Inhibition of monocarboxylate transporter 2 induces senescence-associated mitochondrial dysfunction and suppresses progression of colorectal malignancies in vivo

Inkyoung Lee,¹ Sook-Ja Lee,¹ Won Ki Kang², and Chaehwa Park¹,²

¹Biomedical Research Institute, Samsung Medical Center, 50 Irwon-Dong, Gangnam-Gu, Seoul 135-710, Korea
²Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul 135-710, Korea

Running Title: MCT2 knockdown induces senescence of colon cancer cells

Key Words: MCT2, ROS, senescence, autophagy, 5-FU, colorectal carcinoma

Requests for reprints: Chaehwa Park or Won Ki Kang, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. Telephone: 82-2-3410-3458, Fax: 82-2-3410-1757, E-mail: cpark@skku.edu or wkkang@skku.edu
ABSTRACT

Senescence, an inherent tumor suppressive mechanism, is a critical determinant for chemotherapy. In the present study, we demonstrated that the monocarboxylate transporter 2 (MCT2) protein was tumor-selectively expressed in human colorectal malignancies and knockdown of MCT2 induces mitochondrial dysfunction, cell cycle arrest and senescence without additional cellular stress in colorectal cancer cell lines. Moreover, the reactive oxygen species (ROS) scavenger, N-acetylcysteine, blocked MCT2 knockdown-induced growth arrest and cellular senescence, indicating a pivotal role of ROS in this pathway. Dramatic induction of mitochondrial superoxide generation and decrease in ATP production was observed, indicating that mitochondrial dysfunction is the major mechanism underlying MCT2 knockdown-induced ROS generation. Senescence-associated DNA damage was also evident from the increase in PML bodies, γH2AX foci, and SAHF. Conversely, overexpression of MCT2 prevented doxorubicin-induced ROS accumulation ($P = 0.0002$) and cell growth inhibition ($P = 0.001$). MCT2 knockdown suppressed KRAS mutant colorectal tumor growth in vivo. Additionally, MCT2 knockdown and cytostatic drug combination further enhanced the antitumor effect. These findings support the utility of MCT2 as a promising target for inhibition of colorectal cancer.
INTRODUCTION

Tumors are usually limited in terms of oxygen availability (1) and adapt to hypoxia by uncoupling their glycolytic metabolism from aerobic respiration (2). Persistence of glycolysis, the Warburg effect, is a typical characteristic of advanced cancers.

Glycolysis, which produces only 2 ATPs for a glucose molecule, is considered a less effective pathway than aerobic respiration that generates 38 ATP molecules. However, lactic acid released by glucose-consuming hypoxic tumors (2) is consumed as a predominant source of oxidative metabolism of tumor cells (3). The gatekeepers of this metabolic process are MCTs (MCT1,2,3, and 4), which transport monocarboxylates, including pyruvate and lactate (4).

The MCT family comprises 14 members, among which only the first four (MCT1-4) catalyze the proton-linked transport of metabolically important monocarboxylates, such as lactate, pyruvate and ketone bodies (5). MCT2 displays 10-fold higher affinity for monocarboxylates than the MCT1 and MCT4 uptake mechanisms (4). MCT3 is uniquely expressed in the retinal pigment epithelium. MCT1 and MCT4, but not MCT2, have been shown to interact specifically with CD147, which supports MCT expression on the cell surface. MCT1 is present in almost all tissues, while MCT2 is expressed in fewer tissue types, suggesting a unique functional role of this protein (6). MCT2
displays strong cytoplasmic expression, but no membrane expression in cancer (7).

Experimental evidence of the presence of MCT2 in the mitochondrial membrane indicates a role in the mitochondrial import of pyruvate following lactic acid oxidation (4). Healthy colonocytes derive 60-70% of their energy supply from short-chain fatty acids, particularly butyrate, which is transported across the luminal membrane of the colonic epithelium via MCT1. Therefore, inhibition of MCT1 can retard tumor growth through blocking the energy supply (3). Pinheiro et al. reported increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas (8). However, earlier analysis of healthy colonic tissues and carcinomas revealed a significant decline in MCT1 protein expression during transition from normality to malignancy (9).

Irreversible cell cycle arrest or senescence is an inherent tumor suppressive mechanism and is a critical determinant for chemotherapy. We show here that MCT2 is selectively inhibited in DNA damage-induced cellular senescence. Moreover, protein levels of MCT2, but not MCT1, are significantly increased in colorectal carcinomas, compared with those of normal tissues. However, the effects and precise mechanisms of MCT2 inhibition in colorectal cancer remain unknown at present. 5-Fluorouracil (5-FU) is a widely used anticancer drug to treat solid tumors, including colorectal cancers.

Currently, there is no effective treatment for KRAS mutated metastatic colorectal cancer.
which does not respond to 5-fluorouracil (5-FU) combined with irinotecan or oxaliplatin chemotherapy (6). We wondered whether modulation of MCT2 might enhance sensitivity of colorectal cancer to 5-FU in KRAS mutant colorectal cancer cell lines.

In the present study, we investigated the effects of MCT2 knockdown in regulating 5-FU sensitivity of colorectal cancer. Our results showed that increased levels of reactive oxygen species (ROS) mainly mediate MCT2 knockdown, causing an increase in mitochondrial dysfunction and senescence-associated nuclear markers, including PML bodies, γH2AX, and SAHF (10). The antioxidant N-acetylcysteine (NAC), a ROS inhibitor, effectively prevented the cellular changes induced by knockdown of MCT2, supporting the involvement of ROS in this pathway. Specifically, we investigated the effects of MCT2 knockdown alone or in combination with 5-FU on human colorectal cancer xenografted in mice. The selective expression of MCT2 (but not MCT1) protein in human primary colorectal tumors, but not normal tissues, further suggests that targeting MCT2 represents a promising strategy to enhance therapeutic efficacy.
MATERIALS AND METHODS

Cell culture and reagents

Human colon carcinoma (LoVo, HT29, HCT8, HCT116, SW480, and DLD1) and gastric carcinoma (MKN45, MKN74, and SNU668) cells were grown in RPMI-1640 medium (Gibco Life Science, Grand Island, NY) supplemented with 10% fetal bovine serum, 1 mM Na₂CO₃, 2 mM L glutamine, and penicillin-streptomycin. Cells were cultured at 37°C in a humidified 5% CO₂ environment. Following informed consent and in accordance with the appropriate Institutional Review Boards, tumor specimens were obtained from patients undergoing surgery at the Samsung Medical Center. The 21-nucleotide-long siRNAs targeting MCT1, MCT2 and negative control siRNA (siC) were purchased from Dharmacon (Lafayette, CO). The full-length MCT2 open reading frame was obtained from LoVo mRNA using a reverse transcription-polymerase chain reaction (RT-PCR)-based cloning technique, and inserted into the pEGFP plasmid (Clontech, Palo Alto, CA). The level of ectopic MCT2 expression in stable cell lines was analyzed by immunoblotting using an anti-GFP antibody (Santa Cruz, CA). Cells were transfected with siRNA or plasmids using Effectene (Qiagen, Valencia, CA) or an Amaxa electroporation system (Amaxa, Gaithersburg, MD), according to the
manufacturers’ instructions.

RNA interference and transfection

Cells (2 ×10^5 cells per 60mm dishes) were transfected with 20 nM siRNAs (Dharmacon, Lafayette, CO, USA) using Effectene transfection reagents (Qiagen Inc, Valencia, CA) according to the manufacturer’s instructions and were used for immunoblot analysis 48 hours after transfection. Sequences of the siRNAs used were control nontargeting siRNA (5′-UAGCGACUAAACACAUCAA-3′), MCT1-targeted siRNA (siMCT1) (5′-CCAAGGCAGGGAAAGAUAAGUCUAA-3′) and MCT2-targeted siRNA (siMCT2) (5′-GGAUUUAACUGGAGAAUAU-3′).

Reverse transcriptase–polymerase chain reaction (RT-PCR)

Total cellular RNA was extracted using RNeasy mini kit (Qiagen Inc, Valencia, CA) and treated with DNase I (Qiagen Inc.). One microgram of RNA was converted to cDNA using Omniscript RT kit (Qiagen Inc.). The primer sequences designed from the coding region of human MCT2 cDNA are as follows: forward, 5′-AGGATTAATTGCAAACTCCA -3′, and reverse, 5′-CGAATGTTTAGATTTGCTC-3′. The PCR conditions were as follows: 25 cycles of 95 °C for 30 seconds, 55 °C for 30
seconds, and 72 °C for 30 seconds, followed by a final incubation at 72 °C for 10
minutes.

Senescence-associated β-galactosidase (SA-β-Gal) staining

Cells were seeded into 60-mm dishes in RPMI-1640 culture medium and transfected
with siRNA (20 nmol/L), and SA-β-Gal staining was performed as previously described
(6). Senescence was scored based on the percentage of the population that exhibited a
SA-β-Gal activity, and the results were photographed under phase contrast microscopy.

Western blot analyses

Total cell extracts were obtained using lysis buffer containing 50 mM Tris-HCl (pH 8.0),
150 mM NaCl, 0.1% SDS, 1% NP40, and 1X protease inhibitors (Roche Applied
Science, Indianapolis, IN), and protein concentration was determined using the micro
BCA protein reagent (Pierce, Rockford, IL). Primary antibodies against the following
proteins were utilized: MCT1 (Sigma, AV43841, 1:1,000), MCT2 (Santa Cruz, H-40,
sc-50322, 1:500), p21 (Santa Cruz, C-19, sc-397, 1:1,000), p27 (Santa Cruz, C-19, sc-
528, 1:1,000), Rb (BD Pharmingen, G3-245, 554136, 1:1,000), hypophosphorylated Rb
(BD Pharmingen, G99-549, 554164, 1:1,000), E2F-1 (Santa Cruz, KH95, sc-251,
1:1,000), cyclin A (Santa Cruz, H-432, sc-751, 1:1,000), Cdc2 (Santa Cruz, 17, sc-54, 1:1,000), GFP (Santa Cruz, B-2, sc-9996, 1:1,000), and β-actin (Sigma, AC-15, A5441, 1:5,000).

Assays for cell proliferation and colony formation assay

To measure cell growth in vitro, cells were grown in RPMI-1640 medium with 10% FBS at 37°C. Cells were seeded (1 × 10^5 cells per well) in a 6-well plate (Nunc, Rochester, NY) and incubated at 37°C for 1 day (24 hours). Cells were then transfected with siRNA for an additional 24 hours. Cells were then treated with 0.25% trypsin–EDTA solution (2.5 g/L of trypsin, 0.38 g/L of EDTA) (Invitrogen), stained with 0.4% trypan blue solution (Sigma-Aldrich, Inc.), and counted using a hemocytometer (Hausser Scientific, Horsham, PA). The results were expressed as percent cell proliferation, using the number of living cells incubated with PBS as a 100% reference.

For anchorage-dependent colony formation, we used DLD1, HCT8, and LoVo cells. Briefly, 2 × 10^2 cells per well were seeded in 6-well plates (Nunc, Rochester, NY) and treated with 0.03 μg/ml 5-FU for 3 days. Triplicate cultures of each cell type were maintained at 37°C for 14 days in an atmosphere of 5% CO2, with fresh medium being added after 7 days. Cells were stained with 0.1% (weight/vol) crystal violet.
Colonies, defined as groups of cells containing a minimum of 50 cells, were counted under an inverted phase contrast microscope. The percent relative cell proliferation was expressed as \((\text{number of colonies from treated cells/number of colonies from controls}) \times 100\). The assay was repeated three times with duplicate samples.

Cell-cycle analysis.

For cell-cycle analysis, cells were washed twice with ice-cold phosphate-buffered saline (PBS), and then fixed in 2 ml of 70% ethanol. The fixed cells were centrifuged at 200 x g for 10 min, and pellets were washed twice with PBS. Cells were then incubated concurrently with 100 μg/ml propidium iodide (Sigma) and 100 μg/ml RNase at 37°C for 30 minutes. The percentages of cells in different phases of the cell cycle were measured with a FAC-Star flow cytometer (BD Sciences, San Jose, CA) and analyzed using Becton-Dickinson software (CellQuest, BD Sciences).

Determination of mitochondrial mass, mitochondrial membrane potential, ROS level, and ATP concentration.

LoVo cells \((2 \times 10^2 \text{ cells per well})\) were seeded in 6-well plates and incubated at 37°C for 1 day (24 hours). Cells were then transfected with siRNA (20 nM) for an additional
days. To measure mitochondrial mass, Mitotracker Red (M7512; Invitrogen) was
employed. Cells were incubated for 5 min with 1 μM Mitotracker Red and the intensity
of labeling was measured by FACS. To assess mitochondrial membrane potential, JC-1
(Molecular Probes) was used; cells were incubated with 10 μg/ml JC-1 for 10 min and
washed with HBSS (Gibco). To measure intracellular production of ROS, we used two
different fluorogenic probes, DCFH-DA and MitoSox (Molecular Probes). DCFH-DA
reacts quantitatively with intracellular radicals, being converted to a fluorescent product,
2′,7′-dichlorofluorescein (DCF). Hydroethidine assay (11) and MitoSox were used to
measure mitochondrial superoxide production. Stained cells were washed, resuspended
in PBS, and analyzed using a FACS Calibur flow cytometer (BD Sciences). The ATP
concentration was determined using an ATP assay kit (FL-ASC; Sigma) and the
ATP/AMP ratio measured as described previously (12); data were normalized to cell
number.

Immunofluorescence staining of γH2AX, PML and SAHF

Cells were fixed in 3.7% (v/v) paraformaldehyde for 15 minutes, washed with PBS, and
permeabilized using 0.2% (v/v) Triton X-100 in PBS. After blocking with 3% (w/v)
bovine serum albumin for 30 minutes, the cells were incubated for 1 hour with either
anti-γH2AX (1:200; Upstate Technology) or anti-PML (1:200; Santa Cruz) in 3% (w/v) bovine serum albumin in PBS. Subsequently, cells were washed three times with 3% (w/v) bovine serum albumin in PBS and incubated with Alexa Fluor 488–conjugated secondary antibody (1:5,000) for 1 hour. 4′,6-Diamidino-2-phenylindole was added to stain nuclei.

Tumorigenesis of xenotransplanted human colorectal cancer cells

Male BALB/c nude mice, 4-6 weeks old, were obtained from Orient Bio Inc. (Seongnam, Korea). Mice (n = 5 per cell line per treatment group) were implanted subcutaneously with DLD1 (3.0 × 10^6 cells) in 100 μL volume using a 26-gauge needle. Each mouse received two subcutaneous injections in the bilateral flank for the development of two tumors (ten tumors per treatment group). Two weeks after implantation, mice (n = 5 mice per treatment group) were assigned into four groups—siControl, 5-FU, siMCT2, or a combination of 5-FU and siMCT2. The mice were treated twice per week with intraperitoneal injection of 30 mg/kg 5-FU in PBS and/or once weekly intratumorally with 1μg siMCT2 dissolved in effectene reagent. Tumor diameters were serially measured with a digital caliper (Mitutoyo, Utsonomiy, Japan) every 2 to 3 days, and tumor volumes were calculated using the following formula: \(V = \)
(L × W²)/2, where V = volume (cubic millimeter), L = length (millimeter), and W = width (millimeter). The mice were killed by CO₂ inhalation, and the tumors were resected on day 15. Mice were handled at the institute’s (Samsung Medical Center, Seoul, Korea) animal facility, and all treatments were in accordance with institutional guidelines.

Statistical analysis

Data presented in graphs represent means ± standard deviations of values from at least three independent measurements. Differences between two mean values were analyzed using Student’s t-test (paired two-sample t-test). All P values less than 0.05 were considered to be statistically significant.
RESULTS

MCT2 expression decreases according to DNA damage-induced senescence of cancer cells

Doxorubicin, a DNA damage-inducing drug frequently used to treat various types of solid tumors, triggers premature senescence (13). Low-dose doxorubicin induces growth arrest in human carcinoma cells, as evident from their SA-β-Gal positivity and flat, enlarged morphology (14,15). In our experiments, MCT2 expression was reduced in response to doxorubicin treatment to an increasing extent with the progression of senescence (Fig. 1A). To establish whether MCT2 is directly involved in drug-induced senescence of colorectal cancer cells, we further examined the effects of MCT2 knockdown using specific siRNA (siMCT2). The growth of several cancer cells was specifically inhibited by siMCT2 (Fig.1B), but not siMCT1 (Supplementary Figure 1), in a concentration-dependent manner. Analysis of transfected cells revealed a siMCT2-specific decrease in MCT2 mRNA (Fig. 1C), indicative of successful knockdown. This cell growth inhibition was dose-dependent. As shown in Figure 1D, MCT2 overexpression effectively rescued cells from siMCT2-induced senescence, clearly indicating that these biological changes are mediated by MCT2.
ROS are involved in MCT2-modulated cell cycle arrest

Irreversible growth arrest is associated with cell cycle inhibitors, including p53, pRb, and the cyclin-dependent kinase inhibitors, p21, p27, and p16 (16-18). Accordingly, we investigated the effects of MCT2 knockdown on the levels of cell cycle proteins in KRAS mutated LoVo (KRAS^{G13D}) cells. MCT2 knockdown led to increased levels of the G1 arrest-inducing protein, p27, and decreased cdc2 and E2F1 levels and Rb phosphorylation (Fig. 2A). Next, we attempted to determine whether MCT2 overexpression suppresses cell cycle arrest and premature senescence in DNA damage-induced colorectal carcinoma cells. As shown in Figure 2, doxorubicin-treated colorectal carcinoma cells overexpressing MCT2 exhibited decreased G1 arrest (Fig. 2B) and improved survival (Fig. 2C), compared to doxorubicin-treated control LoVo cells.

ROS accumulation has been reported to induce senescence (10,19). Accordingly, we investigated whether MCT2 knockdown induces ROS generation. A fluorescent marker of cellular oxidant production, DCFH-DA (20), was used to measure the intracellular levels of ROS in LoVo cells. MCT2 knockdown resulted in dramatic ROS accumulation comparing to MCT1 knockdown (Fig. 3A and Supplementary Figure 2). Rescue of MCT2 levels via overexpression restored siMCT2-induced ROS to levels comparable to
those in controls ($P < 0.0001$), indicating that accumulation of ROS is directly
dependent on the MCT2 level (Fig. 3B, grey). Moreover, ROS production in response to
doxorubicin was significantly ($P = 0.0002$) decreased upon transient overexpression of
MCT2 (Fig. 3B, black). Our findings suggest that MCT2 induces chemoresistance by
suppressing DNA damage-induced ROS generation (21,22). Inhibition of ROS
accumulation was previously shown to protect against senescence (23). Thus, we
employed the ROS scavenger, NAC (24), to determine whether accumulation of ROS
plays a role in MCT2 knockdown-induced senescence. As shown in Figure 3C, pre-
incubation with 10 mM NAC prevented senescence in MCT2 knockdown cells,
indicating that senescence is induced as a consequence of ROS accumulation.

**MCT2 knockdown induces senescence-associated phenotypes in mitochondria and
nucleus**

To ascertain whether MCT2 knockdown-induced senescence is a general phenomenon,
we evaluated the senescence-inducing potential of siMCT2 in several colorectal cancer
cell lines (Fig. 4A). All the cancer cell lines examined, including those of the colon
(HCT8, HCT116, HT29, LoVo, and SW480) and stomach (MKN45 and MKN74),
displayed cellular enlargement and flattening as well as positivity for SA-β-Gal staining,
following knockdown of MCT2. Moreover, depletion of MCT2, but not MCT1, resulted in mitochondrial dysfunction (25), as evident from increased mitochondrial mass (Fig. 4Ba and Supplementary Figure 3), mitochondrial membrane potential (Fig. 4Bb), elevated mitochondrial ROS production (Fig. 4Bc), and dramatic decrease in the ATP level (Fig. 4Bd). Cells additionally exhibited senescence-associated nuclear properties, including elevation of PML bodies, γH2AX, and SAHF (Fig. 4C).

Autophagy is often induced as a survival pathway to tolerate metabolic stress. To determine whether autophagy is triggered during siMCT2-induced senescence, we evaluated autophagolysosome formation and GFP-LC3 translocation, in addition to SA-β-Gal staining. Accumulation of autophagic vacuoles was detected via fluorescence microscopic observation of GFP-LC3 translocation and Cyto-ID-stained autophagolysosomes. MCT2 knockdown cells presented green punctate structures, indicative of autophagy induction (Fig. 5). To further establish whether autophagy has a protective or toxic effect on siMCT2-transfected LoVo cells, we analyzed the outcomes of autophagy inhibition. Addition of various autophagy inhibitors (3-MA, bafilomycin and chloroquine) led to the efficient blockage of siMCT2-induced autophagosome formation, but had no significant effects on senescence or survival of siMCT2-transfected cells.
Combined antitumor effects of MCT2 knockdown and 5-FU on colorectal cancer cells in vitro

In view of the above results, we speculated that MCT2 knockdown may enhance the antitumor effect of 5-FU in colon cancer. An anchorage-dependent colony formation assay was performed to assess antitumor activity. Knockdown of MCT2 to 0.03 μg/ml 5-FU led to significant enhancement of inhibition of tumor cell colony formation in DLD1, HCT8, and LoVo cells (DLD1, 0.03 μg/ml 5-FU vs 0.03 μg/ml 5-FU + siMCT2, \(P =0.0002\); HCT8, 0.03 μg/ml 5-FU vs 0.03 μg/ml 5-FU + siMCT2, \(P =0.0002\); LoVo, 0.03 μg/ml 5-FU vs 0.03 μg/ml 5-FU + siMCT2, \(P =0.0004\)) (Fig. 6). Clearly, a combination of 0.03 μg/ml 5-FU and siMCT2 has a greater inhibitory effect on cell growth, compared with 5-FU or siMCT2 as single agents. Our findings suggest that siMCT2 sensitizes cancer cells to 5-FU.

Effect of MCT2 on growth of colorectal tumors in vivo

For unknown reason, we failed to make xenotransplant tumors in mice with LoVo (KRAS\(^{G13D}\)) cells. Therefore, to determine whether MCT2 knockdown also has an antitumor effect in vivo, we implanted DLD1 (KRAS\(^{G13D}\)) tumors in mice and assigned
the animals to four groups (n = 5 mice per treatment group), specifically, siControl, siMCT2, 5-FU and a combination of 5-FU and siMCT2 (Fig. 7A). Knockdown of MCT2 significantly reduced tumor volume, compared with siControl (P = 0.0264). A combination of 5-FU and siMCT2 induced a more significant reduction in tumor volume, compared with 5-FU (P = 0.0118) or siMCT2 (P = 0.0199) xenografts (Fig. 7B). Thus, it appears that MCT2 knockdown suppresses tumorigenicity and enhances the anti-tumor effect of 5-FU in CRC in vivo. MCT1 has additionally been implicated in tumor growth in cervix squamous carcinoma (3). Accordingly, we examined the levels of MCT1 and MCT2 in human colon and gastric cancer specimens (Fig. 7). Tumor-specific increases in MCT2, but not MCT1, were observed using Western blot analysis.
DISCUSSION

In this study, we have demonstrated that knockdown of MCT2 significantly suppresses the growth of cancer cells and enhances the antitumor activity of 5-FU in colorectal cancer cells. In a mouse model, growth of human colorectal xenograft tumors was significantly inhibited upon knockdown of MCT2, which was further suppressed in combination with 5-FU. To our knowledge, this is the first study to report a potential role of MCT2 as a molecular target in colorectal cancer. Previous studies of MCT2 expression in colorectal tumor samples have focused on the use of immunohistochemistry, and these studies have noted changes in the cellular location of MCT2 protein in tumor samples. Differently from MCT1 or MCT4, the immunostaining pattern of MCT2 was cytoplasmic (7,8). Experimental evidence of the presence of MCT2 in the mitochondrial membrane indicates its role in the mitochondria (4).

Permanent growth arrest or senescence is considered an important determinant of treatment outcomes in cancer therapy (26-29). Our experiments showed that MCT2 knockdown alone induces a senescence-like phenotype in a variety of cancer cell lines, including those established from the colon (HCT8, HCT116, HT29, DLD1 and LoVo) and stomach (MKN45, MKN74 and SNU668). MCT2 knockdown demonstrated a senescence-associated mitochondrial dysfunction (25), including increases in
mitochondrial mass and ROS production and decreases in the ATP level and mitochondrial membrane potential. These cells also displayed other nuclear phenotypes, including increased PML bodies (6), DNA damage-associated γH2AX foci (7), and SAHF (8).

Since MCT2 downregulation induces ROS accumulation in LoVo cells, we hypothesized that ROS is a critical mediator of MCT2 knockdown-induced senescence. ROS is a critical mediator in the induction of senescence (20, 30-32). The antioxidant, NAC, blocked ROS accumulation in response to MCT2 knockdown and protected cells from irreversible growth arrest. Therefore, we show here for the first time that ROS accumulation in response to MCT2 knockdown is responsible for causing mitochondrial dysfunction, cell cycle arrest and senescence.

Cellular senescence or irreversible growth arrest is associated with induction of tumor suppressors, such as p53, pRb, p16, p21 and p27 (16-18). These tumor suppressors act through triggering ROS accumulation, which, in turn, induces permanent growth arrest/senescence (23). Therefore, induction of cell cycle inhibitory tumor suppressors and accumulation of ROS may both contribute to irreversible growth arrest/senescence induced by MCT2 knockdown. Moreover, we found that cells displaying increased MCT2 expression are resistant to growth arrest and able to proliferate in the presence of...
the DNA-damaging agent, doxorubicin, that normally induces senescence. MCT1 has been previously implicated in colon (8) and cervical cancer (3). However, this is the first study showing that MCT2 is selectively overexpressed in colorectal tumors, but not MCT1. This finding is particularly significant, and supports the theory that MCT2 plays a role in escape from senescence-associated inherent tumor suppressor mechanism in colorectal cancer progression in vivo.
Disclosure of Potential Conflicts of Interest: No potential conflicts of interest were disclosed.

Grant support: This work was supported by grants from IN-SUNG Foundation (CA98641) to W.K. Kang and National Research Foundation of Korea (NRF-2011-0016973) to C. Park.
REFERENCES

7. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic

FIGURE LEGENDS

Figure 1. MCT2 is a senescence-associated molecular marker. A. RT-PCR analysis of MCT2 in doxorubicin (10 nM)-treated LoVo cells. B. siMCT2 concentration-dependent induction of senescence during colorectal cancer cell growth. C. siMCT2 concentration-dependent inhibition of LoVo cell growth. Expression of MCT2 in LoVo cells after transfection of siRNAs examined using RT-PCR. Cell percentage: viable cell number in test sample/viable cell number in control sample x 100. The number on the right indicates the percentage of SA-β-Gal-positive cells. After culturing for 5 days, cells were stained for SA-β-Gal. D. Exogenous expression of MCT2 (pMCT2) rescued cells from siMCT2-induced senescence. Cells were stained for SA-β-Gal activity 5 days after transfection.

Figure 2. MCT2 knockdown induces cell cycle arrest and senescence in colon cancer cells. A. Changes in the expression of cell cycle-related proteins following siRNA transfection. LoVo cells (2 x 10^5 cells/well in 6-well) were seeded prior to siRNA transfection, and harvested at the indicated times. Cell lysates containing 20 μg of protein were analyzed with SDS-PAGE/Western blotting using the antibodies shown on
the right. **B.** Rescue of doxorubicin-induced cell cycle arrest by MCT2 overexpression. MCT2- or vector-transfected LoVo cells were treated with doxorubicin (10 nM) for 5 days, fixed with 70% ethanol and incubated with RNase A and the DNA-intercalating dye, propidium iodide. Values represent mean ± SD (bars) of three independent experiments. **C.** Rescue of doxorubicin-induced growth inhibition by MCT2 overexpression. MCT2- or vector-transfected cells were treated with doxorubicin (10 nM) for 5 days. Values represent the mean of three independent experiments.

Figure 3. MCT2 knockdown induces senescence by increasing ROS accumulation. **A.** siMCT2 concentration-dependent increase in ROS accumulation of LoVo cells. DCF fluorescence (fold) indicates ROS generation. **B.** Overexpression of MCT2 dramatically suppressed ROS generation induced by MCT2 knockdown (*P* < 0.0001) or doxorubicin (*P* = 0.0002). ROS levels were analyzed using the fluorescent dye DCF-DA, 5 days after transfection with siRNA (20nM) or treatment of doxorubicin (10 nM). **C.** The antioxidant, NAC (10 mM), blocked siMCT2-induced senescence. LoVo cells were stained for SA-β-Gal 5 days after siRNA transfection (20 nM). The number indicates the percentage of SA-β-Gal-positive cells.
Figure 4. siMCT2 induces senescence in multiple cancer cell lines. A. HCT8, HCT116, HT29, LoVo, and SW480) and stomach (MKN45 and MKN74) cells were stained for SA-β-Gal 5 days after siRNA transfection (20 nM). B. Induction of senescence-associated markers after transfection of LoVo cells with the indicated siRNAs (20 nM). siC, siControl. a, Fluorescence of cells observed using flow cytometry after staining with MitoTracker Red, which permits estimation of the mitochondrial mass within cells. b, JC-1 fluorescence. Increase in green fluorescence indicates mitochondrial membrane depolarization. c, MitoSox and dihydroethidine fluorescence; indicators of mitochondrial superoxide level and therefore a measure of mitochondrial ROS. d, ATP content ATP content and ATP/AMP ratio in whole cells. C. Immunofluorescence of γH2AX, SAHF or PML bodies.

Figure 5. MCT2 knockdown triggers autophagy, but this process fails to protect cells from senescence. LoVo cells were transfected with siRNAs (20 nM, MCT2 and control) in the presence or absence of the autophagy inhibitors, 3-MA (0.2 mM), bafilomycin (10 nM) and chloroquine (10 μM). Cells were harvested four days after transfection, and assessed for autophagy and senescence. A. SA-β-Gal staining was performed to estimate senescence. The number at the bottom indicates the percentage of viable cells.
viable cell number in test sample/viable cell number in control (siControl, PBS) sample x 100. B. LoVo cells were co-transfected with GFP-LC3 and respective siRNAs in the presence or absence of each autophagy inhibitor. GFP-LC3 expression in cells was examined using fluorescence microscopy to detect translocation of LC3 from the cytosol to autophagic vacuoles. C. Cells were stained for autophagolysosome with Cyto-ID Green Detection Reagent (Enzo Life Sciences, NY) and observed using fluorescence and phase-contrast microscopy. The number indicates the percentage of autophagolysosome-positive cells.

Figure 6. Colony formation assay of colorectal cancer cells. Cells (200 cells/well in 6-well) were treated with 5 nM siMCT2 and/or 0.03 μg/ml 5-FU for 3 days and maintained at 37°C for 14 days, with fresh medium added after 7 days. Cells were stained with 0.1% crystal violet. P values are shown for 5-FU vs siMCT2+5-FU. Results are presented as means and 95% confidence intervals of two independent experiments performed in quadruplicate. All P values were calculated using the Student t test.

Figure 7. MCT2 expression correlates with tumorigenesis. A. MCT2 knockdown
decreases in vivo tumorigenesis. BALB/c nude mice were injected subcutaneously in the bilateral flank (two injections per mouse) with DLD1 cells. Two weeks after injection, mice (5 mice and 10 tumors per treatment group) were assigned into four groups, specifically, siControl, siMCT2, 5-FU and siMCT2+5-FU. Mice were treated twice per week with an intraperitoneal injection of 30 mg/kg 5-FU and/or once weekly intratumorally with 1 μg siMCT2 in effectene reagent. Tumor diameters were measured every 2 to 3 days with a digital caliper. A graphical representation of tumor volumes on different days after treatment is shown. The error bars represent 95% confidence intervals of the mean volume. P values were calculated using Student’s t test.

Representative DLD1 xenograft tumors resected on day 15 (five tumors per group) showing the difference in tumor volumes. B. MCT2 level is increased in human tumors. Western blot analysis of MCT1 and MCT2 in human tissues. Freshly frozen specimens of colon and gastric tumors (T) show increased MCT2 expression compared with corresponding normal tissues (N). Tubulin was used as a loading control.
Lee - Fig. 2

A) Western blot analysis of MCT2, ppRb, pRb, cyclin A, cdc2, E2F-1, p21, p27, and β-actin in siControl and siMCT2-treated cells. The cells were treated with Doxo and pMCT2 for 0D, 1D, 3D, and 5D.

B) Graph showing the percentage of cells in G1, S, and G2/M phases. The cells were treated with Doxo and pMCT2 for 0D, 1D, 3D, and 5D. The data show a significant increase in G2/M phase cells in the siMCT2 group compared to the siControl group.

C) Graph showing the percentage of cells in the G1 phase. The cells were treated with Doxo and pMCT2 for 0D, 1D, 3D, and 5D. The data show a significant increase in G1 phase cells in the siMCT2 group compared to the siControl group.

Statistical analysis: P = 0.001.
A. Table showing the percentage of cells with phosphorylated H2AX for different cell lines and siRNA conditions. The control group shows 0% phosphorylated H2AX for all cell lines, while the MCT2 siRNA group shows a range of percentages, with the highest being 94±2% for HCT8 and the lowest being 0% for LoVo.

B. Images showing the mitochondrial membrane potential (a) and DNA damage (b) for siControl and MCT2 siRNA conditions. The JC-1 (Green) and MitoSox images show a decrease in red fluorescence (indicating loss of mitochondrial membrane potential) and an increase in green fluorescence (indicating DNA damage) in the MCT2 siRNA group compared to the control group.

C. Images showing PML and SAHF nuclear condensation under siControl and MCT2 siRNA conditions. The PML images show more nuclear condensation in the MCT2 siRNA group, while the SAHF images show a decrease in nuclear condensation.

D. Graphs showing ATP levels and ATP/AMP ratios for different siRNA conditions. The ATP levels are shown for siControl and MCT2 siRNA, with a significant decrease in ATP levels for the MCT2 siRNA group. The ATP/AMP ratio is also shown, with a significant decrease in the MCT2 siRNA group compared to the control group.

P values:
- ATP levels: P = 0.0070
- ATP/AMP ratio: P = 0.0272
<table>
<thead>
<tr>
<th></th>
<th>siControl</th>
<th>siMCT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bafilomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th></th>
<th>SA-β-Gal (x100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>100.0±7.9%</td>
</tr>
<tr>
<td>3-MA</td>
<td>74.7±3.2%</td>
</tr>
<tr>
<td>Bafilomycin</td>
<td>68.8±3.8%</td>
</tr>
<tr>
<td>CQ</td>
<td>84.7±4.2%</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>GFP-LC3 (x400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>22.9±1.9%</td>
</tr>
<tr>
<td>3-MA</td>
<td>25.9±2.1%</td>
</tr>
<tr>
<td>Bafilomycin</td>
<td>23.3±1.2%</td>
</tr>
<tr>
<td>CQ</td>
<td>29.2±1.6%</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>LC3 (x400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>5.6±4.4%</td>
</tr>
<tr>
<td>3-MA</td>
<td>5.7±2.8%</td>
</tr>
<tr>
<td>Bafilomycin</td>
<td>7.1±1.1%</td>
</tr>
<tr>
<td>CQ</td>
<td>3.5±2.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LC3 (x400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>55.4±18.4%</td>
</tr>
<tr>
<td>3-MA</td>
<td>8.9±4.6%</td>
</tr>
<tr>
<td>Bafilomycin</td>
<td>8.5±5.8%</td>
</tr>
<tr>
<td>CQ</td>
<td>4.8±3.4%</td>
</tr>
</tbody>
</table>
Lee - Fig. 6

DLD1

![Graph showing colony formation with 5-FU treatment](image)

HCT8

![Graph showing colony formation with 5-FU treatment](image)

LoVo

![Graph showing colony formation with 5-FU treatment](image)

5-FU

![Chemical structure of 5-FU](image)
A

Graph showing tumor growth over time with different treatments:
- **siControl** (open circles)
- **5-FU** (square dots)
- **siMCT2** (solid circles)
- **5-FU+siMCT2** (triangle dots)

B

Table showing expression levels of MCT1, MCT2, and Tubulin in Colon and Gastric Cancer:

<table>
<thead>
<tr>
<th></th>
<th>Colon Cancer</th>
<th>Gastric Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Tumor</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MCT1</td>
<td>![MCT1 Image]</td>
<td>![MCT1 Image]</td>
</tr>
<tr>
<td>MCT2</td>
<td>![MCT2 Image]</td>
<td>![MCT2 Image]</td>
</tr>
<tr>
<td>Tubulin</td>
<td>![Tubulin Image]</td>
<td>![Tubulin Image]</td>
</tr>
</tbody>
</table>
Molecular Cancer Therapeutics

Inhibition of monocarboxylate transporter 2 induces senescence-associated mitochondrial dysfunction and suppresses progression of colorectal malignancies in vivo

Inkyoung Lee, Sook J Lee, Won Ki Kang, et al.

Mol Cancer Ther Published OnlineFirst September 10, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-0488

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2012/09/10/1535-7163.MCT-12-0488.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.