the best siRNA molecule against a chosen target becomes imperative to circumvent deficiencies associated with an imperfect delivery platform. In this study, we examined a set of targets for the availability of hyper potent siRNAs,
potential toxicities resulted from target knockdown, and the anti-tumor efficacy of inhibiting these targets in an orthotopic liver tumor model. From these analyses, CDCA1 emerged as a promising target for the development of siRNA-based therapy for HCC. CDCA1 is part of the kinetochore-associated NDC80 complex, which is essential for chromosome segregation and spindle checkpoint function. siRNA-mediated targeting of CDCA1 potentially represents a new way of disrupting the mitotic machinery for cancer therapy. The emphasis on using an extremely potent siRNA for the development of siRNA therapy is often overlooked. It is important to recognize that improving the best currently available delivery system to achieve a 10-fold better delivery efficiency will be extremely difficult. However, obtaining a 10- to 100-fold more potent siRNA for a given target or finding a biologically equivalent target for which there is a 10- or 100-fold more potent siRNA available are technically feasible and may achieve the same or better therapeutic effect than a 10-fold improvement on the delivery system. Toward this end, the efficacy/toxicity profile of the A-066/TMH400-CDCA1_1.2 formulation can be greatly improved if a more potent CDCA1 siRNA can be obtained via a thorough siRNA sequence search or by incorporating chemical modifications to boost siRNA potency. It is noteworthy that the potency of the best siRNA differs significantly across targets (ranging from 0.001 nM to > 5 nM), which may result from the intrinsic differences on target sequence and/or the secondary structure of target mRNA. Therefore, it is conceivable that carrying out an extensive siRNA sequence search on CDCA1 partners within the NDC80 complex may reveal siRNAs that trigger the same biological response as the CDCA1_1.2 siRNA but with significantly better potency than the current CDCA1 siRNA, which could be a promising alternative towards obtaining better therapeutic
formulations than the current A-066/TMH400_CDCA1_1.2 lipid nanoparticles.

References

Table 1. Best siRNA sequences and in vivo tolerability of candidate targets.

<table>
<thead>
<tr>
<th>siRNA</th>
<th>Target</th>
<th>siRNA Sequence (sense strand, overhang not shown)</th>
<th>IC50 (nM) (siSTABLE)</th>
<th>Targeting Species</th>
<th>Tolerability Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTC</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>hRAN_1.21</td>
<td>Ran</td>
<td>GUGUGCACCCACCUAUAUA</td>
<td>0.07</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>KRAS_1.24</td>
<td>KRAS</td>
<td>UGCAGUUGAUUACUUCUA</td>
<td>0.04</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>KRAS_1.17</td>
<td>KRAS</td>
<td>GCAUGCAGUUGAUUACUUCU</td>
<td>0.08</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>BIRC5_1.10</td>
<td>BIRC5</td>
<td>GAGACAGAAGAGAGAGAGA</td>
<td>0.15</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>BIRC5_1.14</td>
<td>BIRC5</td>
<td>GUAGAUGCAUGACUUGUGU</td>
<td>0.11</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>NHP2L1_1.1</td>
<td>NHP2L1</td>
<td>GCUGUGUGAAAGACAAAGAA</td>
<td>0.16</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>NHP2L1_1.6</td>
<td>NHP2L1</td>
<td>GCUGUGUGAAAGACAAAGAA</td>
<td>0.12</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>CDCA1_1.2</td>
<td>CDCA1</td>
<td>GUGCAUAAUCAACUAAUA</td>
<td>0.25</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>CDCA1_1.5</td>
<td>CDCA2</td>
<td>CAACUUAUACUUCUACU</td>
<td>0.67</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>EIF3S6_1.14</td>
<td>EIF3S6</td>
<td>UCUGAUGCAUGCAUGAGAGA</td>
<td>0.002</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>EIF3S6_1.18</td>
<td>EIF3S6</td>
<td>CAGCGCAUGCAUGCAUGAGA</td>
<td>0.003</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>RPL37A_1.12</td>
<td>RPL37A</td>
<td>GUGCAUGAAUGAGAUAUAC</td>
<td>0.026</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>RPL37A_1.1</td>
<td>RPL37A</td>
<td>CCGGAAUAGAGUGAGAAGAA</td>
<td>0.044</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>RPS21_1.6</td>
<td>RPS21</td>
<td>UGAAUGCGGGCGAGGAGGAGG</td>
<td>0.02</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>RPS21_1.9</td>
<td>RPS21</td>
<td>GCGAUUGCGUAGGAGGAGG</td>
<td>0.007</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>PSMA2_1.7</td>
<td>PSMA2</td>
<td>CGACAUAAUAAUAAUAGAGA</td>
<td>0.015</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>PSMA2_1.17</td>
<td>PSMA2</td>
<td>AUCCUAAUAUAAUAAUAGAGA</td>
<td>0.014</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>PSMD2_1.10</td>
<td>PSMD2</td>
<td>AGACUAGCGCAGCAACAAAGA</td>
<td>0.0002</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>PSMD2_1.17</td>
<td>PSMD2</td>
<td>GAAGAAAACCUUAGAGAAGA</td>
<td>0.0001</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>RAN_1.1</td>
<td>RAN</td>
<td>AGAAGAAGUCUCAGUACU</td>
<td>0.09</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>RAN_1.6</td>
<td>RAN</td>
<td>GCAUGAGAAGCUGGUGACGAG</td>
<td>0.06</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>KIF11_1.1</td>
<td>KIF11_1</td>
<td>GAGAAGAGCUGUUGGAUAAUU</td>
<td>1.47</td>
<td>X</td>
<td>No</td>
</tr>
<tr>
<td>Aurora B</td>
<td>Aurora B</td>
<td>IC50 > 5 nM for all siRNAs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNTC</td>
<td>KNTC</td>
<td>IC50 > 5 nM for all siRNAs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To determine the IC50 of siRNA, each siRNA was transfected into relevant cancer cell lines using lipofectatmine 2000. mRNA level of the target gene was then determined using the branched DNA assay (bDNA). For tolerability determination, each siRNA was formulated into the lipid nanoparticle formulation and administrated via i.v. into nontumor-bearing mice at 2 mg siRNA/kg, twice/week for three weeks. Tolerability was
monitored via body weight change, increase of ALT and AST, as well as gross liver morphology and color changes at the end of the dosing period.

Figure Legends

Figure 1. The impact of PEG lipids on in vitro and in vivo activities of lipid nanoparticles. A) Different amounts of the SNALP-like lipid nanoparticles containing different PEG lipids and the TetR siRNA were incubated with the positive-readout cell line TetR-ODC-Luc for 72 hours. Luciferase activities were determined using the SteadyGlo luciferase assay kit. The resulted luciferase activities in lipid nanoparticle-treated cells were normalized to the luciferase activity in TetR-ODC-Luc cells treated with doxycycline for 3 days, and the normalized results were presented as normalized luciferase activity. p values for each dose were calculated by comparing to the PEG-DMPE group using paired two tail t test. B) SNALP containing a non-targeted control siRNA (SNALP-NTC) or SNALP-like nanoparticles containing different PEG lipids and the TetR siRNA were administrated to mice bearing the TetRODC-Luc-derived liver tumors (i.v. 2.5 mg siRNA/kg for two consecutive days, n=5/group). Mice were imaged before dosing (Day1) and 48 hours after last dose (Day4). Higher Day4/Day1 signal ratio indicates better knockdown of TetR in tumors after lipid nanoparticle-mediated siRNA delivery. p values were obtained by comparing the indicated treatment groups using paired two tail t test. C) SNALP-like lipid nanoparticles containing different PEG lipids and the TetR siRNA were incubated with fetal bovine serum for indicated time. Intact lipid nanoparticles were then recovered using a sepharose spin column and the amounts of each PEG lipid on particle were determined using LC-MS. Y-axis represents the
percentage of PEG lipid that remains on particle at each time point compared to the
amount of PEG lipid in the original particle. D) siRNA-containing lipid nanoparticles
with different PEG lipids were administrated to non-tumor-bearing mice (n=3/group).
The amount of lipid nanoparticle encapsulated siRNA in circulation at the indicated time
was quantified and the value was used to back calculate the amounts of lipid
nanoparticles remained in circulation. The resulted amounts of circulating nanoparticles
were further normalized to the total amount of nanoparticles administrated to obtain the
“% of Input” number that was presented in the figure. p values were obtained by
comparing the indicated treatment groups using paired two tail t test.

Figure 2. In vitro and in vivo screen of lipid nanoparticles. A) Lipid
nanoparticles were created by formulating various novel cationic lipids with DSPC,
Cholesterol, PEG-Cholesterol and the TetR siRNA using a 25:1 lipid/siRNA ratio and a
48/40/10/2 molar ratio of Cholesterol/Cationic lipids/DSPC/PEG-cholesterol. Resulted
nanoparticles were incubated with the TetR-ODC-Luc cells for 72 hours, and luciferase
activities were determined using the SteadyGlo luciferase assay kit. The resulted
luciferase activities in lipid nanoparticle-treated cells were further normalized to the
luciferase activity in TetR-ODC-Luc cells that were incubated with doxycycline for 3
days, and the normalized results were presented as normalized luciferase activity. B) A-066-derived lipid nanoparticles were created by formulating the TetR siRNA with A-066,
DSPC, Cholesterol, and various PEG-lipids using a 25:1 lipid/siRNA ratio and a
48/40/10/2 molar ratio of Cholesterol/A-066/DSPC/PEG-lipids. SNALP containing a
non-targeted control siRNA (SNALP-NTC) or A-066-derived lipid nanoparticles
containing the TetR siRNA were administrated to mice bearing the TetRODC-Luc liver
tumors (i.v. 2.5 mg siRNA/kg for two consecutive days, n=5/group). Mice were imaged before dosing (Day1) and 48 hours after last dose (Day4). Higher Day4/Day1 signal ratio indicates better knockdown of TetR in tumors after lipid nanoparticle-mediated siRNA delivery.

Figure 3. A-066/TMH-400 lipid nanoparticles and SNALP exhibited similar in vivo activity. A) The in vivo activities of SNALP-NTC, SNALP-siTetR and A-066/TMH400-siTetR were determined in the TetR-ODC-Luc liver tumor model (n=5/group). B) Mice bearing the HepG2 liver tumors were administrated (i.v, 2. 5mg siRNA/kg for three days) with SNALP-NTC, or SNALP and A-066/TMH400 lipid nanoparticles containing a siRNA that specifically targeting the human but not mouse Ran gene (SNALP-hRAN and A-066/TMH400-hRAN). Tumor tissues were collected and the amounts of the RAN protein in each sample were determined by Western analysis. Each lane represented a sample from individual mouse. C) Mice bearing the HepG2 liver tumors were administrated (i.v., 2.5 mg siRNA/kg, twice/week for three weeks) with A-066/TMH400 lipid nanoparticles containing a control siRNA (A-066/TMH400-NTC) or the Ran siRNA (A-066/TMH400-hRAN). Tumor weights at the end of the study were determined and the average tumor weight and standard error were presented (n=10/group).

Figure 4. A-066/TMH400 lipid nanoparticles exhibited better tolerability compared to SNALP. A) Non-tumor bearing Scid female mice were administrated with phosphate buffered saline (PBS) or SNALP and A-066/TMH400 lipid nanoparticles containing the control siRNA (SNALP-NTC and A-066/TMH400-NTC) for two
consecutive days using the indicated amounts and volume. Serum ALT (left panel) and AST (right panel) levels were determined afterwards. B) A-066/TMH400 and SNALP lipid nanoparticles containing an Alexa647-labled TetR siRNA were administrated to each animal (i.v., 5 mg siRNA/kg). Plasma samples were collected at indicated time (n=3/timepoint for mice, and n=3 via serial bleeding for rat). The Alexa647 signal was then quantified using the IVIS 200 luminescence imaging system, and siRNA concentrations in circulation were determined using a standard curve of Alexa647-labled TetR siRNA diluted in mouse or rat plasma. p values were obtained for each time point using paired two-tail t test. * indicates p< 0.05. C) Animals from B) were sacrificed at the end of the study to collect liver tissues. The Alexa647 signal in liver was quantified using the IVIS200 system after the livers were weighted and homogenized. siRNA concentrations in the liver were determined using a standard curve of Alexa647-labled TetR siRNA spiked in the mouse or rat liver homogenates. p values were obtained using paired two tail t test.

Figure 5. Selection of therapeutic targets and siRNA molecules. A) A-066/TMH400 lipid nanoparticles containing indicated siRNAs were administrated to mice bearing the HuH7 liver tumors (i.v, 2.5 mg siRNA/kg, twice/week, for three weeks). Liver tumors were collected and tumor weights were determined. Y-axis represent the average tumor weight and standard error in each treatment group (n=10/group). p values were obtained by comparing the indicated treatment group with the NTC group using paired two tail t test. B) Scid females were either untreated (Naïve), treated with poly (I:C), or administrated with A-066/TMH400 lipid nanoparticles containing indicated siRNAs. Serum samples were collected 2 hours after dosing and the levels of 10
cytokines and chemokines were determined using a Luminex-based multiplex assay. Different colors indicate the ratio of the amounts of each analyte in treated versus untreated naïve animals.
Figure 1

A

In vitro Activity

Normalized Luciferase Activity

- PEG-DMPE
- PEG-DPPE
- PEG-DSPE

* indicate p < 0.05

siRNA Concentration (nM)

0 0.14 0.41 1.23 3.7 11 33 100

B

In vivo Activity

Signal Ratio (Day4/Day1)

- SNALP -NTC
- TetR siRNA

PEG-DMPE PEG-DPPE PEG-DSPE

p=0.017 p=0.012

C

Deshielding

% of PEG Remaining on Particle

- PEG-DMPE
- PEG-DPPE
- PEG-DSPE

Time in serum (minutes)

0 20 40 80 120

D

Plasma Concentration of siRNA

% of Input

- DMPE
- DPPE
- DSPE

Time after injection (minutes)

5 60 360

p=0.06 p=0.007 p=0.02

* indicate p < 0.05

p=0.04 p=0.02 p=0.17
Figure 2

A

In Vitro Screen

Normalized Luciferase Activity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

siRNA Concentration (nM)

0 0.14 0.41 1.23 3.7 11 33 100

In Vivo Screen

Signal Ratio (Day4/Day1)

A-066 formulations with different PEG lipids
+ TetR siRNA

B

In Vivo Screen

Signal Ratio (Day4/Day1)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

SNALP-NTC PEG-DSPE PEG-DPPE PEG-DMPE PEG-DSG PEG-DPG PEG-DMG PEG-Chol TMH399 TMH400 TMH401

A-066 formulations with different PEG lipids
+ TetR siRNA
Figure 3

A. Signal Ratio (Day4/Day1)

B. Tumor Weight (%T/C)

C. p=0.46
Figure 4

Panel A: Above detection limit for ALT (Unit/L) and AST (Unit/L) in different siRNA concentrations and PBS. Samples include SNALP-NTC, A-066/TMH400-NTC, PBS, and A-066/TMH400.

Panel B: PK profiles for A-066/TMH400 and SNALP in Mouse and Rat. * indicate p < 0.05.

Panel C: siRNA delivery to liver in Rat and Mouse. * indicate p < 0.05, p=0.0002 for A-066/TMH400 vs SNALP, p=0.03 for Rat vs Mouse.