Targeting the PI3K/mTOR Axis, Alone and in Combination with Autophagy Blockade, for the Treatment of Malignant Peripheral Nerve Sheath Tumors

Markus P. Ghadimi1,4, Gonzalo Lopez2,4,5, Keila E. Torres1,4, Roman Belousov1,4, Eric D. Young1,4, Jeffery Liu1,4, Kari J. Brewer2,4,5, Aviad Hoffman1,4, Kristelle Lusby1,4, Alexander J. Lazar3, Raphael E. Pollock1,4, and Dina Lev2,4,5

Abstract

There is a critical need for efficacious therapeutic strategies to improve the outcome of patients afflicted by malignant peripheral nerve sheath tumors (MPNST). Multiple lines of evidence suggest a role for deregulated phosphoinositide 3-kinase (PI3K)/mTOR signaling in MPNST, making this axis an attractive target for therapeutic manipulation. On the basis of previous observations obtained from in vitro experimentation, here we aimed to assess the effects of PI3K/mTOR blockade on MPNST growth in vivo. The anti-MPNST impact of XL765, a dual PI3K/mTOR inhibitor currently being evaluated in human cancer clinical trials, was tested in two human MPNST xenograft models (STS26T and MPNST724) and an experimental model of pulmonary metastasis (STS26T). XL765 abrogated human MPNST local and metastatic growth in severe combined immunodeficient mice. Notably, this therapeutic approach failed to induce apoptosis in MPNST cells but rather resulted in marked productive autophagy. Importantly, genetic and pharmacologic autophagy blockade reversed apoptotic resistance and resulted in significant PI3K/mTOR inhibition-induced MPNST cell death. The addition of the autophagy inhibitor, chloroquine, to the therapeutic regimen of MPNST xenografts after pretreatment with XL765 resulted in superior antitumor effects as compared with either agent alone. Together, preclinical studies described here expand our previous findings and suggest that PI3K/mTOR inhibition alone and (most importantly) in combination with autophagy blockade may comprise a novel and efficacious therapy for patients harboring MPNST.

Mol Cancer Ther; 11(8); 1–12. ©2012 AACR.

Introduction

Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive and frequently fatal soft tissue sarcoma histologic subtype exhibiting a predilection for development in young adults (1, 2). Neurofibromatosis type I (NF1) is a well-established MPNST risk factor (3, 4). Exhibiting marked chemo- and radiotherapy resistance, the prospects for MPNST cure are currently heavily dependent on the ability to achieve complete tumor extirpation, which frequently necessitates extensive and highly debilitating surgical procedures (1, 5, 6). However, even in cases where complete surgical resection is initially achievable, local and systemic relapses are a common subsequent and devastating consequence (1–6). The 5-year MPNST patient survival rate of less than 40% points to the critical need to identify and implement improved therapeutic strategies (1–6).

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling axis has received much attention in recent years given its potential role in cancer (7, 8). This critical pathway acts as a convergence point for a multitude of upstream signals and in turn stimulates the activity of numerous downstream effectors, thereby mediating enhanced cellular survival, growth, protein synthesis, motility, and other functions of protumorigenic impact (7). Consequently, it is not surprising that deregulation and aberrant activation of the PI3K/AKT/mTOR signaling axis componentry is a common molecular event in a wide range of malignancies (8). These insights have led to the development of novel therapies targeting single (e.g., mTORC1 inhibitors) or multiple (e.g., dual PI3K/mTOR inhibitors) constituents of this pathway; several are currently in clinical evaluation (9, 10). Multiple lines of evidence strongly support a role for deregulated PI3K/AKT/mTOR signaling in MPNST (11). Studies from our laboratory have recently shown enhanced expression of...
the activated AKT and mTOR downstream effectors S6RP and 4EBP1 in a relatively large cohort of human MPNST specimens as well as in human tumor derived cell lines (12). Aberrant PI3K/AKT/mTOR signaling in MPNST is (at least in part) mediated by the loss of neurofibromin (Nf1) function, the critical molecular event responsible for NF1, as recently showed in genetically engineered mouse models (13). Loss of function Nf1 mutations have also been identified in a portion of sporadic MPNSTs (14). The Nf1 protein is a known RAS-GAP; consequently, Nf1 loss results in constitutive RAS activation leading to enhanced downstream PI3K/AKT/mTOR signaling. Other MPNST-associated deregulations possibly contributing to the noted constitutive activation of this axis include the common overexpression and aberrant signaling of multiple upstream tyrosine kinase receptors [e.g., EGF receptor (EGFR), MET, platelet-derived growth factor receptor, and insulin-like growth factor-R1 and others noted in MPNST (refs. 1, 11, 12, 15, 16)] as well as loss of the PI3K inhibitor, PTEN, which has recently been shown as contributory to MPNST malignant transformation (17). These insights highlight the relevance of the PI3K/AKT/mTOR axis as a potential novel target for anti-MPNST therapy.

Preclinical studies using rapamycin (an mTORC1 complex inhibitor) or its derivatives have yielded promising results. MPNST cells isolated from NF1 patients were found to be highly sensitive to rapamycin, which was also found to effectively abrogate tumor growth in MPNST genetically engineered mouse models (13). Furthermore, the rapamycin analogue RAD001 inhibited the growth of human NFI-associated and sporadic MPNST cell lines; RAD001 treatment of human MPNST xenografts significantly delayed tumor growth (18). These findings form the rationale for several currently ongoing clinical trials to assess the effect of such inhibitors (as monotherapy or in combination with conventional chemotherapy) in patients with nonoperable NFI-associated neurofibromas and/or those with advanced MPNST (19). However, accumulating data from other solid malignancies suggest that the clinical effects of mTORC1 inhibitors are at best cytostatic, resulting in transient tumor stabilization with evidence of regrowth during and/or after treatment discontinuation (13, 18). Identifying additional molecular targets for inhibition in combination with mTORC1 blockade is critical if enhanced antitumor effects are to result. Taking into account that PI3K/AKT protumorigenic signals are mediated through multiple downstream effectors (i.e., not exclusively via mTOR; refs. 7, 8, 11) and the recently identified feedback loops by which mTORC1 inhibition further activates PI3K/AKT (20, 21) provides a sound rationale for the development of dual PI3K/mTOR inhibitors (12, 22). A recent study from our laboratory has identified enhanced anti-MPNST effects for one such inhibitor, PI-103, when tested in vitro (12). However, to the best of our knowledge, preclinical testing of such inhibitors in vivo, a critical step before the conduct of human clinical trials, has yet to be reported.

Interestingly, our initial in vitro based studies using transmission electron microscopy (TEM) image analyses and LC3 Western blotting identified PI-103 to induce the accumulation of autophagosomes in MPNST cells (12). Notably, this morphologic change might represent either enhanced autophagic flux or halted, blocked macroautophagy (designated herein autophagy; refs. 23, 24); multiple experiments are needed to differentiate between these 2 potential consequences (23). Recent published data suggest that PI3K/mTOR blockade potentially induce the former, that is, enhanced productive autophagy, in preclinical models of lung and pancreatic cancer (25, 26); whether this is the case in MPNST remains to be elucidated. Autophagy is a multistep catabolic process characterized by the appearance of cytoplasmic vacuoles, leading to eventual self-digestion of cellular organelles and other constituents within autolysosomes (24). While initially described as a mechanism of cell death (type II; ref. 27), a large body of evidence supports a role for drug-induced autophagy in tumor cell survival, thereby a potential mechanism of therapeutic resistance (28). These effects might be tumor type-, compound-, or even context-dependent (29). Unraveling the role of autophagy in a particular therapeutic context is of significant clinical relevance.

The goal of the current study was to bridge several knowledge gaps noted earlier and (i) to assess the antitumor effect of dual PI3K/mTOR blockade on the local and metastatic growth of MPNST xenografts; (ii) to determine whether PI3K/mTOR inhibition results in enhanced productive autophagy or autophagy blockade in MPNST cells; and (iii) if the former is the case, to assess the role of drug-induced autophagy in therapeutic response. XL765 (Sanofi-Aventis, Vitry/Seine, France), a highly potent PI3K/mTOR inhibitor, was specifically selected for testing; this compound is now undergoing clinical evaluation in a broad range of other cancer types (30; 19).

Materials and Methods

Cell lines and reagents

MPNST cell lines included the NFI-associated: S462 (provided by Dr. L. Kluwe, University Hospital Eppendorf, Hamburg, Germany), ST88-14 (provided by Dr. J. Fletcher, Brigham and Women’s Hospital, Boston, MA), MPNST642 isolated in our laboratory (31), and the sporadic MPNST cell lines STS26T (provided by Dr. S. Porcelli, Albert Einstein College of Medicine, Bronx, NY), and MPNST724 (provided by Dr. J. Fletcher); these were propagated and maintained as previously described (32). We acquired these cell lines between 2008 and 2011; all were authenticated using DNA fingerprinting (short tandem repeat) as previously described (31), confirming that no cross contamination has occurred. Cell lines used were refingerprinted, as
per earlier, during their use for the current study. Compounds used in our studies included the small-molecule dual PI3K/mTOR inhibitor, XL765 (provided by Exelixis and Sanofi-Aventis), the dual PI3K/mTOR inhibitor, PI-103 (Tocris), and the mTORC1 inhibitor rapamycin (Calbiochem). XL765 chemical structure will be described in an article currently in preparation by Sanofi (personal communication), structure of other

Figure 1. XL765 blocks PI3K/mTOR signaling in MPNST cells, resulting in marked growth inhibition and G1 cell-cycle arrest. A, chemical structures of compounds used in the study. B, XL765 inhibits AKT/mTOR activation (protein expression levels were determined via densitometry; Western blot analyses). C, XL765 (96 hours) induces a dose-dependent decrease in MPNST cell growth (MTS assays). A marked decrease in colony-forming capacity can also be observed.
compounds is provided in Fig. 1A. Further information can be found in Supplementary Data.

Cellular growth and autophagy-related assays
Experiments were conducted in multiple cell lines and with either or/both inhibitors as previously described (33–35). Assessing autophagy mandates the conduct of multiple complementary assays evaluating both autophagosome accumulation as well as autophagic flux. Studies conducted here followed recently published guidelines (23) and were conducted as previously described (12, 31). Transfection procedures were carried out as previously described (30). Additional information can be found in Supplementary Data.

In vivo xenograft therapeutic experiments
All animal procedures and care were approved by the MD Anderson Cancer Center Institutional Animal Care and Usage Committee. Animals received humane care as per the Animal Welfare Act and the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments were conducted as previously described (31). Detailed information about animal models, therapeutic regimens, schedule, and doses can be found in Supplementary Data.

Results

The dual PI3K/mTOR inhibitor XL765 inhibits MPNST cell growth
We have previously shown that PI3K/mTOR blockade exerts marked anti-MPNST effects in vitro using the experimental inhibitor PI-103 (12). Seeking to expand these initial studies and evaluate the impact of this therapeutic strategy on MPNST local and metastatic growth in vivo, we opted to test the effect of a novel PI3K/mTOR inhibitor, XL765, currently in human clinical trials (19). First, we confirmed the anti-MPNST effects of this compound on cultured human MPNST cells. Dose range selected was in accordance with previously published preclinical studies (26, 36) and as per company’s recommendation. XL765 was found to induce a marked dose-dependent decrease in the phosphorylation of AKT and the mTOR downstream targets 4EBP1 and S6K (Fig. 1B). MPNST cell treatment with increasing XL765 doses (0.25–20 μmol/L/96 hours) induced significant growth inhibition (Fig. 1B); extrapolated XL765 IC50 concentrations were found to be S462 = 0.81 μmol/L, MPNST724 = 0.86 μmol/L, STS26T = 1.75 μmol/L, MPNST642 = 1.93 μmol/L, and ST88 = 2.49 μmol/L. Similarly, a XL765 dose-dependent decrease in MPNST cell colony-forming capacity was noted (Fig. 1C). Concurring with our previous PI-103 studies, XL765 treatment (48 hours) resulted in G1 cell-cycle arrest in MPNST cells (Fig. 1D). Of note, no evidence for increased sub-G1 cell populations or pronounced XL765-induced apoptotic cell death was observed (Fig. 1D). Together, these findings confirm that XL765 abrogates MPNST cell growth and justify further testing the effects of this compound in experimental models in vivo.

XL765 abrogates local and metastatic MPNST xenograft growth
To determine whether the in vitro effects of PI3K/mTOR blockade could be recapitulated in vivo, we conducted a series of therapeutic experiments using xenograft mouse models. A XL765 dose of 30 mg/kg twice a day given orally was selected (as per manufacturer recommendation) based on previous toxicity and pharmacodynamic studies (exelixis.com). First, we investigated the effect of XL765 on MPNST724 xenograft growth (Fig. 2A); therapy was initiated after tumor establishment (4–5 mm in larger dimension; control and treatment groups included 7 and 8 mice, respectively). This treatment regimen was well tolerated; no significant weight loss was observed. XL765 markedly inhibited tumor growth; average tumor size at study termination was 151 mm3 (±57) for treated group as compared with 1,015 mm3 (±151) for control group (P < 0.0000001). Moreover, treatment with XL765 significantly reduced tumor weight compared with control (P < 0.00001); average tumor weights at study termination were 1.41 (±0.59) and 0.15 g (±0.05) in control and XL765 groups, respectively (Fig. 2A). To confirm that XL765 blocked PI3K and mTOR activity in vivo, immunostainings for p-AKT, p-4EBP1, and p-SRP were carried out. Figure 2A shows the marked inhibition of the pathway components in the XL765-treated group. Ki67 immunostaining confirmed a pronounced decrease in tumor cell proliferation. Furthermore, a marked decrease in the
number of large blood vessels was noted, confirming the previously reported (37) effect of PI3K/mTOR inhibitors on tumor angiogenesis.

To show that XL765 anti-MPNST effects were not MPNST724 xenograft-specific, we also used the STS26T model to assess therapeutic effects (control and treatment groups included 7 and 8 mice, respectively; Fig. 2B). This treatment regimen was well tolerated; no significant weight loss was observed. At the time point mandating control mouse euthanasia, average volumes of vehicle-treated tumors were 1,243 ± 619 mm³ as compared with 119 ± 93 mm³ for the XL765 treated tumors (P < 0.001). Average tumor weights at study termination were 1.13 (±0.43) and 0.35 g (±0.3) in control and XL765 groups, respectively (P < 0.05; Fig. 2B). Immunohistochemical analyses concurred with the findings for MPNST724-treated xenografts as described earlier (28).

Finally, to evaluate whether XL765 resulted in pulmonary metastatic outgrowth inhibition, we used the STS26T experimental MPNST lung metastasis model (control and treatment groups included 7 and 8 mice, respectively). Treatment was initiated 10 days after tail vein injection (microscopic lung metastases can usually be found at this time), and continued for approximately 3 weeks, a time point when a portion of control mice exhibited poor body condition and/or decreased body weight mandating euthanasia (Fig. 2C). Of note, no significant change in mouse well being or body weight was noted in XL765-treated mice. Lungs of all control mice (n = 8) exhibited large and diffuse metastases whereas macroscopic lesions were observed in only 2 of the 8 XL765-treated mice. These effects were further reflected in marked differences in average lung weight noted comparing control (0.3 ± 0.03 g) and treated mice (0.19 ± 0.05 g; P < 0.0001). Macroscopic findings were also confirmed on hematoxylin and eosin (H&E) staining, showing large pulmonary tumor deposits in control and only small microscopic lesions in XL765-treated mice. In summary, these data align with our previous cell culture–based findings, showing that XL765 markedly inhibits the local and metastatic growth of MPNST in vivo.

PI3K/mTOR inhibitors induce productive autophagy in MPNST cells

We have previously shown that PI3K/mTOR blockade via PI-103 induces autophagosome accumulation in MPNST cells (12), so we wanted to determine whether a similar response was observed with XL765 treatment and whether this effect represented enhanced (productive) or blocked autophagy. TEM revealed a large number of autophagosomes at different maturational stages in MPNST cells treated with XL765 but no apparent signs of apoptosis (Fig. 3A). Acridine-orange staining showed increased acidic vesicular organelles in XL765-treated cells as was further confirmed via fluorescence-activated cell-sorting (FACS) analysis (Fig. 3B). Increased LC3 conversion and LC3-II expression (normalized to actin) were also noted in response to treatment (Fig. 3C). In that these experimental results could represent either productive autophagy or blocked, reduced autophagosome turnover (23), several additional experiments were conducted to discriminate between these possibilities. Cells were pre-treated (1 hour) with the autophagy inhibitors bafilomycin A1 (1 nmol/L) or chloroquine (5 μmol/L) before PI3K/mTOR blockade (XL765 or PI-103; 24 hours). Chloroquine and bafilomycin A1 block the final steps of the autophagy process, that is, prevent cargo degradation through neutralizing lysosomal pH and/or autophagosome:lysosome fusion (23); consequently, increase in LC3-II can be observed in response to these inhibitors representing autophagosome accumulation. Treatment with XL765 or PI-103 produced increased LC3B-II expression even in the presence of these lysosomal inhibitors, providing evidence of efficient autophagic flux (Fig. 4A). Furthermore, cells stably transduced to express GFP-LC3 exhibited increased GFP puncta in response to PI3K/mTOR blockade (Fig. 4B). Western blot analyses showed increased GFP cleavage following XL765/PI-103 that was inhibited by pretreatment with chloroquine or bafilomycin, further supporting PI3K/mTOR blockade–induced productive autophagy (Fig. 4C).

mTORC1 is known to be a master autophagy regulator, mediating blockade of this process through phosphorylation of ULK1 (38). To determine whether PI3K/mTOR inhibition-induced autophagy noted in MPNST cells is solely dependent on mTORC1 and/or ULK1, the latter was knocked down in GFP-LC3–transduced MPNST cells using target-specific siRNA constructs; nontargeting siRNA was used as control. Cells were treated with rapamycin or XL765. As depicted in Fig. 4D, ULK1 knockdown abrogated rapamycin-induced, but not XL765-induced puncta formation. Similarly, ULK1 knockdown blocked GFP-LC3 cleavage and free GFP expression as induced by rapamycin but not by XL765. Together, these data suggest that PI3K/mTOR blockade induces productive autophagy in MPNST cells. This effect is probably regulated by multiple molecular mechanisms and is not exclusively dependent on mTORC1/ULK1 inhibition.

Autophagy blockade enhances PI3K/mTOR inhibition–induced apoptosis

Next, we wanted to determine the impact of PI3K/mTOR blockade–induced autophagy on therapeutic response. Autophagy inhibition was accomplished by using complementary genetic and pharmacologic manipulations. Knockdown of the autophagy constituent, beclin and ATG7, was conducted using target-specific siRNAs and cells were treated with PI3K/mTOR inhibitors (Fig. 5A and B). Western blot analyses confirmed that the knockdown of these genes blocked XL765-induced autophagy. Most importantly, both beclin and ATG7 knockdown resulted in pronounced MPNST cell apoptosis in response to PI3K/mTOR inhibition. Similar effects were noted after pharmacologic autophagy blockade (using bafilomycin or chloroquine; Fig. 5C and D).
Taken together, these data suggest that PI3K/mTOR inhibition-induced autophagy serves as a survival mechanism in MPNST cells, enabling them to escape from the proapoptotic effects of these compounds.

To further determine whether autophagy blockade can perhaps enhance the anti-MPNST effects of PI3K/mTOR inhibitors in vivo, we tested the impact of the XL765/chloroquine combination on the growth of STS26T xenografts (Fig. 6A). The study was designed to possibly recapitulate a clinically relevant scenario as following: once palpable tumors (~4–5 mm) were identified, all mice were first treated with XL765 alone for 10 days, a time point where a small increase in average tumor size (to ~6 mm) was noted; at this juncture mice were then randomly divided into 4 treatment arms: (i) control (vehicle only; 7 mice); (ii) XL765 alone (7 mice); (iii) chloroquine alone (7 mice); and, (iv) XL765 + chloroquine (8 mice). No major side effects were noted throughout the study and it was
terminated when mice in control group mandated euthanasia. Average tumor volumes at the end of the study were control: 918 mm3 (C_6^{255}), XL765: 510 mm3 (C_6^{211}), chloroquine: 696 mm3 (C_6^{286}), and combination: 191 mm3 (C_6^{74}). While no statistically significant difference was found between the chloroquine and control arms ($P = 0.15$), the differences in tumor volume between XL765 and control, combination and control, and combination and XL765 arms were significant ($P = 0.007$, $P < 0.00001$, and $P = 0.0014$, respectively; Fig. 6A). Furthermore, combination-treated tumors exhibited a significantly ($P < 0.001$) lower average tumor weight at study termination than control (Fig. 6A). Finally, a pronounced decrease in tumor cell proliferation (Ki67) and increase in apoptosis (cleaved caspase-3) were noted in combination-treated xenografts based on immunostaining (Fig. 6B). Taken together, these data recapitulate the observations made in vitro and show that autophagy blockade enhances the anti-MPNST treatment effects of XL765. These findings have potential significant clinical implications.

Discussion

Novel therapeutic strategies that can efficaciously target MPNST are desperately needed to improve the currently unfavorable outcome of afflicted patients. Multiple studies have provided compelling evidence of a critical role for aberrant PI3K/mTOR pathway signaling in these aggressive malignancies (11), supporting the evaluation of compounds targeting this axis (12). Studies here complement our previous cell culture–based observations (12), showing that dual PI3K/mTOR blockade via the clinically relevant XL765 markedly inhibits the local and metastatic growth of human MPNST xenografts. This compound is an orally bioavailable, potent, and selective class-I PI3K/mTORC1/mTORC2 inhibitor previously shown to exhibit broad anticancer efficacy (39). An initial human phase-I XL765 clinical study has shown favorable toxicity and tolerability profiles with no established maximally tolerated dose (39). Several clinical trials (19) are currently ongoing, including evaluation of XL765 as a single agent (for patients with solid tumors or recurrent glioblastoma) as well as in combination with other compounds. Our results here support the development of XL765-based therapeutic strategies for testing in human MPNST clinical trials.

However, it is critical to note that the anti-MPNST effects secondary to PI3K/mTOR blockade reflected growth arrest rather than apoptotic cell death. These effects were found using either of the tested inhibitors, PI-103 and XL765, and are in alignment with the effects of PI3K/mTOR dual inhibitors in several different tumor systems (e.g., lung cancer and glioblastoma; refs. 25, 40). Taking into account the established role for aberrant PI3K/mTOR pathway signaling in these aggressive malignancies (11), supporting the evaluation of compounds targeting this axis (12). Studies here complement our previous cell culture–based observations (12), showing that dual PI3K/mTOR blockade via the clinically relevant XL765 markedly inhibits the local and metastatic growth of human MPNST xenografts. This compound is an orally bioavailable, potent, and selective class-I PI3K/mTORC1/mTORC2 inhibitor previously shown to exhibit broad anticancer efficacy (39). An initial human phase-I XL765 clinical study has shown favorable toxicity and tolerability profiles with no established maximally tolerated dose (39). Several clinical trials (19) are currently ongoing, including evaluation of XL765 as a single agent (for patients with solid tumors or recurrent glioblastoma) as well as in combination with other compounds. Our results here support the development of XL765-based therapeutic strategies for testing in human MPNST clinical trials.

However, it is critical to note that the anti-MPNST effects secondary to PI3K/mTOR blockade reflected growth arrest rather than apoptotic cell death. These effects were found using either of the tested inhibitors, PI-103 and XL765, and are in alignment with the effects of PI3K/mTOR dual inhibitors in several different tumor systems (e.g., lung cancer and glioblastoma; refs. 25, 40). Taking into account the established role...
of PI3K/AKT signaling in cellular survival, negating apoptosis directly through phosphorylation of apoptosis-associated downstream effectors or indirectly by modulating the transcription of critical pro- and antisurvival molecules (41) would suggest that a marked proapoptotic response secondary to the inhibition of this axis might be expected. However, as previously found (12) and further exemplified in our study, apoptosis is not necessarily the primary response to PI3K/AKT inhibition, especially in cancer cells where marked apoptosis suppression can be the consequence of multiple genetic alterations. While targeting the highly proliferative state of locally advanced and/or metastatic MPNST is an attractive therapeutic stratagem, it might not be sufficient for disease eradication. Given that the anti-MPNST effects of PI3K/mTOR inhibitors are cytostatic rather than cytotoxic diminishes enthusiasm for their use as single agents. Consequently, identifying PI3K/mTOR blockade–based therapeutic combinations having superior anti-MPNST efficacy appears highly warranted. Examples of recent preclinical investigations of such an approach include combining dual PI3K/mTOR inhibitors with conventional chemotherapy, TRAIL, and EGFR blockade show enhanced effects as compared with results when agents were used alone (42, 43). While not yet evaluated in MPNST, such a strategy may have particular relevance in this context in that EGFR deregulation commonly occurs in these malignancies and is demonstrably contributory to their tumorigenic phenotype (1, 11, 16). EGFR blockade alone appears to exert only modest anti-MPNST effects as observed in the preclinical MPNST setting (11), and a phase II clinical trial failed to show any objective responses to the EGFR inhibitor Tarceva in patients with relapsed MPNST (11). However, a recent study of combined EGFR blockade with mTOR inhibition resulted in additive antiproliferative, proapoptotic effects in MPNST cells in vitro and in vivo (18). On the basis of these findings, evaluating the impact of dual PI3K/mTOR inhibitors in combination

Figure 4. PI3K/mTOR inhibition induces productive autophagy in MPNST cells. A, cells were pretreated (1 hour) with the autophagy inhibitors bafilomycin A1 (BFA; 1 nmol/L) or chloroquine (CQ; 5 μmol/L) before PI3K/mTOR blockade (24 hours). Additional increased LC3-II expression in response to PI3K/mTOR blockade was noted when combined with these lysosomal inhibitors. B, cells stably transduced to express GFP-LC3 exhibited increased GFP puncta in response to PI3K/mTOR blockade treatment. C, free GFP expression was found in response to PI3K/mTOR inhibition and was blocked by pretreatment with autophagy inhibitors. D, MPNST724 GFP-LC3 cells were transiently transfected with ULK1 siRNA (20 nmol/L pool); nontargeting constructs were used as controls. ULK1 knockdown blocked rapamycin-induced GFP puncta formation but not XL765-induced puncta. These results are further reflected in the Western blot analyses where ULK1 knockdown abrogated rapamycin-induced GFP-LC3 cleavage but not XL765-induced free GFP expression.
with EGFR blockade might therefore be useful for identifying potential therapies for MPNST.

Searching for strategies that can enhance the anti-MPNST effects of dual PI3K/mTOR inhibitors, we sought to expand on our previous observation that these compounds induce the accumulation of autophagosomes in MPNST cells. The current study suggests that the PI3K/mTOR inhibitors induce productive autophagy in MPNST cells, in accordance with effects previously observed in other tumor models in response to such compounds (25, 26). mTOR is a master regulator of autophagy, and mTORC1 activation blocks this process through the phosphorylation of its downstream target ULK (38). Thus, it is not surprising that mTOR blockade (e.g., using rapamycin) leads to autophagy induction. While PI3K/AKT inhibition can result in autophagy through downregulation of mTORC1 activity, additional mTOR-independent mechanisms have been suggested, including PI3K/AKT inhibition-induced activation of FoxO proteins (44, 45) as well as increased mitochondrial superoxide and cellular ROS signals (46). Our data further support these findings, showing that while ULK knockdown is sufficient to abrogate rapamycin-induced autophagy in MPNST cells, this genetic manipulation does not completely block XL765-induced autophagy in these cells.

Autophagy induced by the blockade of the PI3K/AKT axis has been identified in several studies as a mechanism of cell death, whereas others have provided data showing the role of this process in therapeutic resistance. Recent examples of the former include the finding that PI3K/AKT inhibition increases radiosensitivity by augmenting autophagic response (47), and that combining the PI3K/mTOR inhibitor BEZ235 with the mTORC1 inhibitor temsirolimus results in cell death secondary to massive autophagic response (48). Conversely, autophagy blockade has been identified as enhancing the proapoptotic effects of dual PI3K/mTOR inhibitors in preclinical models of lung and pancreatic cancer (25, 26). Our data suggest that in MPNST, as in the latter examples discussed earlier, PI3K/mTOR blockade–induced autophagy acts as a mechanism of apoptotic resistance and that combining PI3K/mTOR inhibitors with autophagy blockers can result in marked cytotoxicity in vitro and in vivo. These results are similar to our recent findings using a different anti-MPNST therapeutic strategy, HDAC inhibition, where autophagy blockade was found to augment antitumor effects (31). Taken together, these findings possibly suggest that MPNST commonly uses autophagy to avoid the cytotoxic effects of therapeutic agents. The observation that the lysosomotropic agent chloroquine enhances the proapoptotic effects of XL765 is of potential major translational relevance. Chloroquine is currently being evaluated in human clinical trials as a single agent or in combination with other therapies (19); initial studies already have confirmed its safety (49). The development of an MPNST clinical trial to test the effect PI3K/mTOR inhibitors in combination with chloroquine is supported by our study.

Figure 5. Autophagy blockade sensitizes MPNST cells to the proapoptotic effects of PI3K/mTOR inhibitors in vitro. A, beclin1 siRNA (20 nmol/L pool) knockdown was confirmed via Western blot and autophagy blockade was validated using LC3-II Western blot. Enhanced apoptosis in response to XL765 (5 μmol/L per 24 h) was determined via PARP cleavage and Annexin-V/PI FACS analyses. B, similar effects were noted after ATG7 knockdown (confirmed by reverse transcription). C and D, pharmacologic autophagy inhibition was achieved using chloroquine (CQ) and bafilomycin (BFA). None of the compounds alone induced apoptotic cell death. However, apoptosis was noticed after CQ (5 μmol/L) or BFA (1 nmol/L) pretreatment of cells (1 hour) followed by PI3K/mTOR blockade for 24 hours.
However, it is noteworthy that chloroquine and other compounds within its class are not specific autophagy blockers and do exhibit known off-target effects (50). Much effort is currently devoted to the development of autophagy-specific inhibitors; when available, future studies evaluating the anti-MPNST effects of these novel compounds in combination with PI3K/mTOR inhibitors might be warranted.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M.P. Ghadimi, G. Lopez, K.E. Torres, A.J.F. Lazar, D. Lev
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.P. Ghadimi, G. Lopez, E.D. Young, K.J. Brewer, K. Lusby, A.J.F. Lazar, D. Lev
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.P. Ghadimi, G. Lopez, K. Lusby, A.J.F. Lazar, R.E. Pollock, D. Lev
Writing, review, and/or revision of the manuscript: M.P. Ghadimi, G. Lopez, K.E. Torres, E.D. Young, A. Hoffman, K. Lusby, R.E. Pollock, D. Lev

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M.P. Ghadimi, G. Lopez, R. Belousov, D. Lev

Study supervision: M.P. Ghadimi, G. Lopez, D. Lev

Acknowledgments

The authors thank Dr. Douglas Laird (Exelixis) and Drs. Coumaran Egle and Sukhvinder Singh Sidhu (Sanofi-Aventis) for kindly providing XL765. They also thank Dr. Juan Fueyo-Margareto for providing the GFP-LC3 construct, Kenneth Dunner, Jr. for electron microscopy assistance, and Kim Vu for her aid in figure preparation. Exelixis has kindly provided the PI3K/mTOR inhibitor XL765. During the study period, the compound was licensed to Sanofi-Aventis.

Grant Support

This manuscript was supported in part by a NIH/NCI RO1CA138345 (D. Lev), an Amschwand Foundation Seed Grant (D. Lev), a Deutsche Forschungsgemeinschaft Fellowship grant (supporting M.P. Ghadimi), and a NIH/NCI 5T32CA09599-21 training grant (supporting K. Lusby). MDACC cell-line characterization and electron microscopy core facilities were further supported by an NCI Cancer Center Support Grant (CA16672).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 8, 2012; revised April 10, 2012; accepted April 16, 2012; published OnlineFirst July 30, 2012.

References

Molecular Cancer Therapeutics

Targeting the PI3K/mTOR Axis, Alone and in Combination with Autophagy Blockade, for the Treatment of Malignant Peripheral Nerve Sheath Tumors

Mol Cancer Ther Published OnlineFirst July 30, 2012.

Updated version Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-12-0015

Supplementary Material Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2012/08/09/1535-7163.MCT-12-0015.DC1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.