A Novel Inhibitor of c-Met and VEGF Receptor Tyrosine Kinases with a Broad Spectrum of In Vivo Antitumor Activities

Yoshiko Awazu¹, Kazuhide Nakamura¹, Akio Mizutani¹, Yuichi Kakoi¹, Hidehisa Iwata², Seiji Yamasaki², Naoki Miyamoto³, Shinichi Imamura¹, Hiroshi Miki², and Akira Hori¹

¹Oncology Drug Discovery Unit, ²Discovery Research Laboratories, and ³Medicinal Chemistry Laboratories, Takeda Pharmaceutical Company Co. Ltd., Fujisawa, Kanagawa, Japan

Note: Supplementary data for this article are available at Molecular Cancer Therapeutics.

Online (http://mct.aacrjournals.org/).

Y. Awazu, K. Nakamura, and A Mizutani contributed equally to this work.
Corresponding Author: Kazuhide Nakamura, Oncology Drug Discovery Unit, Takeda
Pharmaceutical Company, Ltd., 2-26-1, Muraokahigashi, Fujisawa, Kanagawa, 251-8555, Japan. Phone: 81-466-32-2609; Fax: 81-466-29-4410; E-mail: kazuhide.nakamura@takeda.com

Running Title: Wide Antitumor Spectrum of a Dual c-Met and VEGFR2 Inhibitor

Key Words: c-Met inhibitor; VEGF receptor inhibitor; T-1840383; hypoxia; invasive growth

Word count, excluding references but including main figure legends: 5,512

Total number of figures and tables: 6 figures, 1 table

Supplemental figures: 5

Supplemental table: 2

Disclosure of potential conflict of interest: All of the authors are employees of Takeda Pharmaceuticals Company, Ltd.
Abstract

The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. Vascular endothelial growth factor (VEGF) also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFRs). Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of tumors. Toward this goal, we generated and characterized T-1840383, a small-molecule kinase inhibitor that targets both c-Met and VEGFRs. T-1840383 inhibited HGF-induced c-Met phosphorylation and VEGF-induced VEGFR-2 phosphorylation in cancer epithelial cells and vascular endothelial cells, respectively. It also inhibited constitutively activated c-Met phosphorylation in c-met-amplified cancer cells, leading to suppression of cell proliferation. In addition, T-1840383 potently blocked VEGF-dependent proliferation and capillary tube formation of endothelial cells. Following oral administration, T-1840383 showed potent antitumor efficacy in a wide variety of human tumor xenograft mouse models, along with reduction of c-Met phosphorylation levels and microvessel density within tumor xenografts. These results suggest that the efficacy
of T-1840383 is produced by direct effects on tumor cell growth and by an antiangiogenic mechanism. Furthermore, T-1840383 showed profound antitumor activity in a gastric tumor peritoneal dissemination model. Collectively, our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for the treatment of human cancers.

Introduction

The c-Met receptor tyrosine kinase (RTK) is the receptor for hepatocyte growth factor/scatter factor (HGF; reviewed in ref. 1). Binding of HGF to c-Met induces c-Met dimerization and phosphorylation of multiple tyrosine residues in the intracellular region, leading to activation of c-Met signaling pathways. c-Met signaling plays important roles in cell growth, survival, motility, and morphogenesis during embryonic development as well as in cancer cell proliferation, invasion, metastasis, tumor angiogenesis, and drug resistance (reviewed in refs. 1 and 2). Aberrant c-Met signaling, resulting from met genomic amplification, c-Met or HGF overexpression, or c-Met mutations, has been observed in a variety of human cancers (1, 2). Clinically, dysregulation of c-Met is correlated with a poor prognostic outcome (1, 2). Recently, constitutive activation of c-Met due to met amplification was also found to be a driver of cell proliferation and survival in several gastric cancer cell lines (3, 4) and has additionally been linked to acquired resistance to epidermal growth factor inhibitors in lung cancers (5, 6). Thus, c-Met has been considered an appealing molecular target for cancer therapy (2, 7–9).

The receptors for vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1) and VEGF receptor 2 (VEGFR-2), are members of the RTK family; they
are mostly located in endothelial cells (reviewed in ref. 10). VEGFR activation occurs through VEGF binding, which triggers receptor dimerization, tyrosine kinase activation, and phosphorylation of tyrosine residues. Of the two VEGFRs, VEGFR-2 is believed to be a major driver of tumor angiogenesis, which plays important roles in tumor malignancy (such as sustaining tumor growth) and in blood-borne metastasis (11). VEGF expression is upregulated by changes associated with cancer, including hypoxia, proto-oncogene activation, loss of tumor suppressor gene expression, and growth factor stimuli in tumors (12, 13). Its overexpression has been reported to correlate with the degree of vascularity, aggressive disease, and poor prognosis in the majority of human solid tumors (14–17), making the VEGF/VEGFR axis an attractive molecular target for cancer therapy. Indeed, the monoclonal anti-VEGF antibody bevacizumab (18) and several RTK inhibitors targeting VEGFRs, such as sunitinib (19), sorafenib (20), and pazopanib (21), have proven to be efficacious in clinical settings.

The above-mentioned findings highlight the possibility that simultaneous inhibition of c-Met and VEGFRs by a small-molecule inhibitor may result in broader and more potent antitumor efficacy. Here, we report the characterization of T-1840383, a novel ATP-competitive multitargeted kinase inhibitor that preferentially inhibits c-Met and VEGFR-2, in various functional cellular assays and the evaluation of its in vivo
antitumor activities in various tumor xenograft models.
Materials and Methods

T-1840383

\[N-[4-\{(2-\text{[(cyclopropylcarbonyl)amino]imidazo[1,2-\text{a}]pyridin-6-yl}oxy)-3\text{-fluorophenyl}\}-6\text{-methyl}-2\text{-oxo}-1\text{-phenyl}-1,2\text{-dihydropyridine-3-carboxamide}\] hydrochloride (T-1840383, Fig. 1A) was synthesized at Takeda Pharmaceutical Company, Ltd. For in vitro studies, T-1840383 was dissolved in dimethyl sulfoxide (DMSO) and diluted in culture medium immediately before use. For in vivo studies, T-1840383 was suspended in vehicle (0.5% methyl cellulose in distilled water), and the suspension was administered to animals within a week of preparation.

Kinase inhibition assays

Kinase inhibition of c-Met, VEGFRs, Tie-2 and Flt-3 was investigated using AlphaScreen tyrosine kinase technology (PerkinElmer). To evaluate kinase selectivity, a single concentration (1 \(\mu \text{mol/L} \)) of T-1840383 was tested using 256 kinases by KinaseProfilerTM (Millipore), and then IC\textsubscript{50} values for the selected 66 kinases were determined using KinaseProfiler IC50ExpressTM (Millipore).
Cell lines

Unless otherwise mentioned, cells were obtained from the American Type Culture Collection. Five gastric cancer cell lines (GSU, Kato III, KE-97, MKN45, and NUGC-4) were obtained from the RIKEN BioResource Center, and four gastric cancer cell lines (SNU-484, -620, -638, and -668) were obtained from the Korean Cell Line Bank. EBC-1 squamous cell lung cancer cells and SUIT-2 pancreatic cancer cells were obtained from the Health Science Research Resources Bank. OE33 esophageal adenocarcinoma cells were obtained from the European Collection of Animal Cell Cultures. Human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (NHDFs) were purchased from Cambrex. All cells were cultured in recommended media and serum concentration, unless otherwise indicated. No authentication was done by the authors.

Tube formation assay

HUVECs (1,000 cells/well) and NHDFs (10,000 cells/well) were co-cultured in 96-well plates with 60 ng/mL VEGF (R&D Systems) and designated concentrations of T-1840383 for 7 days. After fixation with 70% ethanol, the cells were incubated with anti-human CD31 monoclonal antibody (R&D Systems) followed by Alexa Fluor
488-conjugated anti-mouse IgG polyclonal antibody (Invitrogen). Tube formation by endothelial cells was visualized using fluorescence imaging (Discovery-1 system, Molecular Devices) according to the manufacturer’s protocol, “Angiogenesis Tube Formation.” The filament length and number of branch points were quantified by using Metamorph® software (Molecular Devices).

Cell scattering assay and E-cadherin expression analysis

A549 cells were seeded onto poly-lysine-coated glass-bottom dishes (2,000 cells/dish) and were allowed to form colonies of appropriate size for 5 days. Controls or T-1840383 were added to each dish. After a 1-h incubation, 50 ng/mL HGF (R&D Systems) was added to the dishes. Cell scattering was stimulated for 48 h under a mild hypoxic condition (3% O₂). Cells were stained using a Diff-Quik stain kit (Sysmex). For E-cadherin expression analysis, scattering-stimulated cells were fixed with 4% paraformaldehyde and were subjected to immunofluorescence staining using anti-E-cadherin primary antibody and Alexa Fluor 488-conjugated anti-rabbit IgG antibody. Nucleic acid was stained with propidium iodide.

Matrigel invasion assay
Cell invasion was assessed using Matrigel Invasion Chambers (BD Biosciences). A549 cells or SUIT-2 cells were placed in the upper chamber, and T-1840383 was added to both the upper and lower chambers. Cell invasion was then initiated by adding HGF to the bottom chamber (50 ng/mL). After 72 h, noninvading cells were removed with cotton swabs. Cells that invaded through the Matrigel were stained using a Diff-Quik stain kit, and the number of invading cells was quantified using WinROOF software (Mitani Corp.).

Cell proliferation assay

Cancer cells and HUVECs were seeded in 96-well plates in appropriate media with 10% fetal bovine serum (FBS) and human endothelial serum-free medium (Invitrogen), respectively. The following day, serial dilutions of T-1840383 or 0.1% DMSO were added to each well. Cancer cells were then incubated for a further 72 h. Proliferation of HUVECs was stimulated with 60 ng/mL recombinant human VEGF for 120 h. After incubation, cell proliferation was determined using a Cell Counting Kit-8 (DOJINDO Laboratories). IC\textsubscript{50} values were calculated by nonlinear regression analysis using GraphPad Prism (GraphPad Software, Inc.).
Western blotting

Antibodies were purchased from Cell Signaling Technology. For analysis of A549 cells and HUVECs, c-Met and VEGFR2 phosphorylation were stimulated with 50 ng/mL HGF for 10 min and 100 ng/mL VEGF for 5 min, respectively. All cells were lysed in RIPA buffer (Pierce) with protease and phosphatase inhibitors. In the case of the tumor samples, tissues were homogenized in RIPA buffer with protease and phosphatase inhibitors. Samples were then subjected to western blot analysis. Detection was performed using enhanced chemiluminescence reagent (GE Healthcare).

Tumor xenograft models

All animal experiments were conducted according to the guidelines of the Takeda Experimental Animal Care and Use Committee. Athymic nude mice (BALB/cA Jcl-nu/nu) were purchased from Japan CLEA. For tumor models, cancer cells in Hanks’ balanced salt solution (HBSS; Gibco, Invitrogen Corp.) were subcutaneously (s.c.) inoculated into the hind flank of 6- to 7-week-old mice (day 0). For the study with MKN45, cells were suspended in a 1:1 mixture of Matrigel and HBSS and then inoculated. After the tumors were established, mice bearing tumors of appropriate size were randomized. Once-daily oral administration of T-1840383 or vehicle was initiated...
on the next day after randomization. Tumor volume was measured twice weekly with Vernier calipers and calculated as \((\text{length} \times \text{width}^2) \times 0.5\). Percentage treated/control ratio (T/C\%) was calculated by dividing the change in volume of the tumors in the treated mice by the change in volume in the mice treated by vehicle, and statistical analysis was performed as described previously (22).

For a peritoneal dissemination model, NUGC-4 cells expressing luciferase (NUGC-4-luc cells) were generated by stable transfection and inoculated via intraperitoneal (i.p.) injection into nude mice \((1 \times 10^6 \text{ cells})\). Daily oral administration (5 days per week) of T-1840383 at 5 mg/kg or vehicle was initiated 2 weeks after inoculation. Tumor growth was monitored based on determination of emitted bioluminescence (photons/s) 10 min after i.p. administration of D-luciferin (1.5 mg/kg). Mice were euthanized when they became moribund. Statistical analysis was performed by a Log-rank test using GraphPad Prism.

Immunohistochemistry

Mice (BALB/cA Jcl-nu/nu) bearing A549 tumors were treated with T-1840383 at the indicated doses for 3 days. The dissected tumors were fixed in paraformaldehyde and then paraffin-embedded. For visualization of the vessels, immunohistochemical staining
for CD31 was performed using rabbit anti-CD31 polyclonal antibody (Spring Bioscience) and the immunoperoxidase technique with diaminobenzidine tetrahydrochloride as the chromagen. Ki67 staining for proliferating cells and TUNEL for apoptotic cells were performed using anti-Ki67 antibody (Dako) and ApopTag® Peroxidase In Situ Apoptosis Detection Kit (Millipore), respectively. Stained sections were scanned with a NanoZoomer Digital Pathology system (Hamamatsu Photonics). Image processing was performed by analyzing four or five randomly selected fields of each tumor using WinROOF software (Mitani Corporation).
Results

T-1840383 is a potent kinase inhibitor that targets both c-Met and VEGF receptors.

The selectivity of T-1840383 (Fig. 1A) was profiled against a panel of protein kinases and lipid kinases (Table 1). T-1840383 inhibited c-Met tyrosine kinase with an IC_{50} value of 1.9 nmol/L. It also inhibited VEGF receptor tyrosine kinases with IC_{50} values of 7.7, 2.2, and 5.5 nmol/L for VEGFR-1, -2, and -3, respectively. The structure of T-1840383 has little in common with other VEGFR or c-Met selective inhibitors, except for TAK-593 (Supplementary Fig. S1). T-1840383 was found to inhibit several kinases including c-Mer, Ret, Ron, Res, Tie-2, and TrkA as well as mutants of Abl, c-Kit, FGFR2, and PDGFRα with similar IC_{50} values (10 nmol/L) to those for c-Met and VEGFRs.

T-1840383 inhibits HGF-induced c-Met phosphorylation and HGF-dependent cellular phenotypes

In cell-based assays using A549 cells, T-1840383 inhibited HGF-stimulated c-Met phosphorylation with an IC_{50} value of 8.8 nmol/L (Fig. 1B). It also inhibited A549 cell scattering stimulated with HGF (Fig. 1C). Since HGF signaling has been reported to
trigger destabilization of adherens junctions by downregulation of E-cadherin (23), expression level of E-cadherin was examined in a similar cell-scattering assay. As expected, HGF-stimulated cell scattering was accompanied by diminished expression of E-cadherin on cell membrane, which was inhibited by T-1840383 in a concentration-dependent manner (Fig. 1D). T-1840383 also displayed similar potency against HGF-induced A549 cell invasion in a Matrigel invasion assay (Fig. 1E and Supplementary Fig. S2).

T-1840383 inhibits c-Met-dependent cell proliferation in vitro

The effects of T-1840383 on cell proliferation were evaluated using a panel of cancer cell lines and HUVECs. The antiproliferative potency varied widely, with the IC₅₀ values ranging from 1.8 nmol/L to >10,000 nmol/L (Fig. 1F). With the exception of HUVECs, all T-1840383-sensitive cell lines (IC₅₀ ≤25 nmol/L; SNU-5, SNU-638, MKN45, NUGC-4, and Hs746T gastric cancer cells as well as EBC-1 non-small cell lung carcinoma cells) were shown to overexpress constitutively activated c-Met protein (Supplementary Fig. S3A). These cell lines are also known to harbor met genomic amplification (3, 4, 24, 25), suggesting that constitutive activation of c-Met is dependent on genomic amplification. In MKN45 cells, T-1840383 inhibited activation of c-Met
and the downstream effectors ERK1/2 and AKT in a concentration-dependent manner (Supplementary Fig. S3B). In contrast, OE33 esophageal adenocarcinoma cells and KATOIII and SNU-620 gastric cancer cells were much less sensitive to T-1840383 despite the fact that c-Met was constitutively active in those cell lines. Other insensitive cell lines (IC_{50} >10,000 nmol/L) did not show constitutively activated c-Met. These results suggest that constitutively active c-Met is a necessary but not sufficient predictor of in vitro cancer cell response to T-1840383.

T-1840383 inhibits VEGF receptor-2 phosphorylation and VEGF signaling in HUVECs

Because T-1840383 also potently inhibits VEGF receptor tyrosine kinases, the effects on VEGF signaling were tested in endothelial cells. As shown in Fig. 2A, T-1840383 inhibited VEGF-induced phosphorylation of VEGF receptor-2 (IC_{50} = 0.86 nmol/L). It also blocked VEGF-induced activation of the downstream effectors ERK1/2 and AKT in a concentration-dependent manner. Consistent with this, T-1840383 inhibited VEGF-driven HUVEC proliferation with an IC_{50} value of 1.8 nmol/L (Fig. 1E). When co-cultured with fibroblasts, HUVECs formed capillary-like structures in response to VEGF, which was, however, abolished by the presence of T-1840383 (Fig. 2B).
T-1840383 inhibited the VEGF-induced increase in total length of tubes and number of blanch points with an IC_{50} value of 12 and 8.3 nmol/L, respectively (Fig. 2C).

T-1840383 inhibits in vivo c-Met signaling and tumor growth in mouse xenograft models

To assess the in vivo potency of T-1840383 for inhibiting c-Met activation, the level of c-Met phosphorylation in MKN45 tumors was measured at several time points following a single oral administration of T-1840383 (Fig. 3A). T-1840383 administration at a dose of 2 mg/kg resulted in substantial inhibition of c-Met phosphorylation from 2 to 8 h, with full recovery by 24 h. In addition, dose-dependent inhibition of c-Met, AKT, and ERK1/2 phosphorylation was observed 4 h after T-1840383 administration (Fig. 3B). Pharmacokinetic analysis showed that the plasma concentration of T-1840383 increased in a dose-dependent manner (over the dose range, 1–20 mg/kg; Supplementary Table S1). The tumor concentration of T-1840383 was lower than that in plasma, but relatively sustained (Supplementary Fig. S4). Tmax in tumors was achieved between 2 and 8 h after dosing. Tmax and the inhibition of c-Met phosphorylation in tumors were well correlated (Fig. 3A). In the MKN45 tumor xenograft mouse model, once-daily 2-week administration resulted in a dose-dependent
inhibition of tumor growth with the T/C values of 57%, 30%, and 4% at doses of 0.5, 1.5, and 5 mg/kg, respectively (Fig. 3C). T-1840383 caused tumor regression at 15 mg/kg. Additional tumor models were employed to assess the potency of T-1840383 against c-Met-dependent or -independent tumors: EBC-1 cells expressed elevated levels of constitutively active c-Met and were highly sensitive to T-1840383 in vitro (Fig. 1F and Supplementary Fig. S3A), while COLO 205 cells showed no sign of constitutively active c-Met and were insensitive to T-1840383 in vitro (Fig. 1F and Supplementary Fig. S3A). U-87 MG cells are reported to express both HGF and c-Met, and that their proliferation and/or tumor growth are at least partially driven by the HGF/c-Met autocrine loop (26); in the present study, T-1840383 showed marked antitumor activities in a dose-dependent manner in c-Met-dependent EBC-1 and U-87 MG tumor models (Fig. 3D and 3E). The T/C values for EBC-1 tumors were 85% and 26% at 0.5 and 1.5 mg/kg, respectively, and the tumors regressed by 22% and 52% at 5 mg/kg and 15 mg/kg, respectively. The T/C values for U-87 MG tumors were 72%, 32%, and 10% at 0.5, 1.5, and 5 mg/kg, respectively, and the tumors were almost static at 15 mg/kg. In the c-Met-independent COLO 205 tumor model, T-1840383 showed slightly less potent but still substantial antitumor activity than it did in the c-Met-dependent tumor models, where the T/C values were 30% and 13% at 5 mg/kg and 15 mg/kg, respectively (Fig.
3F). A slight but statistically significant difference was observed in the body weight between vehicle- and T-1840383-treated EBC-1 tumor xenograft model mice at 15 mg/kg (2.3% loss vs. 7.9% gain compared to their initial body weight). However, T-1840383 was generally well tolerated at the efficacious doses without obvious signs of animal discomfort in all subcutaneous tumor xenograft models.

T-1840383 inhibits tumor angiogenesis

To further understand the mechanism of tumor growth inhibition by T-1840383, especially in c-Met-independent tumor models, tumor angiogenesis was analyzed. A single oral administration of T-1840383 at 2 mg/kg resulted in a significant decrease in phosphorylated VEGFR-2 levels in the tumors of ectopically VEGFR-2-expressing 293 cells (Supplementary Fig. S5), suggesting that T-1840383 inhibits in vivo VEGFR activation at the efficacious doses. We next tested the antiangiogenic activities in tumor xenografts of the in vitro T-1840383-insensitive cell line A549. Following a 3-day treatment, T-1840383 exhibited significant antitumor activities with T/C values of 64%, 51%, and 35% at 0.5, 1.5, and 5 mg/kg, respectively (data not shown). T-1840383 treatment resulted in a dose-dependent reduction in the microvessel density in viable regions of the tumors by 29%, 50%, and 65% at 0.5, 1.5, and 5 mg/kg, respectively (Fig.
4A and 4B). In similar dose-dependent manners, T-1840383 treatment also led to a decreased tendency of cell mitosis (Ki67) and a significant increase in apoptosis (TUNEL) in the A549 tumor xenografts (Fig. 4C and 4D). Together, these results suggest that targeting tumor angiogenesis is one of the mechanisms by which T-1840383 inhibits growth of c-Met-independent tumors

Antitumor activities of T-1840383 in a gastric tumor peritoneal dissemination model

To extend the finding that T-1840383 potently inhibits the growth c-Met-dependent cancer cells, T-1840383 was further evaluated in a mouse model of peritoneal dissemination using c-Met-dependent gastric cancer NUGC-4-luc cells. In this model, tumor growth was monitored noninvasively with bioluminescence emitted from NUGC-4-luc cells in mice. As shown in Fig. 5A and 5B, vehicle-treated mice showed a significant increase in tumor burden over the monitoring time from day 14 to day 41 ($1.26 \times 10^7/s$ vs. $3.63 \times 10^7/s, p < 0.01$). In contrast, the T-1840383-treated mice did not show a statistically significant increase in tumor burdens ($1.30 \times 10^7/s$ vs. $2.02 \times 10^7/s$). In addition, T-1840383 treatment resulted in a prolonged survival of mice compared to vehicle treatment (Fig. 5C, median survival: 46.5 days vs. 108.5 days, $p < 0.01$).
vehicle-treated mice, on the basis of in vivo imaging analysis, one mouse apparently became tumor-free and showed an exceptionally longer survival than the others, probably due to rejection of the tumor challenge.

c-Met expression and activation under hypoxia

Hypoxia, which is known to be a major stimulator of VEGF and consequent angiogenesis, has been shown to promote invasive tumor growth by transcriptional activation of c-met and by sensitizing cells to HGF stimulation (27). To explore this finding in our systems, we investigated c-Met expression and HGF-induced cell invasion in response to hypoxia. Hypoxia upregulated c-Met expression compared to normoxia (Fig. 6A). Moreover, we found that hypoxia-induced c-Met phosphorylation in A549 cancer cells without HGF stimulation while serum starvation had no such effects on c-Met expression and activation. Similar effects were seen in Caki-1 renal cell carcinoma, SUIT-2 pancreatic cancer, and U-87 MG glioma cells (Fig. 6B). In addition, hypoxia augmented SUIT-2 cell invasion induced by HGF compared to normoxia (Fig. 6C), suggesting functional relevance for the c-Met pathway in cancer cell invasive growth under hypoxia.
Discussion

Here, we have characterized T-1840383, a novel multitargeted kinase inhibitor, in various functional assays. T-1840383 potently blocked c-Met activation and downstream signaling in cancer cells while cell proliferation assay revealed that T-1840383 selectively inhibited cancer cells that harbored c-met gene amplification. Recent studies have demonstrated that some gastric and lung cancer types harboring c-met amplification are “addicted” to the constitutively activated c-Met signals and that targeting such activated c-Met with small-molecule inhibitors results in marked inhibition of cell growth and survival (3, 28). Thus, the response profile of T-1840383 may well reflect the pharmacologic consequence of inhibition of c-Met rather than other targets. However, T-1840383 failed to display antiproliferative activities against some c-met-amplified cancer cells despite the fact that they expressed constitutively activated c-Met, suggesting that c-Met amplification/activation alone may not necessarily determine the response. Such resistance may be attributed to collateral activation of HER family members (29, 30), amplification of wild-type KRAS (31), or c-Met mutations that affect the inhibitor binding (32, 33), although these speculations need to be further investigated. The response profile we observed here may provide a tool to help identify reliable predictive markers, sensitive patient populations for T-1840383 or
other c-Met inhibitors currently under clinical evaluation (reviewed in refs. 2, 7–9), and effective combination therapy for specific patients in the clinical setting.

We also demonstrated the \textit{in vivo} antitumor efficacies of T-1840383. In the tumor xenograft models using \textit{in vitro} T-1840383-sensitive cancer cells, T-1840383 treatment resulted in potent tumor growth inhibition, in agreement with attenuation of c-Met phosphorylation levels and downstream signaling in the tumors, suggesting that such potent efficacies primarily depend on direct inhibition of c-Met-driven tumor cell growth. In clinical settings, patients with gastric cancers having scirrhous-type stroma particularly showed poor prognosis even after curative resection; they also showed highly progressed peritoneal dissemination (34). This type of cancer has been observed to often possess \textit{c-met} gene amplification (35). T-1840383 showed a potent antitumor efficacy in a peritoneal tumor dissemination model for a \textit{c-met}-amplified gastric cancer, leading to a survival benefit in those mice. These results provide a rationale for further investigation of T-1840383 as an antitumor agent for patients with such types of gastric cancer.

In addition, our findings indicate that \textit{in vivo} efficacy may also depend on the antiangiogenic properties. Indeed, T-1840383 potently inhibited endothelial cell responses to VEGF stimuli \textit{in vitro} and decreased tumor microvessel density \textit{in vivo} at
the efficacious doses, even in the c-Met-independent tumor models. It is therefore clear that T-1840383 affects tumor angiogenesis as a VEGFR inhibitor. In addition, the c-Met inhibitory activity may contribute to angiogenesis inhibition because HGF/c-Met signaling induces tumor angiogenesis by directly inducing proliferation and migration of endothelial cells; by inducing expression of VEGF; as well as by downregulating thrombospondin 1, a negative regulator of angiogenesis (36). T-1840383 has a strong inhibitory effect on other angiokinases such as Tie-2 and PDGFR and thus such inhibitory activities may also be involved in the antiangiogenic property of T-1840383. We believe that inhibition of angiogenesis represents a mechanism by which T-1840383 manifests a wide spectrum of its antitumor activities. Indeed, compared to the selective inhibitors of VEGFR or c-Met, T-1840383 showed a broad in vivo antitumor spectrum (Supplementary Table S2).

Several small-molecule inhibitors, including cabozantinib/XL184 (37) and foretinib/XL880 (38), that simultaneously target c-Met and VEGFRs have been previously reported. Cabozantinib appears to have a stronger inhibitory activity against VEGFR2 than against c-Met (e.g., IC$_{50}$ values: 0.035 vs. 1.3 nmol/L, respectively), whereas T-1840383 has very similar activities against them (2.2 vs. 1.9 nmol/L). Similar to T-1840383, foretinib has similar inhibitory activities against VEGFR2 and c-Met (0.4
vs. 0.86 nmol/L). While foretinib is required to be administered at a dose of approximately 100 mg/kg to effectively suppress c-Met and VEGFR activity in vivo, T-1840383 suppresses their activities in similar in vivo models at much lower doses (around 2 mg/kg). This finding may be attributed to more potent cellular activities and/or favorable PK profile of T-1840383.

HGF is a potent inducer of epithelial-mesenchymal transition (EMT) (39) that facilitates most of the invasive growth functions of cancer, such as loss of adhesive junctions, motility, angiogenesis, and survival (reviewed in ref. 40). Thus, the ability of T-1840383 to block HGF-induced cell scattering and invasion may have important implications for treatment of the invasive growth and metastasis of cancer, although this remains to be confirmed experimentally. In the tumor xenograft models we used here, the HGF/c-Met paracrine loop was nearly absent due to the low affinity of mouse HGF derived from host stromal cells to the human c-Met on implanted cancer cells (41). It is therefore necessary to employ relevant preclinical models, such as tumor allograft models or xenograft models in HGF-transgenic or knock-in mice (42), where the HGF/c-Met paracrine loop is functional between stroma and cancer cells.

We further investigated c-Met signaling in response to hypoxia because hypoxia has been reported to promote invasive growth by transcriptional activation of c-Met (27). In
agreement with previous studies on this subject, hypoxia indeed upregulated c-Met expression and promoted HGF-induced cell invasion. Moreover, we found that hypoxia elevated c-Met phosphorylation levels even in the absence of HGF stimuli, although this may be partly explained through the recent findings that hypoxia promotes interaction between c-Met and neuropilin-1, a coreceptor for VEGF-A, which in turn facilitates VEGF-induced c-Met activation (43). These results indicate a key role of c-Met activation in response to the hypoxic stress of cancer cells. Importantly, it has been suggested that hypoxia generated by inhibition of angiogenesis triggers pathways that make tumors more aggressive and metastatic (44, 45). Thus, it is possible that c-Met activation under hypoxia is a mechanism of refractoriness to antiangiogenic treatment by inducing a tumor-invasive switch (46). In addition, a recent study suggests that an alternative angiogenic pathway, via c-Met activation in endothelial cells, is involved in resistance/low-responsiveness to antiangiogenic treatment (47). Collectively, pharmacological intervention of c-Met signaling is a potential strategy to prevent tumors from progressing under hypoxia, an adverse tumor microenvironment condition, and to circumvent resistance to angiogenesis inhibitors. This strategy clearly warrants further exploration.

In summary, T-1840383 is a novel, highly potent inhibitor of c-Met and VEGFR
tyrosine kinases. Through this unique spectrum of dual kinase inhibition, T-1840383 showed in vivo broad and potent antitumor activities by targeting tumor epithelial cells and vasculature. Our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for treatment of various human cancers.
Acknowledgements

We would like to thank Yuka Yarita for excellent technical assistance; Shigemitsu Matsumoto, Hideyuki Oki, and Takeshi Watanabe for helpful discussion; Ryujiro Hara for critical reading of the manuscript; and Yuichi Hikichi, Osamu Nakanishi, Syuichi Furuya, and Hideaki Nagaya for their guidance and support during the course of this work.
References

15. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical

Table 1: Inhibitory activities of T-1840383 against 72 kinases

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC50 (nmol/L)</th>
<th>Kinase</th>
<th>IC50 (nmol/L)</th>
<th>Kinase</th>
<th>IC50 (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abl (H396P)</td>
<td>2.8</td>
<td>EphB1</td>
<td>13</td>
<td>Mnk2</td>
<td>100</td>
</tr>
<tr>
<td>Abl (M351T)</td>
<td>1</td>
<td>EphB2</td>
<td>19</td>
<td>MuSK</td>
<td>51</td>
</tr>
<tr>
<td>Abl (Q252H)</td>
<td>4.9</td>
<td>EphB4</td>
<td>79</td>
<td>PDGFRα(D842V)</td>
<td>3</td>
</tr>
<tr>
<td>Abl (T315I)</td>
<td>1.6</td>
<td>Fer</td>
<td>110</td>
<td>PDGFRα</td>
<td>270</td>
</tr>
<tr>
<td>Abl(T315I)</td>
<td>1</td>
<td>FGFR1</td>
<td>370</td>
<td>PDGFRα(V561D)</td>
<td>2</td>
</tr>
<tr>
<td>Arg</td>
<td>26</td>
<td>FGFR2</td>
<td>270</td>
<td>PDGFRβ</td>
<td>290</td>
</tr>
<tr>
<td>Aurora-B</td>
<td>210</td>
<td>FGFR2(N549H)</td>
<td>5.6</td>
<td>PTK5</td>
<td>93</td>
</tr>
<tr>
<td>Axl</td>
<td>19</td>
<td>Fgr</td>
<td>81</td>
<td>Pyk2</td>
<td>590</td>
</tr>
<tr>
<td>Bmx</td>
<td>110</td>
<td>Flt3*</td>
<td>19</td>
<td>Ret (V804L)</td>
<td>58</td>
</tr>
<tr>
<td>BRK</td>
<td>100</td>
<td>Fms</td>
<td>11</td>
<td>Ret</td>
<td>2</td>
</tr>
<tr>
<td>c-Kit(D816H)</td>
<td>200</td>
<td>Fms(Y969C)</td>
<td>36</td>
<td>Ret(V804M)</td>
<td>160</td>
</tr>
<tr>
<td>c-Kit</td>
<td>2300</td>
<td>Fyn</td>
<td>180</td>
<td>Ron</td>
<td>3</td>
</tr>
<tr>
<td>c-Kit(V560G)</td>
<td>2.7</td>
<td>Hck</td>
<td>34</td>
<td>Rse</td>
<td>2</td>
</tr>
<tr>
<td>c-Kit(V654A)</td>
<td>1100</td>
<td>IKKβ</td>
<td>110</td>
<td>SIK</td>
<td>290</td>
</tr>
<tr>
<td>c-Mer</td>
<td><1</td>
<td>IR</td>
<td>1400</td>
<td>Tie2*</td>
<td>1.2</td>
</tr>
<tr>
<td>c-RAF</td>
<td>100</td>
<td>IRAK1</td>
<td>870</td>
<td>Tie2(R849W)</td>
<td>10</td>
</tr>
<tr>
<td>DDR2</td>
<td>120</td>
<td>Itk</td>
<td>93</td>
<td>Tie2(Y897S)</td>
<td>14</td>
</tr>
<tr>
<td>EphA1</td>
<td>40</td>
<td>Lck</td>
<td>11</td>
<td>TrkA</td>
<td>4</td>
</tr>
<tr>
<td>EphA2</td>
<td>12</td>
<td>LIMK1</td>
<td>160</td>
<td>TrkB</td>
<td>10</td>
</tr>
<tr>
<td>EphA3</td>
<td>96</td>
<td>LOK</td>
<td>11</td>
<td>Txk</td>
<td>37</td>
</tr>
<tr>
<td>EphA4</td>
<td>76</td>
<td>Lyn</td>
<td>65</td>
<td>VEGFR1*</td>
<td>7.7</td>
</tr>
<tr>
<td>EphA5</td>
<td>17</td>
<td>MELK</td>
<td>540</td>
<td>VEGFR2*</td>
<td>2.2</td>
</tr>
<tr>
<td>EphA7</td>
<td>120</td>
<td>Met*</td>
<td>1.9</td>
<td>VEGFR3*</td>
<td>5.5</td>
</tr>
<tr>
<td>EphA8</td>
<td>26</td>
<td>MLK1</td>
<td>43</td>
<td>Yes</td>
<td>73</td>
</tr>
</tbody>
</table>

Note: * For these 6 kinases, the IC50 values were determined by the AlphaScreen assay.

For the others, the IC50 values were determined using KinaseProfiler IC50Express™ (Millipore).
Figure 1. T-1840383 inhibits HGF-induced c-Met phosphorylation, cell scattering, and invasion. A, Chemical structure of T-1840383. B, A549 cells were treated with T-1840383 for 1 h prior to HGF stimulation. c-Met phosphorylation (p-Met) levels were determined by western blotting. Total c-Met levels are shown as a loading control. Western blot was done in quadruplicate with very similar results. C, T-1840383 was added to the cell culture prior to HGF stimulation. Scattering-stimulated cells were then stained with a Diff-Quik staining kit. Magnification, ×100. D, Scattering-stimulated cells were subjected to immunofluorescence stain for E-cadherin expression (green) and nuclear stain with propidium iodide (red). Magnification, ×400. E, Cell invasion was assessed using a Matrigel invasion chamber for 72 h under mild hypoxia (3% O₂). The invading cells were stained with a Diff-Quik staining kit and quantified. Columns, mean (n = 4); bars, SD. F, Cell viabilities were determined in appropriate media containing various concentration of T-1840383. Shown are the mean of the IC₅₀ values (n = 2-6). Rows labeled as “>10,000” indicate that the IC₅₀ values are more than 10,000 nmol/L.
Figure 2. T-1840383 inhibits VEGF receptor-2 phosphorylation and VEGF signaling in HUVECs. A, HUVECs were treated with T-1840383 at the indicated concentration for 1 h. Phosphorylation of VEGFR2 (Tyr1175), Akt (Ser473), and ERK1/2 (Thr202/Tyr204) following VEGF stimulation were analyzed by western blotting. Western blotting was done in quadruplicate with very similar results. B, HUVECs were co-cultured with fibroblasts. T-1840383 was added to the medium followed by VEGF stimulation. Shown are representative images after endothelial cell-specific staining (n = 4). C, Total filament length and number of branch points of the stained tube-like structures were measured using image analysis software in 4–10 different fields for each condition. Columns, means; bars, SD.

Figure 3. In vivo inhibition by T-1840383 of c-Met downstream signaling pathways and antitumor efficacy of T-1840383 in tumor xenograft models. A, Mice bearing MKN45 tumors were administered a single oral dose of T-1840383 (2 mg/kg). At the indicated time points after administration, the tumors were collected and homogenized. c-Met phosphorylation were determined by western blotting. B, c-Met signaling in MKN45 tumors from mice that had been received a single oral dose of T-1840383 or vehicle were analyzed by western blotting. Mice bearing MKN45 (C), EBC-1 (D),
U87MG (E), or COLO 205 (F) tumors were orally administered T-1840383 once daily at the indicated dose levels or vehicle alone for 2 weeks. Data represent the means ± SEM for each group over the treatment period (n = 5 or 6).

Figure 4. Effects of T-1840383 on tumor microvessel density, tumor cell proliferation, and tumor cell apoptosis in A549 tumors. A, Mice bearing A549 tumors were treated with T-1840383 at 0.5, 1.5, and 5 mg/kg/day or vehicle for 3 days. Tumors were fixed, paraffin-embedded, sectioned, and immunostained for CD31. Scale bars, 400 µm. B, Quantitative analysis of CD31-positive endothelial cells were performed. C, Tumor specimens were immunostained with anti-Ki67 antibody, and Ki67-positive, proliferating cells were quantified. D, Apoptotic tumor cells were visualized and quantified by TUNEL assay. Column, mean (n = 4 or 5); bars, SEM. * p ≤ 0.025 versus the vehicle control group by the one-tailed Williams’ test.

Figure 5. Antitumor efficacy of T-1840383 in a peritoneal dissemination model. A, Photon emission from individual mice in which NUGC-4-luc cells had been inoculated intraperitoneally on day 0 was visualized before administration of the first dose of T-1840383 or vehicle (day 14) and over the course of treatment (days 27, 34, and 41).
Emitted bioluminescence from vehicle- or 5 mg/kg T-1840383-treated mice at days 14 and 41. C, Survival curves of T-1840383-treated NUGC-4-bearing mice. Daily administration (5 days a week) of T-1840383 or vehicle was initiated at day 14 and lasted until the mice were euthanized (up to day 110).

Figure 6. Hypoxia-induced c-Met expression and activation in cancer cells. A, A549 cells were cultured in media containing 0.1%, 1%, or 10% FBS in collagen-type I-coated plates under normoxia or hypoxia (2% O$_2$) for 24 h. B, Caki-1, SUIT-2, and U87-MG cells were cultured in appropriate media containing 10% FBS under normoxia or hypoxia (3% O$_2$) for 48 h. c-Met phosphorylation were determined by western blotting. C, SUIT-2 cell invasion was stimulated with HGF under normoxia or hypoxia (2% O$_2$) for 72 h. The invading cells were stained with a Diff-Quik staining kit and quantified. *Columns*, mean ($n = 4$); *bars*, SD.
Figure 1

A

B

C

D

E

F

Nakamura et al.
Figure 2

A

<table>
<thead>
<tr>
<th>T-1840383 (nmol/L)</th>
<th>0</th>
<th>0</th>
<th>0.03</th>
<th>0.1</th>
<th>0.3</th>
<th>1</th>
<th>10</th>
<th>30</th>
<th>100</th>
<th>300</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>p-VEGFR2 (Tyr1175)</td>
<td></td>
</tr>
<tr>
<td>Total VEGFR2</td>
<td></td>
</tr>
<tr>
<td>p-Akt (Ser473)</td>
<td></td>
</tr>
<tr>
<td>p-ERK1/2 (Thr202/Tyr204)</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>T-1840383 (nmol/L)</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>10</th>
<th>30</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C

![Graphs showing Total Filament and Branch Points](graph.png)
Figure 3

A

Time after T-1840383 administration (2 mg/kg)

0 h 1 h 2 h 4 h 8 h 24 h

p-Met (Tyr1234/1235)

B

T-1840383

Vehicle 0.5 mg/kg 1.5 mg/kg 5 mg/kg

p-Met (Tyr1234/1235)
p-Akt (Ser473)
p-ERK1/2 (Thr202/Tyr204)

Actin

C

Tumor volume (mm³)

0 500 1000 1500 2000

Days post tumor implantation

0 8 12 16 20 24 28

D

Tumor volume (mm³)

0 200 400 600 800 1000

Days post tumor implantation

0 12 16 20 24 28 32

E

Tumor volume (mm³)

0 200 400 600 800 1000

Days post tumor implantation

0 21 25 29 33 37 41

F

Tumor volume (mm³)

0 1000 2000 3000 4000

Days post tumor implantation

0 7 11 15 19 23 27
Figure 4

Nakamura et al.,
Figure 5

A

Vehicle

T-1840383 5 mg/kg

Day 14

Day 27

Day 34

Day 41

B

Total Flux

1.0 × 10^16

8.0 × 10^15

6.0 × 10^15

4.0 × 10^15

2.0 × 10^15

0.0

Vehicle, Day 14

Vehicle, Day 41

T-1840383, Day 14

T-1840383, Day 41

C

Percent survival

100

80

60

40

20

0

0 20 40 60 80 100 120

Days after tumor cell inoculation

Vehicle

T-1840383

** * 100

Vehicle

T-1840383

Downloaded from mct.aacrjournals.org on June 24, 2017. © 2013 American Association for Cancer Research. mct.aacrjournals.org Downloaded from mct.aacrjournals.org on June 24, 2017. © 2013 American Association for Cancer Research.
Figure 6

Nakamura et al.,

A

<table>
<thead>
<tr>
<th></th>
<th>Serum (0.1%)</th>
<th>Serum (1%)</th>
<th>Serum (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>c-Met</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Met (Tyr1234/1235)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Met (Tyr1003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>Caki-1</th>
<th>SUIT-2</th>
<th>U-87 MG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>c-Met</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Met (Tyr1234/1235)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Cell invasion (cell number / field) vs. HGF concentration (ng/mL)

- Normoxia
- Hypoxia

HGF concentration (ng/mL): 0, 12.5, 25, 50, 100
Molecular Cancer Therapeutics

A Novel Inhibitor of c-Met and VEGF Receptor Tyrosine Kinases with a Broad Spectrum of In Vivo Antitumor Activities

Mol Cancer Ther Published OnlineFirst April 2, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-1011

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/04/03/1535-7163.MCT-12-1011.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.