SUPPRESSION OF SURVIVIN INDUCED BY A BCR-ABL/JAK2/STAT3 PATHWAY SENSITIZES IMATINIB RESISTANT CML CELLS TO DIFFERENT CYTOTOXIC DRUGS

Stefania Stella*, Elena Tirrò*, Enrico Conte*, Fabio Stagno, Francesco Di Raimondo, Livia Manzella and Paolo Vigneri

Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy

* These authors equally contributed to this work

Running Title: Survivin suppression sensitizes CML cells to cytotoxic drugs

Keywords: BCR-ABL, survivin, shepherdin, Imatinib, resistance

All authors report no potential conflicts of interest.

This work was supported by a fellowship (E. Tirrò) and a national grant from Associazione Italiana per la Ricerca sul Cancro (P. Vigneri).

Corresponding Author: Paolo Vigneri M.D., Ph.D.

University of Catania
Department of Clinical and Molecular Bio-Medicine
Via Androne, 85 - 95124 Catania - ITALY
Telephone: +39 (095) 312389
Fax: +39 (095) 7151928
E-mail: pvigneri@libero.it
ABSTRACT

The BCR-ABL oncoprotein of Chronic Myelogenous Leukemia (CML) displays exclusive cytoplasmic localization and constitutive tyrosine kinase activity leading to the activation of different pathways that favor cell proliferation and survival. BCR-ABL induces survivin expression at both the mRNA and protein level, thus inhibiting the apoptotic machinery of CML cells and contributing to the expansion of the leukemic clone. We report that, in human CML cell lines, BCR-ABL-mediated up-regulation of survivin involves the JAK2/STAT3 pathway since silencing of either protein caused a consistent reduction in survivin expression. Cell lines unresponsive to Imatinib Mesylate (IM) because of BCR-ABL gene amplification were not resensitized to the drug after survivin down-regulation. However, cells insensitive to IM because of point mutations in the BCR-ABL kinase domain were highly responsive to Hydroxyurea (HU) after survivin silencing. To address the possible clinical applications of our results we employed shepherdin, a cell-permeable peptidomimetic compound that down-regulates survivin expression by preventing its interaction with heat shock protein 90. Incubation with shepherdin of immortalized cell lines both sensitive and resistant to IM enhanced cell death induced by HU and Doxorubicin. Similarly, the combination of shepherdin with first and second-generation tyrosine kinase inhibitors reduced the colony-forming potential of human progenitors derived from both IM-sensitive and IM-resistant CML patients. These results suggest that strategies aimed at reducing survivin levels may represent a potential therapeutic option for CML patients unresponsive to IM.
INTRODUCTION

A reciprocal translocation between chromosomes 9 and 22 generates the abnormal Philadelphia (Ph) chromosome that, in turn, encodes for the chimaeric BCR-ABL oncogene (1). The ensuing BCR-ABL oncoprotein displays constitutive tyrosine kinase activity thereby activating multiple signaling pathways that lead to the development of Chronic Myeloid Leukemia (CML) (2). BCR-ABL-dependent activation of the phosphatidylinositol-3 kinase and the up-regulation of Bcl-xL (3, 4) contribute to block cytochrome C release from the mitochondria and inhibit caspase activity, thus hampering the apoptotic machinery of CML cells and favoring the survival of leukemic myeloid progenitors. Treatment of CML cells with the ABL inhibitor Imatinib Mesylate (IM) suppresses BCR-ABL kinase activity reverting the anti-apoptotic phenotype of the Ph-positive cells and resulting in the induction of cell death (5).

Survivin is a member of the inhibitor of apoptosis proteins (IAPs) that is undetectable in normal tissues but highly expressed in most forms of human cancer and functions as both an inhibitor of cell death and a mitotic regulator (6-9). It has been reported that survivin over-expression reduces the sensitivity of neoplastic cells to death stimuli induced by gamma radiation (10) or chemotherapeutic agents (11, 12). The design of shepherdin, a cell-permeable peptidomimetic molecule that reduces survivin half-life by disrupting its binding with the molecular chaperone heat shock protein 90 (Hsp90), represents an attempt to increase the killing of cancer cells while preserving the viability of their normal counterpart (13).

We previously reported a significant correlation between BCR-ABL levels and the expression of survivin in a series of 44 CML patients (14), suggesting that BCR-ABL could
directly regulate survivin expression. Indeed, subsequent evidence indicated that BCR-ABL up-regulates survivin at the mRNA and protein levels (15). A further study by Carter and colleagues suggested that the RAS/RAF/MAPK cascade was involved in BCR-ABL-dependent induction of survivin in a human CML cell line and that suppression of survivin expression increased responsiveness to IM therapy (16).

The aims of this study were three-fold. We initially wanted to ascertain the signaling pathway(s) triggered by the BCR-ABL kinase to induce survivin expression. We then wanted to establish if survivin overexpression contributed to the failure of IM treatment in a representative panel of CML cell lines with well-established mechanisms of IM resistance. Finally, we wished to determine whether reduced survivin levels increased the anti-proliferative activity of different cytotoxic compounds.

We found that JAK2/STAT3 signaling modulates BCR-ABL-dependent induction of survivin and that survivin down-regulation enhances the apoptotic effect of IM on CML cells that are sensitive to this compound. Lowering survivin expression increased the cytotoxic effect of Hydroxyurea (HU) and Doxorubicin (Doxo) on multiple cell lines unresponsive to IM. Likewise, exposure of IM-resistant cells to shepherdin reduced survivin expression and induced higher cell killing by both cytotoxic drugs and other ABL tyrosine kinase inhibitors (TKIs).
MATERIALS AND METHODS

Cell lines, primary cells, drugs and shepherdin treatments

Human CML cell lines K562, KCL22, KYO-1, LAMA84, K562 S, K562 R, KCL22 S, KCL22 R, LAMA84 S, LAMA84 R cells and murine Ba/F3 cells expressing either wild-type BCR-ABL (Ba/F3p210) or different BCR-ABL mutants (Ba/F3p210Y253F and Ba/F3p210T315I) were grown in RPMI 1640 (Sigma-Aldrich Corp) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Lonza), 2mmol/L L-glutamine (Sigma), penicillin/streptomycin (100 µg/mL each, also from Sigma). Human cell lines were obtained from the German Collection of Microorganisms and Cell Cultures DSMZ and used for fewer than 6 months after receipt with the exception of K562 S and R, KCL22 S and R, LAMA84 S and R that were provided by Carlo Gambacorti-Passerini (University of Milano Bicocca, Italy). The latter cells have not been authenticated in our lab. The K562, KCL22 and LAMA 84-IM-sensitive cell lines were maintained in parallel cultures without IM for the time required to obtain the IM-resistant clone. Ba/F3BCR-ABLp210, Ba/F3p210Y253F and Ba/F3p210T315I were generated in our lab after viral transduction of the Ba/F3 pro-B cell line (purchased from DSMZ) with lentiviral vectors encoding for the specified BCR-ABL constructs.

Primary CML cells were obtained from the peripheral blood of CML patients after receiving written informed consent. Total leukocytes were separated by red-cell lysis.

The following drug treatments were used: 1µM IM (a gift of Novartis), 12.5nM Nilotinib (Nil, a gift of Novartis), 50µM PD98059 (Calbiochem), 20µM LY294002 (Sigma), 7.5nM TG101209 (Symansis), 1mM HU (Sigma), 1µM Doxo (Sigma), 5nM Dasatinib (Das, a gift of Bristol-Myers Squibb), 17-Allylamino-17-demethoxygeldanamycin (17-AAG, InvivoGen) (Fig 1).
In further experiments, we employed 30µM of cell-permeable shepherdin [biotin-X-KKWKMRNNQFWKVQRLFACGSSHK-CONH2] (a gift of Dario Altieri, Wistar Cancer Institute, Philadelphia, PA, USA) or an equimolar concentration of the corresponding scrambled peptide [biotin-X-KKWKMRNNQFWKVQRGHSFCALKS-CONH2]. The Antennapedia homeodomain sequence is underlined. X = EAHX, hexanoic acid spacer.

Immunoprecipitation and immunoblotting

Cell pellets were resuspended in isotonic buffer [25mM Trizma base (pH 8.5), 100mM NaCl, 7mM β-mercaptoethanol, 1x protease inhibitor cocktail (Roche)], sonicated and harvested by centrifugation at 14,000 rpm for 10 minutes at 4°C.

For immunoprecipitation experiments, 2 µg of anti-phosphotyrosine antibody (clone 4G10, Millipore) were incubated with protein G-Sepharose (Amersham Biosciences) for 2 hours and then with 1 mg of cell lysates for an additional 2 hours. The sepharose beads were then washed in isotonic buffer and resuspended in Laemmli buffer.

For immunoblotting experiments, 40 µg of protein were separated by SDS-PAGE, transferred to nitrocellulose membranes and blocked with 5% nonfat dry milk or with 10% BSA (Sigma) in TBS with 0.2% Tween 20 (Sigma).

Monoclonal antibodies used were: anti-survivin (Abcam); anti-phosphotyrosine (Millipore); anti-Actin and anti-FLAG (Sigma). Polyclonal sera employed were: anti-MAPK, anti-pMAPK, anti-AKT and anti-pAKT (Cell Signaling Technology); anti-JAK2, anti-STAT3 and anti-c-abl (clone K12) (Santa Cruz Biotechnology). Appropriate horseradish peroxidase-conjugated secondary antibodies (Amersham Biosciences), were added and proteins were detected using the enhanced chemiluminescence reagent Lite Ablot (Euroclone).

Chemiluminescence images were captured, and densitometric quantification of protein bands was performed using the ImageJ 1.36b software (National Institutes of Health).
Cell proliferation and cell death assays

To evaluate cell viability, 2x10^4 cells were incubated, for 24 hours, in 96-well plates with different drugs, si RNAs or peptides and cell proliferation was subsequently determined using the luminescence ATP detection assay system ATPlite 1 step (Perkin-Elmer), following the manufacturers instructions. To assess cell death, 5x10^5 cells were treated with different drugs or peptides, alone or in combination, for 24 hours. Cells were harvested and triplicate samples selected to determine apoptosis using the FITC Annexin V Apoptosis Detection kit I (BD Pharmingen) following the manufacturers instructions. Apoptotic events were recorded as a combination of Annexin V+/PI- (early apoptosis) and Annexin V+/PI+ (late apoptosis) events and results were expressed as percent of Annexin V+ cells.

Transfection and Lentiviral Transduction

For the production of the lentiviral supernatant, transfer vectors pGIPZ non silencing shRNA (Cat n° RHS4346) or pGIPZ shRNA anti-JAK2 (NM_004972, Cat n° RHS4430) were co-transfected with the packaging plasmids in the HEK293T cell line, using the calcium phosphate transfection method (Trans-Lentiviral™ shRNA Packaging Kit, Open Biosystems). Viral supernatants were harvested 48 hours after transfection. CML cells were then transduced by a double round of spin-infection. Cells were centrifuged for 90 minutes at 32°C and 1200 x g in the presence of 1 mL of viral supernatant and 8 μg/mL Polybrene (Sigma-Aldrich). Transduced cells were finally selected with 6 μg/mL puromycin (Sigma-Aldrich) for 72 hours.

Lentiviruses containing the pLEX empty vector or pLEX STAT3C were produced using the calcium phosphate transfection method (Trans-Lentiviral™ ORF Packaging Kit, Open Biosystems) as previous described.
RNA silencing experiments

For antisense oligonucleotides, 1x10^6 cells were resuspended in 0.8mL of culture media mixed with 500nM antisense oligonucleotides against STAT3 (AS STAT3) or with a control oligonucleotide (AS Scr) and then electroporated in a 0.4cm cuvette using the Gene Pulser Electroporation apparatus (Bio-Rad) with a double pulse protocol (25µF, 500V). Both the STAT3 antisense (5'-GCTCCAGCATCTGCTGCTTC-3'), and the control mismatch oligonucleotide (5'-GCTCCAATACCCGTTGCTTC-3') were synthesized with a phosphorothioate backbone and with a 2'-O-methoxyethyl modification of the first and last five nucleotides (MWG).

For siRNA electroporation of Ba/F3 cells, cells were resuspended as previously described and mixed with 100nM of si Surv or with the corresponding scrambled control (si Scr) (Dharmacon). si RNA electroporation was carried out as described above using different electrical settings (960µF, 250V).

STAT3 Construct and Mutagenesis

STAT3 was amplified by PCR using the indicated forward (FLAG-tag sequence underlined)

5’- ATAAGAATGCGGGCGCGCGCCACCATGGATTACAAGGATGACGACGATAAGATGGCC CAATGGAATCAGCTAC-3’

and reverse 5’-

CCGCTCGAGTCACTGGGGAGGTAGCGC-3’ primers and cloned NotI and XhoI in the expression vector pcDNA3.1 (Life Technologies). STAT3 was then mutagenized using the Quik-Change II XL Site-Direct Mutagenesis Kit (Agilent Technologies). Primers employed to generate point mutations were 5’-

CATGGGCTATAAGATCATGGATTGTACCTGTATCCTGGTGTCTCCACTGGTC-3’

and 5’-GACCAGTGGAGACACCAGGATACAGGTACAATCCATGATCTTATAGCCCCATG-3’.
Incorporation of two point mutations was verified by direct sequencing. STAT3C was then cloned in the NotI and XhoI unique sites of the pLEX lentiviral vector (Open Biosystems).

Colony forming Assays

To evaluate the effect of different treatments on the colony-forming potential of CML myeloid progenitors, 5 x 10^4 primary cells were treated for 24 hours with shepherdin alone or in combination with IM, Nil or Das. Drug-treated cells were then seeded in Methocult H4435 methylcellulose medium (StemCell Technologies). Formation of colonies was assessed 14 days after plating.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5.0 (GraphPad Software Inc). Unpaired, single-tail t tests with 95% confidence intervals were used to compare cell viability in different experimental conditions. The 1-way ANOVAs according to Bonferroni’s post-test were used to compare the effect of the combination of shepherdin with different tyrosine-kinase inhibitors.
RESULTS

Survivin induction by BCR-ABL tyrosine kinase activity involves JAK2

We have previously reported that, in primary haematopoietic cells isolated from patients diagnosed with CML, the amount of BCR-ABL transcript significantly correlates with the expression levels of survivin (14). Our findings suggested that BCR-ABL might directly regulate survivin expression in CML cells and indeed, subsequent manuscripts demonstrated that BCR-ABL up-regulates survivin at both the transcriptional and protein levels (15-17). However, these reports employed single immortalized cell lines and attributed BCR-ABL-dependent induction of survivin to different signaling pathways.

To clarify these contrasting observations, we performed an anti-survivin immunoblot on a wide panel of human CML cells before and after IM or Nil treatment. BCR-ABL inactivation produced a striking decrease in survivin levels in CML cells, confirming that BCR-ABL constitutive tyrosine kinase activity induces survivin expression (Fig. 2A, B). We next wanted to establish the BCR-ABL-induced pathway(s) responsible for this effect. Carter and colleagues had previously suggested that the RAS/RAF/MAPK cascade was involved in BCR-ABL-dependent up-regulation of survivin (16). In a different cell line, Fang et al. identified JAK2/PI3K/c-myc signaling as the main regulator of BCR-ABL-dependent induction of survivin (17). However, when we suppressed MAPK activity with PD98059 in a set of four human CML cells, we detected a reduction in survivin levels only in the K562 line (Fig. 2C). Likewise, suppression of PI3K activity by LY294002 induced a decrease in survivin expression only in LAMA84 cells (Fig. 2D). We therefore turned our attention to JAK2, as previous evidence had shown that BCR-ABL binds to JAK2 and phosphorylates it on tyrosine 1007, thereby activating its kinase activity (18). In turn, catalitically active JAK2 phosphorylates different STAT monomers inducing their dimerization, nuclear
translocation and transcriptional activity (18, 19). After blocking JAK2 signaling with the selective inhibitor TG101209, we observed a reduction in survivin expression in all CML lines tested (Fig. 2E). Prior evidence had established that JAK2 inhibition reduced survivin levels in AML cells (20). Furthermore, Fang and colleagues proposed that survivin up-regulation was largely controlled at the transcriptional level through a JAK2-dependent mechanism (17). Our findings suggested a role for JAK2 in modulating survivin levels in CML cells.

JAK2/STAT3 signaling contributes to BCR-ABL-dependent induction of survivin

To confirm that the BCR-ABL-dependent induction of survivin involves JAK2, we stably transduced CML cell lines with lentiviral vectors expressing a JAK2-specific shRNA or a non-silencing control (Fig. 3A) and detected a reduction in survivin in all cell lines. Interestingly, a constitutive activation of the JAK2/STAT3 pathway by the BCR-ABL tyrosine kinase has been previously described in CML progenitors (21) and several reports have demonstrated that STAT3 induces survivin expression in both solid and hematologic malignancies (22-24). Moreover, Bewry et al. have suggested that STAT3 might contribute to the development of IM resistance (25). To determine if STAT3 was the pivotal downstream mediator of the BCR-ABL/JAK2 pathway, we electroporated STAT3-targeted antisense oligonucleotides or their scrambled counterpart in four CML lines. Immunoblot analyses showed that STAT3 down-regulation reduced survivin levels in each leukemic cell line while this was not the case with the scrambled control (Fig. 3B). To further confirm the role of STAT3 in the regulation of survivin, we generated an activated STAT3 (STAT3C) as previously reported by Bromberg et al. (26) (Fig. 3C). We found that STAT3C promoted an increase in survivin levels in all four CML cells tested, implying that the JAK2/STAT3 cascade is a major regulator of survivin expression in CML cells.
Survivin silencing sensitizes IM-resistant cells expressing BCR-ABL mutants to Hydroxyurea

Resistance to IM has emerged as a major caveat in the long-term treatment of CML (27). BCR-ABL amplification or point mutations in the oncprotein kinase domain represent two major mechanisms underlying IM failure. We wanted to establish if survivin down-regulation by specifically targeted siRNAs would increase the apoptotic effect of HU on CML cell lines displaying different mechanisms of IM resistance. To this end, we initially employed LAMA84 R cells that are unresponsive to IM because of BCR-ABL gene amplification (28). Suppression of survivin in LAMA84 R failed to sensitize them to either HU or IM (Fig. 4B), indicating that resistance caused by BCR-ABL amplification is independent from survivin expression. However, survivin silencing in IM-responsive LAMA84 S increased the cytotoxic effect of both drugs (Fig. 4A). We next repeated these experiments using Ba/F3p210 (murine Ba/F3 cells lentivirally transduced with wild-type p210 BCR-ABL), Ba/F3p210Y253F and Ba/F3p210T315I cell lines that are completely unresponsive to IM (>10 fold increase in the IC50 for the drug) (28-30). In Ba/F3p210, survivin silencing caused a significant increase in both IM and HU-induced death (Fig. 4C). Likewise, suppression of survivin in Ba/F3p210 cells expressing the Y253F and T315I mutants significantly increased the response to HU (Fig. 4D and E, middle panels). As anticipated, a reduction in survivin levels failed to restore responsiveness to IM (Fig. 4D and E, right panels) since point mutations induce conformational changes of the BCR-ABL kinase domain that prevent IM binding. These findings support the notion that lowering survivin expression can increase HU efficacy on CML cells unresponsive to IM because of BCR-ABL point mutations. These results also confirm that survivin does not affect the structural modifications of the BCR-ABL kinase domain induced by different amino acidic substitutions. Hence, reducing survivin levels fails to resensitize BCR-ABL mutants to the effect of IM.
The Hsp90 peptidomimetic shepherdin sensitizes IM-resistant cells to different cytotoxic drugs

The design of shepherdin, a compound that reduces survivin expression by disrupting its interaction with Hsp90, represents an attractive opportunity to determine the possible therapeutic potential of survivin down-regulation in CML cells. We therefore incubated IM-resistant cell lines K562 R, KCL22 R, LAMA84 R, and their IM-sensitive counterpart with shepherdin alone or in combination with HU or Doxo. As expected, addition of shepherdin - but not of the scramble control peptide - reduced survivin expression in all cell lines (Fig. 5A, D, G). When we assayed cell proliferation and survival in the presence of shepherdin and HU or Doxo, we found significant reductions in the growth and viability of K562 and KCL22, regardless of their IM sensitivity (Fig. 5B, C, E, F). Likewise, LAMA84 S cells were highly sensitive to the combination of shepherdin and different chemotherapeutic drugs (Fig. 5H). However, in agreement with previous silencing data (Fig. 4B), shepherdin failed to sensitize LAMA84 R to either HU or Doxo (Fig. 5I), confirming that resistance caused by BCR-ABL amplification is independent from survivin. These results were further validated by employing the Ba/F3 cell model transformed by either wild-type (Ba/F3p210) or mutant BCR-ABL (Ba/F3p210Y253F, Ba/F3p210T315I). In the context of these cell lines, shepherdin efficiently suppressed survivin expression (Fig. 6A) and its association with either HU or Doxo significantly reduced cell proliferation and cell viability (Fig. 6B, C, D).

Shepherdin increases the cytotoxic effect of Nilotinib and Dasatinib on human CML myeloid progenitors

To further ascertain the efficacy of shepherdin on BCR-ABL-expressing clones, we isolated primary cells from the peripheral blood of three different CML patients: two individuals with newly diagnosed disease and a subject that had failed treatment with IM, Nil and Das. We then assessed the colony-forming potential of these cells after treatment
with shepherdin alone or in combination with one of the three TKIs. Interestingly, we observed a significant decrease in overall colony number when shepherdin was associated with Nilotinib and Dasatinib, regardless of the TKI sensitivity of the primary cells (Fig. 7A, B, C). These findings further reinforced the conclusion that down-regulation of survivin expression may represent a potential therapeutic strategy to eliminate CML cells both responsive and unresponsive to the TKI-dependent inhibition of BCR-ABL kinase activity.
DISCUSSION

While IM has changed the natural course of CML achieving 89% overall survival rates after 8 years of follow-up (31), approximately 50% of CML patients fail to obtain an optimal response as defined by the current European Leukemia Net (ELN) recommendations (32). To address these critical issues, second generation TKIs (i.e. Das and Nil) have been generated, tested and approved for the treatment of CML patients that fail IM (33). In spite of the early success of these compounds, 50% of patients receiving either Das or Nil will not obtain long-term benefit from these drugs and will progress to the advanced phases of the disease (34). Thus, the need for additional therapeutic strategies that will benefit this selected patient population (34, 35).

Carter and colleagues have previously demonstrated that BCR-ABL induces the expression of the inhibitor of apoptosis protein survivin through the MAPK and PI3K pathways, and that reduction of survivin expression increases both spontaneous and IM-dependent death of a CML cell line (16). However, it is unclear if these results could: i) be extended to a more representative panel of CML cells both sensitive and resistant to IM; ii) be used to potentiate the anti-proliferative activity of other pharmacological compounds; iii) be exploited to devise a possible therapeutic strategy aimed at reducing survivin levels in CML patients.

We report here that BCR-ABL kinase activity induced survivin expression in CML cell models via the JAK2/STAT3 pathway. Silencing of survivin reduced the viability of CML cells and enhanced the efficacy of IM. Moreover, survivin down-regulation significantly increased the cytotoxic activity of HU, Doxo, Nil and Das on cells unresponsive to IM because of either point mutations (including T315I) in the BCR-ABL catalytic domain or
other yet uncharacterized mechanisms. These results were obtained with the use of survivin-targeted siRNAs or by employing shepherdin, a peptidomimetic compound that reduces survivin half-life by abrogating its interaction with the Hsp90 chaperone (13). These findings were further confirmed by experiments on human myeloid progenitors derived from both IM-sensitive and IM-resistant CML patients.

Our observations lead to several considerations. First, and at variance with the data reported by Carter et al., we found that MAPK and PI3K signaling cascades only modestly contribute to the regulation of survivin expression in CML. Conversely, we identified the JAK2/STAT3 pathway as a major contributor of BCR-ABL-mediated induction of survivin. This discrepancy could be due to the different cells used in the two studies. It is also possible that, in certain cell types, both JAK2 and MAPK contribute to survivin over-expression since published evidence suggests that JAK2 and MAPK stimulate phosphorylation of STAT3, thus enhancing its biological activity (36).

We have also found that suppression of survivin is unable to restore IM activity regardless of the mechanisms responsible for drug failure. These results are not unexpected as IM resistance attributable to BCR-ABL gene amplification is due to the enhanced signaling of a higher absolute number of BCR-ABL molecules (37). Intuitively, this phenomenon can’t be constrained by lowering survivin expression. Likewise, point mutations associated with IM failure induce alterations in the three-dimensional structure of the BCR-ABL catalytic domain that either mimic an active conformation, or affect specific amino-acidic residues required for the physical interaction with IM (38, 39). Thus, it is evident that suppression of survivin per se fails to restore sensitivity to IM, as survivin does not associate with BCR-ABL and is therefore incapable of modulating the conformation of its kinase domain.
However, suppression of survivin levels significantly increased the cytotoxic activity of different compounds on CML cells failing IM because of yet uncharacterized mechanisms or point mutations in the BCR-ABL kinase domain. In these contexts, suppression of survivin may represent a potential therapeutic strategy to reduce the viability of these leukemic clones. To this end, we have performed several experiments using the peptidomimetic shepherdin to lower survivin expression in IM-sensitive and IM-resistant CML cells. Previous studies investigating the use of shepherdin have described strong anti-tumoral activity in human models of both solid and hematologic malignancies (13, 40). Our findings indicate that shepherdin-dependent reduction of survivin levels significantly increased the cytotoxic activity of HU and Doxo on all cell lines expressing BCR-ABL mutants. In addition, as further compounds (ISIS 23722, SPC3042 and YM155) are currently being developed as inhibitors of survivin expression (41), any pharmacological strategy aimed at reducing survivin levels could be of significant value in patients with IM-resistant clones carrying point mutations in the BCR-ABL kinase domain.

Finally, the reduction in cell viability that we observed after shepherdin treatment was superior to that detected after siRNA-mediated silencing, suggesting that shepherdin may increase CML cell death by both survivin-dependent and survivin-independent mechanisms. Kang and colleagues have previously shown that shepherdin disables a mitochondrial chaperone network that cancer cells employ to protect themselves from multiple apoptotic stimuli (42). Hence, it is possible that part of shepherdin’s efficacy on CML cells depends on this mechanism. Indeed, when we treated Ba/F3 cells expressing different BCR-ABL mutants with HU or Doxo in association with 17-AAG (a cytosolic inhibitor of Hsp90), we found no significant increases in cell death (Fig. 8). These preliminary findings support the hypothesis that shepherdin kills CML cells through a
double mechanism: i) a reduction in survivin expression and ii) the mitochondrial inhibition of Hsp90 chaperones.

In summary, our results suggest that pharmacological reduction of survivin expression may provide a new therapeutic approach for the molecular targeting of IM-insensitive CML cells.
REFERENCES

FIGURE LEGENDS

Figure 1 Chemical structures of the specified drugs

Figure 2 JAK2 inhibition reduces survivin expression in CML cells

The indicated cell lines were treated for 24 hours with (A) 1μM IM, (B) 12.5nM Nil, (C) 50μM PD98059, (D) 20μM LY294002, (E) 7.5nM TG101209, and subsequently assessed for their proliferation rate (left panels). Lysates were then assayed for the expression and phosphorylation of the specified proteins (middle panels; a blot representative of three separate experiments is shown). Histograms (right panels) depict survivin expression in each cell line normalized to Actin, MAPK, AKT or JAK2 as quantified by densitometric analysis, with survivin levels in untreated cells arbitrarily set at 1. Columns represent average ± standard deviation of three independent experiments.

Figure 3 JAK2/STAT3 signaling contributes to BCR-ABL-mediated induction of survivin

(A) Protein extracts from the specified cell lines lentivirally transduced with either control (sh NS) or JAK2 specific (sh JAK2) short hairpin RNAs, were blotted for survivin or JAK2 to verify the efficacy of the silencing procedure. (B) To study the contribution of STAT3, the same cells were electroporated with antisense oligonucleotides against STAT3 (AS STAT3) or with a scrambled control (AS Scr). After 48 hours, lysates were blotted for survivin or STAT3 to confirm the decrease of the latter protein. Histograms on the right of each immunoblot measure survivin expression in the indicated conditions, with densitometric analysis performed as detailed in the previous figure. Columns show average ± standard deviation of three separate
experiments. (C) To further confirm the role of STAT3 in the regulation of survivin, cell lysates from CML cells lentivirally transduced with pLEX STAT3C or pLEX empty vector were blotted using anti-survivin (top panel), anti-FLAG (middle panel) or anti-actin (bottom panel) antibodies. Panels show a blot representative of three independent experiments. **p<0.01; ***p<0.001; ns = not significant.

Figure 4 Survivin silencing sensitizes IM-resistant cells expressing BCR-ABL mutants to the effect of HU

The indicated IM-sensitive (A) and IM-resistant (B) cells were electroporated with siRNAs against survivin (si Surv) or with a scrambled control (si Scr) and analyzed by immunoblot to ensure survivin silencing (left panels). Twenty-four hours after electroporation, cells were treated with 1mM HU (middle panels) or 1µM IM (right panels) for 24 (white columns) or 48 (black columns) hours and the effect of these treatments was assessed using the ATPlite luminescence assay. The same experiments were repeated on murine Ba/F3 cells lentivirally transduced with either (C) wild-type BCR-ABL (Ba/F3p210), or with the indicated BCR-ABL mutants that confer IM resistance (D, E). Results shown represent average ± standard deviation of at least three separate experiments performed in triplicates with relative luminescence of untreated cells set at 100%. *p<0.05; **p<0.01; ***p<0.001; ns = not significant.
Figure 5 Treatment with the Hsp90 inhibitor shepherdin sensitizes IM-resistant cells to different cytotoxic drugs

IM sensitive and resistant cell lines were incubated for 24 hours with 30µM shepherdin (Shep) or with an equal concentration of a scrambled peptide (Scr). Alternatively, cells were exposed to two cytotoxic compounds (1mM HU, 1µM Doxo) in association with either Shep or Scr. Cell lysates were then examined by immunoblot to confirm survivin down regulation in the presence of shepherdin (A, D and G). The effect of each combination was then assessed using the ATPLite luminescence assay (B, C, E, F, H and I, left panels) or Annexin V-FITC/PI double staining (B, C, E, F, H and I, right panels). Columns represent average ± standard deviation of three independent experiments performed in triplicates (for the ATPLite assay untreated cells were arbitrarily set at 100). *p<0.05; **p<0.01; ***p<0.001; ns = not significant.

Figure 6 Treatment with shepherdin sensitizes IM-resistant cells expressing BCR-ABL mutants to Hydroxyurea and Doxorubicin

Ba/F3 cells expressing either wild-type BCR-ABL or the indicated IM-resistant mutants were incubated for 24 hours with 30µM shepherdin (Shep) or with an equal concentration of a scrambled peptide (Scr). Alternatively, cells were exposed to 1mM HU or 1µM Doxo in association with either Shep or Scr. Cell lysates were then examined by immunoblot to confirm survivin down regulation in the presence of shepherdin (A). The effect of each combination was then assessed using the ATPLite luminescence assay (B, C and D, left panels) or Annexin V-FITC/PI double staining (B, C and D, right panels). Columns represent average ± standard deviation of three
independent experiments performed in triplicates (for the ATPLite assay untreated cells were arbitrarily set at 100). *p<0.05; **p<0.01; ***p<0.001.

Figure 7 Shepherdin sensitizes CML primary cells to different tyrosine-kinase inhibitors

Primary human cells derived from newly diagnosed (A and B) or TKI-refractory (C) CML patients were pretreated for 24 hours with IM (1µM), Nil (12.5 nM) or Das (5 nM) either alone or in combination with shepherdin. Cells were then plated in triplicate in methylcellulose and the ensuing colonies were counted after 14 days. Colony numbers in each experimental condition are compared to those from untreated cells set at 100%. Values represent mean ± SD. *p<0.05; **p<0.01; ***p<0.001; ns = not significant.

Figure 8 The combination of 17-AAG and HU or Doxorubicin does not increase death rates of Ba/F3 cells expressing BCR-ABL mutants

Ba/F3 cells expressing either wild-type BCR-ABL or the indicated IM-resistant mutants were incubated for 24 hours with 0.5µM or 0.75µM 17-AAG. Cell lysates were then examined by immunoblot to ascertain changes in BCR-ABL expression (A). Alternatively, the same cells were exposed to 1mM HU or 1µM Doxo in association with 0.5µM 17-AAG. The effect of each combination on cell viability was then assessed using Annexin V-FITC/PI double staining (B, C and D). Columns represent average ± standard deviation of three independent experiments performed in triplicates. ns = not significant.
Figure 3

K562

B

AS STAT3

Survivin

STAT3

Actin

AS Stat3

--

+ -

+ -

--

KCL22

Survivin

STAT3

Actin

AS Stat3

--

+ -

+ -

--

KYO -1

Survivin

STAT3

Actin

AS Stat3

--

+ -

+ -

--

LAMA84

Survivin

STAT3

Actin

AS Stat3

--

+ -

+ -

--

Survivin expression (arbitrary units)

0

0.2

0.4

0.6

0.8

1.0

1.2

ns

**

Figure 7
Figure 8
Molecular Cancer Therapeutics

SUPPRESSION OF SURVIVIN INDUCED BY A BCR-ABL/JAK2/STAT3 PATHWAY SENSITIZES IMATINIB RESISTANT CML CELLS TO DIFFERENT CYTOTOXIC DRUGS

Stefania Stella, Elena Tirro, Enrico Conte, et al.

Mol Cancer Ther Published OnlineFirst March 27, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-0550

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/03/26/1535-7163.MCT-12-0550.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.