Retraction in Part: A Genomic Approach to Identify Molecular Pathways Associated with Chemotherapy Resistance

We wish to retract Table 1 and Supplemental Table 1 from our article entitled “A genomic approach to identify molecular pathways associated with chemotherapy resistance,” which was published in the October 2008 issue of *Molecular Cancer Therapeutics* (1).

Using previously published annotations for chemotherapy sensitivity in the NCI-60 series of cancer cell lines (2), we performed gene set enrichment analysis on predefined groups of sensitive and resistant NCI-60 cell lines for a range of chemotherapies to identify biological pathways associated with resistance. We purposefully used the annotations for sensitivity and resistance published in the *Nature Medicine* article and applied a complementary computational approach in order to glean biological insight from the differential gene expression. The article upon which our annotations were based has now been retracted (3). After re-examination, the annotations for the cell lines with respect to chemotherapy sensitivity were erroneous. Thus, our manuscript propagates this error and the results in Table 1 and Supplemental Table 1 from our manuscript are invalid.

The majority of the paper reports our work including *in vitro* sensitivity testing for 40 lung cancer cell lines, identification of pathways associated with resistance to tested agents, and functional validation of a lead candidate pathway *in vitro*. These data appear in the remaining Figures 1–7 and Table 2 of the paper and we remain confident in our analysis and findings.

Richard F. Riedel
1Duke Institute for Genome Sciences and Policy, Duke University and 2Division of Medical Oncology, Department of Medicine

Alessandro Porrello
1Duke Institute for Genome Sciences and Policy, Duke University

Emily Pontzer
1Duke Institute for Genome Sciences and Policy, Duke University

Emily J. Chenette
1Duke Institute for Genome Sciences and Policy, Duke University

David S. Hsu
1Duke Institute for Genome Sciences and Policy, Duke University and 2Division of Medical Oncology, Department of Medicine, Duke University

Bala Balakumaran
1Duke Institute for Genome Sciences and Policy, Duke University

Anil Potti
1Duke Institute for Genome Sciences and Policy, Duke University and 2Division of Medical Oncology, Department of Medicine, Duke University 3Former Institute
Joseph Nevins
1Duke Institute for Genome Sciences and Policy, Duke University and
2Molecular Genetics and Microbiology, Duke University Medical Center,
Durham, North Carolina

Phillip G. Febbo**
1Duke Institute for Genome Sciences and Policy, Duke University and
2Division of Medical Oncology, Department of Medicine, and
3Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North
Carolina

**Current Institution
Departments of Medicine and Urology, University of California, San Fran-
cisco Medical School, San Francisco, CA

References
to identify molecular pathways associated with chemotherapy resistance. Mol Cancer Ther

Published OnlineFirst March 29, 2012.
doi: 10.1158/1535-7163.MCT-12-0210
©2012 American Association for Cancer Research.
Molecular Cancer Therapeutics

Retraction in Part: A Genomic Approach to Identify Molecular Pathways Associated with Chemotherapy Resistance

Mol Cancer Ther Published OnlineFirst March 29, 2012.

Updated version Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-0210

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.