Transient exposure to quizartinib mediates sustained inhibition of FLT3 signaling while specifically inducing apoptosis in FLT3-activated leukemia cells

Ruwanthi N. Gunawardane1*, Ronald R. Nepomuceno1, Allison M. Rooks1, Jeremy P. Hunt1+, Jill M. Ricono1, Barbara Belli, Robert C. Armstrong1+

1Ambit Biosciences, 4215 Sorrento Valley Blvd., San Diego, CA 92121, USA

Running Title: Durability and specificity of quizartinib mediated effects.

Keywords: FLT3, Kinase Inhibitor, Acute Myeloid Leukemia

Word count text: 4766
Word count abstract: 176
Figures/Tables: 6
References: 44
Supplemental figures/tables: 6

+To whom correspondence should be addressed

*Current address: Amgen Inc, 1201 Amgen Court West, Seattle, WA 98119

^Current address: DiscoveRx, 11180 Roselle Street, Suite D, San Diego, CA 92121

Disclosure of Potential Conflicts of Interest: All authors were employees of Ambit Biosciences at the time the work was performed.
Abstract

Fms-like tyrosine kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML). FLT3-activating internal tandem duplication (ITD) mutations are found in ~30% of AML patients and are associated with poor outcome in this patient population. Quizartinib (AC220) has previously been demonstrated to be a potent and selective FLT3 inhibitor. In the current study we expand on previous observations by demonstrating that quizartinib potently inhibits the phosphorylation of FLT3 and downstream signaling molecules independent of FLT3 genotype, yet induces loss of viability only in cells expressing constitutively activated FLT3. We further demonstrate that transient exposure to quizartinib, whether in vitro or in vivo, leads to prolonged inhibition of FLT3 signaling, induction of apoptosis, and drastic reductions in tumor volume and pharmacodynamic endpoints. In vitro experiments suggest that these prolonged effects are mediated by slow binding kinetics that provide for durable inhibition of the kinase following drug removal/clearance. Together these data suggest quizartinib, with its unique combination of selectivity and potent/sustained inhibition of FLT3 may provide a safe and effective treatment against FLT3-driven leukemia.
Introduction

Fms-like tyrosine kinase 3 (FLT3) is a member of the type III receptor tyrosine kinase (RTK) family and is required during early hematopoiesis(1). Deregulation of FLT3 is often found in the blast cells of leukemias including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) (2, 3). Approximately 30% of AML patients harbor gain-of-function FLT3 internal tandem duplication (ITD) mutations that drive constitutive activation of downstream signaling cascades and are associated with poor disease outcome (4-7). Beyond activating mutations, overexpression of FLT3 and/or co-expression of the endogenous FLT3 ligand (FL) represent additional mechanisms by which FLT3 may be pathogenically activated (8). Activation of FLT3 kinase results in FLT3 autophosphorylation and induction of multiple downstream signaling cascades including the Ras/MAPK, PI3K/Akt and STAT5 pathways (1, 9-13). In general, cells that have activated FLT3 are thought to be “addicted” to FLT3 signaling for their survival and growth, thereby rendering them exquisitely sensitive to FLT3 targeted therapy (14).

Multiple small molecule FLT3 inhibitors, including lestaurtinib, sunitinib, sorafenib, tandutinib and midostaurin, have been evaluated clinically (2, 15-22). Although these inhibitors were demonstrated to be efficacious against FLT3-activated cell lines in vitro and in preclinical efficacy models (19, 23-28), clinical results to date have been disappointing due to dose limiting toxicity and lack of durable responses in AML patients (22, 29). With the exception of tandutinib, these inhibitors are multi-kinase inhibitors that lack FLT3, or even RTK, selectivity (30). The undesirable off-target effects of these compounds may have prevented administration of sufficiently high doses to achieve complete and sustained FLT3 inhibition. Nevertheless, the few responses
observed in AML patients with these inhibitors were often accompanied by inhibition of constitutive FLT3 phosphorylation (15, 25, 31, 32), suggesting that more potent, selective, and durable inhibition of FLT3 may result in a broader and more significant response in AML patients.

Quizartinib/AC220, is a small molecule kinase inhibitor that potently inhibits FLT3 with a high degree of kinome selectivity (30). We have previously demonstrated quizartinib’s potent inhibition of cellular FLT3 autophosphorylation and cell viability in the FLT3-ITD cell line, MV4-11, and the translation of this potent inhibition into effective antitumor activity in tumor xenograft models (30). A recent phase I clinical study of quizartinib in AML patients indicates that continuous, once-daily administration of this drug can lead to reduced FLT3 signaling and tumor burden, as >50% of FLT3-ITD patients, and a smaller percentage of patients without the ITD mutation, had a partial or complete response to treatment (unpublished data).

To better understand the mechanism of FLT3-mediated efficacy of quizartinib, we evaluated its inhibitory activity across different FLT3 isoforms, its impact on downstream FLT3 signaling pathways, and the durability of this inhibition in vitro and in vivo. These studies reveal quizartinib to be a potent inhibitor of FLT3 signaling across a variety of FLT3 genotypes, yet triggers apoptosis only in cells with endogenously activated FLT3. Further, we demonstrate that slow quizartinib dissociation from FLT3 may cause sustained inhibition of FLT3 autophosphorylation and downstream signaling, induction of cell death in vitro, and achievement of a durable response in human tumor xenografts following a single administration. These results suggest quizartinib may be unique among
clinical FLT3 inhibitors with respect to potency, specificity, and durability of FLT3 inhibition.

Material and Methods

Reagents. Quizartinib (FLT3 K_d=1.6nM), lestaurtinib (FLT3 K_d=8.5nM), midostaurin (FLT3 K_d=11nM), and sorafenib (FLT3 K_d=13nM), were synthesized at Ambit Biosciences (30). Tandutinib (FLT3 K_d=3nM), was custom synthesized by CiVentiChem (Cary, NC), and sunitinib (FLT3 K_d=0.5nM), was custom synthesized by Sai Advantium, Ltd. (Hyderabad, India, all K_d’s from ref 30). Antibodies for immunoblot analysis were purchased as follows: FLT3, Erk1/2, phospho-Erk1/2 (T202/Y204), and β-actin from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA); Akt, phospho-Akt (S473), PARP, cleaved PARP (D214), and phospho-STAT5 (Y694) from Cell Signaling Technology (Beverly, MA); STAT5 from BD Biosciences (San Diego, CA); phosphotyrosine (pTyr) (4G10) from Millipore (Billerica, MA). Culture media were obtained from MediaTech (Manassas, VA) and fetal bovine serum from Omega Scientific (Tarzana, CA). Except where noted, all other reagents were obtained from Sigma-Aldrich (St. Louis, MO).

Cell culture. MV4-11, RS4;11, THP-1, and HEL 92.1.7 (HEL) cells were obtained from ATCC (Manassas, VA). Cell lines were authenticated at ATCC prior to purchase by their standard STR DNA typing methodology. MOLM-14 and SEM-K2 cells were a gift from Dr. Mark Levis (Johns Hopkins Medical School, Baltimore, MD). Within 1 month of receipt cultures were grown out for several passages and aliquots of each were frozen. For experimental use, each cell type was thawed and grown out for no more than two
months prior to use in an experiment. The cells were maintained in 10% fetal bovine serum in IMDM (MV4-11), RPMI 1640 (MOLM-14 and SEM-K2) and RPMI 1640 supplemented with D-glucose, HEPES, 2mM L-glutamine, sodium bicarbonate and sodium pyruvate (HEL, RS4;11, and THP-1). Cells were serum starved overnight in medium containing 0.5% fetal bovine serum prior to treatment with compound for immunoblots and viability assays.

Immunoprecipitation of FLT3. Serum starved cells were washed with cold PBS. RS4;11 cells were either untreated, or treated for 15 minutes with 100 ng/ml human FL (R&D Systems, Minneapolis, MN) before the PBS wash. For quizartinib treatment, serum-starved MV4-11 cells were incubated with a dose titration of quizartinib for 2 hours. Twenty million MV4-11 cells were used for each dose. Cells were washed with cold PBS and lysed for 20 minutes on ice with Cell Extraction Buffer (Invitrogen, Carlsbad, CA) supplemented with protease (Roche Applied Science, Indianapolis, IN) and phosphatase (EMD Chemicals, San Diego, CA) inhibitor cocktails and 1 mM PMSF. Following a 15 minute centrifugation to clear the lysate, 2 mgs of lysate were incubated with FLT3 antibody for 16 hours at 4°C. Protein A-agarose was added to this mixture and incubated for 2 hours at 4°C. Bead complexes were washed three times with Cell Extraction Buffer, and proteins eluted with NuPAGE® LDS Sample Buffer (Invitrogen). FLT3 immunoprecipitates were analyzed by SDS-PAGE and immunoblotting for phospho-tyrosine and total-FLT3 content.
Immunoblot analysis. Immunoprecipitates or 50 μg of whole cell lysates were separated by SDS-PAGE, transferred to nitrocellulose and immunoblotted with primary antibodies overnight at 4°C. Fluorescent secondary antibodies (LI-COR® Biosciences, Lincoln, NE) used for detection were incubated for 30 minutes at room temperature. Blots were scanned using the LI-COR®-Odyssey® Infrared Imaging System, and bands were quantified using this system’s application software.

FLT3 and STAT5 immunoassays. Following overnight culture in low serum (0.5 % FBS), cells were seeded 400,000 cells per well in a 96-well plate and treated with inhibitors as described above. Following compound incubation, FLT3 phosphorylation was induced in RS4;11 and THP-1 cells with 100 ng/ml FL for 15 minutes or 5 minutes, respectively. Cell lysates (Cell Lysis Buffer from Cell Signaling Technology supplemented with protease and phosphatase inhibitor cocktails and 1 mM PMSF) were cleared by centrifugation. Phosphorylated and total STAT5a,b levels in the lysates were determined using the Multi-Spot® Phospho-(Tyr 694), Total STAT5a,b assay from Meso Scale Discovery (MSD) (Gaithersburg, MD) as instructed by the manufacturer. Levels of phosphorylated and total FLT3 in the lysates were similarly determined using the MSD electrochemiluminescence platform as previously described(30). All IC₅₀ calculations were performed using IGOR Pro 5 software (WaveMetrics, Lake Oswego, OR) on data normalized to DMSO treated cells.

Cell viability assays. Serum deprived cells were seeded at a density of 50,000 (MV4-11), 30,000 (MOLM-14), or 60,000 (SEM-K2, RS4;11, and THP-1) cells per well in a 96-well
plate, and then treated with DMSO or a dose titration of inhibitors. CellTiter-Blue (CTB) reagent (Promega, Madison, WI) was added to the cells after 3 or 7 days following inhibitor addition. The resulting fluorescent signals were measured after 3 hours using a fluorescence plate reader. Viability was calculated as a percentage of cells treated with DMSO.

PARP cleavage assays. Cells starved overnight were incubated with a dose titration of quizartinib for 24 hours (MV4-11), 6 days (SEM-K2) or 7 days (RS4;11). Cells were lysed and subjected to immunoblot analysis as described above for cleaved and uncleaved PARP.

Durability experiments with washouts. For CTB viability assays, cells treated as described above were incubated with drug for 30 minutes, 24 hours, or 48 hours, washed three times with PBS, followed by addition of fresh low serum media and incubated such that the total assay time was 72 hours for each. Control cells were treated with compounds continuously for 72 hours with no washout. Viability was measured using CTB as described above. For phosphorylated FLT3 and STAT5 analyses, serum starved cells were treated with compound for 2 hours washed with PBS as above, replenished with fresh media containing 0.5% FBS, then further incubated for 30 minutes, 6 hours or 24 hours prior to cell lysis and MSD immunoassay analysis as described above. Control cells with no recovery time were lysed immediately following the 2 hour compound treatment. Structures for the inhibitors used in these experiments (quizartinib, lestaurtinib, and sorafenib) are found in Figure5.
Kinetic binding assays. Binding assays were performed as described previously (33). The assays measure the ability of a test compound to compete with the interaction between a kinase and a known ATP site-binding ligand that has been immobilized on a solid support using qPCR. Binding reactions were incubated for 90 minutes and either left undiluted or diluted as indicated. These reactions were measured at 20 and 120 minutes post-dilution.

In vivo efficacy model. Female C.B-17 SCID mice (Harlan Laboratories, Indianapolis, IN) were implanted subcutaneously on Day 0 with 5x10⁶ MV4-11 cells in a 50/25/25 homogeneous mixture of PBS and High/Low concentration Basement Membrane matrigel (BD Biosciences). Treatments began when the mean estimated tumor mass for all groups (10 mice per group) reached ~ 250 mm³. Quizartinib, formulated in 5% hydroxypropyl-β-cyclodextrin, was administered at 1 or 10 mg/kg by oral gavage once a day for 1 day or 14 consecutive days. Animals with tumors in excess of 2000 mm³ or with excessive ulcerated tumors were euthanized, as were those found in obvious distress or in a moribund condition. Body weights and tumor measurements were recorded three times weekly. Tumor burden was estimated from caliper measurements by the formula for the volume of a prolate ellipsoid assuming unit density as: tumor burden (mm³) = (L × W²)/2, where L and W are the respective orthogonal tumor length and width measurements in mm. Tumor growth inhibition (T/C, %) and tumor growth delay (T-C, days) were each calculated relative to the predefined endpoint of 1500 mm³ as previously defined (34).
Tumor lysates. When tumor volume reached approximately 300 mm³, animals received a single dose of 1 or 10 mg/kg quizartinib by oral gavage. Tumors were harvested at various time points post-dose, and were extracted with ice cold Cell Extraction Buffer supplemented with protease and phosphatase inhibitor cocktails and 1mM PMSF using mechanical dissociation. Tumor extracts were analyzed for phosphorylated FLT3 by MSD immunoassay and for phosphorylated STAT5, AKT, and ERK and cleaved PARP levels by immunoblotting as described above.

Results

Quizartinib is a potent inhibitor of FLT3 autophosphorylation in wild type and ITD-mutated FLT3 cells

To explore the impact of FLT3 genotype on quizartinib-mediated FLT3 inhibition we expanded on an earlier study (30) to include a panel of five leukemia cell lines expressing wild type (WT) or ITD-mutated FLT3. MV4-11 cells are homozygous for the FLT3-ITD mutation, while MOLM-14 cells harbor both a WT and ITD allele (35). RS4;11, THP-1, and SEM-K2 cells are each homozygous for WT FLT3; however, SEM-K2 cells have an amplification of the FLT3 gene leading to elevated expression and constitutive activation of FLT3 (Figure 1A, B). MV4-11 and MOLM-14 cells also have constitutively activated FLT3 as a result of the ITD mutation, while RS4;11 and THP-1 cells require FL for activation/phosphorylation of the receptor (Figure 1B and data not shown). Similar to its effects on MV4-11 cells (30), quizartinib potently down regulated the autophosphorylation of FLT3 in MOLM-14 and SEM-K2 cells, and FL-stimulated FLT3 phosphorylation in RS4;11 and THP-1 cells (Table 1 and Supplemental Figure 1). While
slightly higher IC\textsubscript{50} values were observed in the FLT3-WT cells compared to the FLT3-ITD cells (4- to 9-fold), these results indicate that quizartinib is a potent inhibitor of FLT3 phosphorylation irrespective of genotype, and ranks among the most potent when compared to a panel of FLT3 inhibitors (Supplemental Table 1).

Inhibition of FLT3-mediated signaling pathways

Constitutive and ligand-induced activation of FLT3 leads to phosphorylation of downstream effector molecules in signaling networks such as the STAT5, Ras/MAPK and PI3K/Akt pathways. Consistent with FLT3 inhibition, quizartinib potently inhibited phosphorylation of constitutively activated STAT5, Erk1/2 and Akt in MV4-11, MOLM-14, and SEM-K2 cells with IC\textsubscript{50} values in the range of 0.3- 0.7 nM, and of FL-stimulated phosphorylation of Erk1/2 and Akt in RS4;11 cells with IC\textsubscript{50} values of 0.3 nM and 3 nM, respectively (Figure 1 C-F, Table 1, and Supplemental Figure 1). Consistent with previous reports (12, 13, 36), STAT5 is not constitutively phosphorylated, nor does FL induce its phosphorylation in RS4;11 cells (Figure 1F). Taken together, these results demonstrate that quizartinib-mediated FLT3 inhibition, in either FLT3-ITD or -WT cells, is accompanied by potent attenuation of downstream signaling events.

Quizartinib inhibits cell survival in FLT3 activated cells

To determine whether FLT3 genotype would influence the sensitivity of cells to FLT3 inhibition with respect to cell viability, we assessed cell viability across the cell panel following treatment with quizartinib. Both of the FLT3-ITD cell lines, MV4-11 and MOLM-14, were exquisitely sensitive to quizartinib treatment with cell viability IC\textsubscript{50}s of 0.1-0.3 nM measured at 72 hours (Figure 2A; Table 1). Interestingly, while an IC\textsubscript{50} of 0.4...
nM could be measured after 72 hours in SEM-K2 cells, complete loss of viability required 5-7 days (Figure 2A-B; Table 1). In contrast, minimal or no loss of viability was observed in the FLT3-WT expressing RS4;11 and THP-1 cells (Figure 2A-B, and Table 1), even following 7 days of quizartinib treatment, consistent with reports that these lines are not dependent on FLT3 signaling for sustained cell growth (18, 37). Importantly, comparison of quizartinib to a panel of FLT3 inhibitors revealed similar rank order across the cell panel discussed above, with quizartinib demonstrating the greatest FLT3 potency and selectivity toward FLT3-activated cells especially compared to some of the less FLT3-selective inhibitors (Supplemental Table 1).

Quizartinib induces apoptosis in FLT3 activated cells

Treatment with quizartinib induced significant and dose-dependent PARP cleavage and accumulation of sub-2N DNA in MV4-11, MOLM-14 and SEM-K2 cells (Figure 2C, and Supplemental Figure 2). Cleavage was observed as early as 8 (data not shown) and 24 hours after quizartinib treatment. Consistent with the effects of quizartinib on cell viability, significant PARP cleavage nor appearance of sub-2N DNA were observed in the SEM-K2 cells until 6 days post treatment, while no increase in PARP cleavage or sub-2N DNA was observed in RS4;11 cells after 7 days of treatment (Figure 2C, and Supplemental Figure 2).

Durability of quizartinib-mediated inhibition of FLT3 signaling

To assess the relative durability of quizartinib-mediated signaling inhibition in cell culture, we treated MV4-11 cells with quizartinib for 2 hours, then measured the levels of
phosphorylated FLT3 (pFLT3) and STAT5 (pSTAT5) at 0.5, 6, and 24 hours after compound withdrawal (Table 2 and Supplemental Figure 3). The ~1nM pFLT3 IC$_{50}$ of quizartinib was maintained following a 0.5hr, 6hr and even 24hr washout period (Table 2). This durable inhibition translated to STAT5 phosphorylation as well, where no dramatic changes in IC$_{50}$s were observed under all 3 washout conditions tested (Table 2 and Supplemental Figure 3). In contrast, lestaurtinib was found to be highly sensitive to the washouts resulting in ~3, 4, and 8-fold increase in pFLT3 IC$_{50}$ following 0.5hr, 6hr and 24hrs of drug removal (Table 2 and Supplemental Figure 3). This translated to a 4-fold increase in the pSTAT5 IC$_{50}$s at the 6 hr and 24hr washout. In parallel experiments, sorafenib demonstrated a modest 2- to 3-fold increase in IC$_{50}$ values for both pFLT3 and pSTAT5 (Table 2, Supplemental Figure 3, and compound structures in Figure 5).

Duration of compound exposure and loss of cell viability

To assess the impact of brief exposures on cell viability, MV4-11 cells were treated with compounds for various times, washed to remove inhibitors, then assayed for viability 72 hours after initial exposure. Quizartinib exposures as short as 30 minutes led to virtually the same dose-response relationship as that achieved with continual 72 hours exposure (Table 2 and Supplemental Figure 3). Under these conditions of brief quizartinib exposure, dose- and time-dependent increases in the pro-apoptotic Bim$_{EL}$ were observed, along with decreases in the anti-apoptotic protein Mcl-1 (Supplemental Figure 4). No changes in Bim$_{L}$ Bim$_{S}$, Bax, Bcl-XL, or Bcl-2 were observed (Supplemental Figure 4 and data not shown). Lestaurtinib was considerably more sensitive to compound removal with shorter exposures of lestaurtinib resulting in 3-, 7-, and 32-fold increases in IC$_{50}$ for
the 48, 24, and 0.5 hour exposures, respectively (Table 2 and Supplemental Figure 3). Sorafenib treated cells demonstrated an intermediate sensitivity to compound removal (Table 2 and Supplemental Figure 3). Similar durability properties were observed for each of these compounds in the MOLM-14 and SEM-K2 cells (data not shown). These results suggest that in cells dependent on constitutively activated FLT3, durable inhibition of FLT3 signaling following a brief exposure to quizartinib translates to lasting effects on cell viability mediated by modulation of pro- and anti-apoptotic proteins.

Time-dependence of FLT3 binding

To understand how quizartinib mediates sustained FLT3 inhibition, we tested the effect of incubation time and dilution of the FLT3/inhibitor mixture on the apparent affinity of quizartinib to FLT3 using the kinase binding technology described previously (33). To compare relative off-rates compounds were incubated with FLT3 for 1.5 hours followed by a series of dilutions and assayed for binding at 20 and 120 minutes. The binding curves generated from the diluted FLT3/quizartinib reactions were nearly identical to those of the undiluted reactions (Figure 3A, B), as reflected in the 0.3-0.9 nM Kd for all dilutions, and is indicative of a slow dissociation rate for quizartinib. In contrast, dilution of the FLT3/lestaurtinib binding reaction resulted in a clear shift in the binding curves corresponding to >30- and >100-fold increases in apparent Kd between no dilution and 50-fold dilution of the lestaurtinib/FLT3 mixture at each time point and is consistent with a rapid off-rate for lestaurtinib (Figure 3C, D). Taken together, these binding data suggest that a slower quizartinib off-rate compared to lestaurtinib likely contributes to the
differential effects these compounds demonstrate relative to FLT3 inhibition and cell viability described above.

In vivo efficacy and durability of FLT3 inhibition

To determine whether the durability properties of quizartinib demonstrated in vitro translated to in vivo efficacy, we tested single dose administrations of either 1 or 10 mg/kg quizartinib compared to the same doses given once per day for 14 days in the previously described MV4-11 xenograft model (30). Daily administration of 10 or 1 mg/kg quizartinib for 14 days led to significant tumor reduction consistent with our previous observations (Figure 4A and Supplemental Table 2, (30)). Following the dosing period, tumor growth in the 1mg/kg cohort rebounded rapidly (TGD= 21days), while the 10 mg/kg cohort demonstrated sustained tumor remission up to 30 days following the final dose of quizartinib (TGD= 55 days). Remarkably, after a single 10 mg/kg dose of quizartinib, no tumor growth was observed for up to 2 weeks (TGD= 15 days). Even a single 1mg/kg dose of quizartinib caused significant reduction in tumor growth (TGD=5 days) (Figure 4A and Supplemental Table 2).

To determine whether differences in tumor volume reduction between single doses of 1 mg/kg versus 10 mg/kg quizartinib correlated with pharmacodynamic assessments, levels of pFLT3, pErk1/2, pSTAT5, and pAkt at various times following drug administration were assessed in tumor lysates. Quizartinib administration leads to a rapid decrease in FLT3, STAT5 and Erk1/2 phosphorylation in the tumors at both doses tested (Figure 4B). The 1 mg/kg dose reduced FLT3 phosphorylation by 60% at 2 hours, reached maximal inhibition of ~70% by 6 hours, and had recovered to within 20% of
control levels by 24 hours. STAT5 phosphorylation followed a similar pattern following the 1 mg/kg dose with 40% inhibition at 2 hours, 75% inhibition at 6 hours, and full recovery at 24 hours. Inhibition of Erk1/2 phosphorylation was not as robust with inhibition levels of 30% at both 2 and 6 hours, and control levels returning by 24 hours. Akt phosphorylation was not impacted following a 1 mg/kg dose of quizartinib. At 10 mg/kg, the impact on signaling was much more pronounced with 80% inhibition of pFLT3 observed at both the 2 and 6 hour time points, and a residual 50% inhibition at 24 hours. Similarly, pErk1/2 levels were reduced by roughly 70% at 2 and 6 hours, returning to within 30% inhibition by 24 hours. More striking was the effect of 10 mg/kg on STAT5 phosphorylation, which was reduced by >95% at all three time points. Consistent with the effect at the 1 mg/kg dose, the 10 mg/kg dose only modestly inhibited (10-15%) Akt phosphorylation at 2 and 6 hours with pAkt levels elevated at 24 hours.

Finally, to determine whether the rapid loss of tumor volume was associated with an induction of apoptosis, cleavage of PARP was followed in tumor lysates. Tumors from mice receiving either 1 or 10 mg/kg demonstrated considerable PARP cleavage 2 and 6 hours post-treatment with the peak of cleavage occurring at the 6 hour time point (Figure 4C). In the 1 mg/kg tumor lysates no additional PARP cleavage was observed at 24 hours, while in the 10 mg/kg lysates PARP cleavage remained elevated. These experiments suggest that the degree of sustained anti-tumor activity achieved appears to correlate with the durability of FLT3 signal inhibition within the first 24 hours, and may reflect durable inhibition of FLT3 in residual tumor cells.
Discussion

Although clinical activity has been observed with first generation FLT3 inhibitors, as a class they have failed to fulfill the promise of providing long-term therapeutic benefit in AML (15-17, 21, 22, 29). Potential explanations for these marginal clinical results include insufficient FLT3 potency leading to residual disease and/or inadequate FLT3 selectivity leading to off-target effects and associated dose-limiting toxicity (2, 14, 22). Among responders to these first generation FLT3 inhibitors, patients with FLT3-ITD mutations were in the clear majority; however, a smaller number of ITD-negative patients also responded to therapy (38, 39). In the preclinical studies presented here, we characterize quizartinib with respect to potency and durability of inhibition against wild type and ITD mutant FLT3 kinase across a panel of cells harboring distinct FLT3 genotypes, compare these properties to a panel of first- and second-generation FLT3 inhibitors, and demonstrate that quizartinib possesses slow off-rate kinetics. These studies showed that, 1) quizartinib potently inhibits cellular signaling in both ITD and WT cells, yet translation to induction of apoptosis was restricted to cells with constitutive FLT3 activation, whether ITD or WT, 2) as a result of slow off-rate kinetics, quizartinib requires only transient exposures to effect durable inhibition of FLT3, its downstream signaling pathways, and ultimately cell viability in FLT3-dependent cells in vitro and in vivo, and lastly, 3) quizartinib is unique among current FLT3 inhibitors in this profile of selectivity across the kinome, potency against cellular FLT3, and durability of inhibition once achieved.

Quizartinib’s ability to distinguish FLT3-dependent from FLT3-independent cells may be important for two reasons. First, this profile suggests that quizartinib therapy
may spare cells not directly reliant upon FLT3 activity for survival. As not all FLT3 inhibitors are able to make this distinction (Supplemental Table1 and (30)), tolerability issues associated with these inhibitors may be attributed to off target-mediated induction of apoptosis in non-FLT3 dependent cells. Second, quizartinib-induced apoptosis in FLT3-WT activated cells (SEM-K2) is reminiscent of the clinical experience where a significant minority of responding patients lacked the FLT3 ITD. Defining the molecular mechanisms responsible for this FLT3-dependency in the ITD negative population is the subject of current preclinical and clinical investigation.

A common challenge in the clinical development of kinase inhibitors has been the inability to maintain prolonged target inhibition without exceeding tolerated levels of the drug. While TKIs including lestaurtinib and midostaurin have shown transient clinical responses, other inhibitors such as sorafenib and dasatinib have shown more durable responses with target inhibition sustained after efficacious levels of drug have been eliminated in vivo, or washed away in vitro (17, 22, 40-42). In the studies reported here, reduction of FLT3 phosphorylation and downstream signaling is maintained for up to 24 hours after quizartinib is removed from culture, and an exposure time as low as 30 minutes was as effective as a 72 hour incubation to induce cell death in sensitive cells. In vivo, this durability contributes to sustained inhibition of FLT3, STAT5, and ERK phosphorylation after a single injection, and long after the majority of the administered quizartinib has been eliminated from peripheral circulation. Our binding studies suggest that slow dissociation of quizartinib from FLT3 may contribute to enhanced efficacy relative to a simple pharmacokinetic ‘time-over-target’ estimation. Similar to our findings
with quizartinib, slow inhibitor off-rates have been shown to mediate durable target inhibition for other kinase inhibitors (43).

Quizartinib appears to be unique among the panel of tested inhibitors on several accounts. Although lestaurtinib and sorafenib demonstrated similar potency to quizartinib with respect to FLT3 inhibition, lestaurtinib and to a lesser degree sorafenib retained significant activity against the non-FLT3 activated cells ((30) and Supplemental Table 1). This theme was repeated with respect to durability of inhibition in that quizartinib demonstrated significantly enhanced durability of efficacy and slower binding kinetics relative to lestaurtinib. In a recent report comparing quizartinib to lestaurtinib in blasts derived from a small cohort of AML patients, the authors suggest that a less selective FLT3 inhibitor such as lestaurtinib may be more effective at first diagnosis compared to a more selective inhibitor such as quizartinib (44). While confirmation of this hypothesis awaits a side-by-side comparison of clinical results, it is quite plausible that the degree to which blasts are addicted to FLT3 signaling (and therefore respond to a FLT3-selective inhibitor) may vary in the heterogeneous AML patient population, especially at first diagnosis. Regardless of the potential for a more modest initial response compared to the multi-kinase inhibitors, the prolonged efficacy after a brief exposure in vivo, along with its potency, durability, and selectivity in vitro, may bode well for the safe, durable and efficacious use of quizartinib in the clinic.
Acknowledgements

The authors gratefully acknowledge M. Holladay, P. Zarrinkar and W. Wierenga for thoughtful discussions and critical reading of the manuscript, and R Faraoni, M. Hocker, and B. Campbell for synthesis of midostaurin, lestaurtinib, sorafenib, and quizartinib.

Grant Support

No grants were used to support this work
References

<table>
<thead>
<tr>
<th>Assay</th>
<th>MV4-11</th>
<th>MOLM-14</th>
<th>SEM-K2</th>
<th>RS4;11</th>
<th>THP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFLT3</td>
<td>0.9</td>
<td>1.7</td>
<td>4</td>
<td>4.4</td>
<td>8.3</td>
</tr>
<tr>
<td>pSTAT5</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>pErk</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.3</td>
<td>ND</td>
</tr>
<tr>
<td>pAkt</td>
<td>0.6</td>
<td>0.3</td>
<td>0.7</td>
<td>3.1</td>
<td>ND</td>
</tr>
<tr>
<td>Viability</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
<td>>10000</td>
<td>>10000</td>
</tr>
<tr>
<td></td>
<td>pFLT3, IC<sub>50</sub>, nM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No wash</td>
<td>0.5 hour</td>
<td>6 hour</td>
<td>24 hour</td>
<td></td>
</tr>
<tr>
<td>Quizartinib</td>
<td>1.1</td>
<td>0.9</td>
<td>1.3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Lestaurtinib</td>
<td>2.0</td>
<td>5.6</td>
<td>8.2</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td>1.0</td>
<td>1.0</td>
<td>2.3</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pSTAT5, IC<sub>50</sub>, nM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No wash</td>
<td>0.5 hour</td>
<td>6 hour</td>
<td>24 hour</td>
<td></td>
</tr>
<tr>
<td>Quizartinib</td>
<td>0.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Lestaurtinib</td>
<td>0.3</td>
<td>0.4</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td>0.5</td>
<td>0.4</td>
<td>1.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell viability, IC<sub>50</sub>, nM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No wash</td>
<td>24 hour</td>
<td>48 hour</td>
<td>71.5 hour</td>
<td></td>
</tr>
<tr>
<td>Quizartinib</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Lestaurtinib</td>
<td>1.9</td>
<td>5.9</td>
<td>12.5</td>
<td>60.8</td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td>0.7</td>
<td>1.5</td>
<td>0.9</td>
<td>4.6</td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. FLT3 expression profile in cell panel and quizartinib-mediated inhibition of STAT5, Erk and Akt. (A) Expression levels of FLT3 receptor were tested by immunoblot analysis from untreated MV4-11, MOLM-14, and SEM-K2, and from RS4;11 cells treated for 15 minutes without or with 100 ng/ml FL (+FL). HEL cells were used for a negative control cell lysate. (B) Phospho-FLT3 in leukemia cell lines. FLT3 was immunoprecipitated from cells treated as in A and probed with anti-phosphotyrosine (pTyr) (top) and anti-FLT3 (bottom) antibodies. (C-F) MV4-11, MOLM-14, SEM-K2 and RS4;11 cells were treated with DMSO vehicle or the indicated amounts of quizartinib for 2 hours and the lysates were analyzed by immunoblot for total and phosphorylated STAT5, Erk1/2 and Akt. RS4;11 cells were stimulated with 100 ng/ml FL (+FL) for 15 minutes prior to cell lysis as indicated.

Figure 2. Differential sensitivity of leukemia cell viability and apoptosis upon quizartinib treatment. Cell viability was measured 3 (A) or 7 (B) days after compound addition. Percent viability was calculated based on DMSO treated control cells. (C) Immunoblot analysis of PARP cleavage in cells treated with DMSO or the indicated amounts of quizartinib for 24 hours (MV4-11 and MOLM-14), 6 days (SEM-K2), or 7 days (RS4;11). The percentage of cleaved PARP was calculated as the amount of cleaved PARP divided by the sum of cleaved PARP and full length PARP.

Figure 3. Time-dependent binding of quizartinib to FLT3. Quizartinib (A, B) and lestaurtinib (C, D) were pre-incubated with FLT3 for 1.5 hours and then diluted as indicated. The binding was measured either 20 minutes (A, C) or 2 hours after (B, D) dilution.
Figure 4. Durability of efficacy with a single dose of quizartinib in MV4-11 xenograft tumors. (A) Mice bearing MV4-11 xenograft tumors were treated with drug vehicle or 1 or 10 mg/kg of quizartinib orally once daily (QD) for 1 day or 14 days. (B) Time course of FLT3, STAT5, Erk1/2, or Akt phosphorylation levels in MV4-11 tumor lysates from (n=3) animals treated with a single oral dose of 1 or 10 mg/kg of quizartinib. (C) Immunoblot analysis of PARP cleavage in tumor treated with vehicle or a single dose of 1 or 10 mg/kg quizartinib.
Figure 1

A) FLT3 and Actin expression in MV4-11, MOLM-14, SEM-K2, RS4;11, RS4;11+FL, and HEL cells.

B) FLT3 and pTyr expression in MV4-11, MOLM-14, SEM-K2, RS4;11, RS4;11+FL, and HEL cells.

C) Western blot analysis of pSTAT5, STAT5, pErk1/2, Erk1/2, pAkt, and Akt in MV4-11 cells treated with different concentrations of quizartinib.

D) Western blot analysis of pSTAT5, STAT5, pErk1/2, Erk1/2, pAkt, and Akt in MOLM-14 cells treated with different concentrations of quizartinib.

E) Western blot analysis of pSTAT5, STAT5, pErk1/2, Erk1/2, pAkt, and Akt in SEM-K2 cells treated with different concentrations of quizartinib.

F) Western blot analysis of pSTAT5, STAT5, pErk1/2, Erk1/2, pAkt, and Akt in RS4;11 cells treated with quizartinib and FL.
Figure 2

A)

B)

C)

<table>
<thead>
<tr>
<th></th>
<th>MV4-11</th>
<th>MOLM-14</th>
<th>SEM-K2</th>
<th>RS4;11</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hrs</td>
<td>DMSO 1</td>
<td>0.1 nM</td>
<td>1 nM</td>
<td>10 nM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>17</td>
<td>38</td>
<td>80</td>
</tr>
<tr>
<td>6 days</td>
<td>DMSO 1</td>
<td>0.1 nM</td>
<td>1 nM</td>
<td>10 nM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>17</td>
<td>62</td>
<td>60</td>
</tr>
</tbody>
</table>

Full length PARP

Cleaved PARP

% Cleaved PARP
Figure 3

A

B

C

D

Undiluted Kd = 0.6 nM
10-Fold Kd = 0.6 nM
20-Fold Kd = 0.5 nM
50-Fold Kd = 0.5 nM

Undiluted Kd = 0.3 nM
10-Fold Kd = 0.8 nM
20-Fold Kd = 1.0 nM
50-Fold Kd = 0.9 nM

Undiluted Kd = 0.8 nM
10-Fold Kd = 6.5 nM
20-Fold Kd = 6.9 nM
50-Fold Kd = 29 nM

Undiluted Kd = 0.6 nM
10-Fold Kd = 18 nM
20-Fold Kd = 46 nM
50-Fold Kd = 100 nM

Normalized signal

Normalized signal

Normalized signal

Normalized signal
Molecular Cancer Therapeutics

Transient exposure to quizartinib mediates sustained inhibition of FLT3 signaling while specifically inducing apoptosis in FLT3-activated leukemia cells

Mol Cancer Ther Published OnlineFirst February 14, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-0305

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/02/13/1535-7163.MCT-12-0305.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/early/2013/02/13/1535-7163.MCT-12-0305.
Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.