The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo.

Kiyohito Kato,1 Jian Gong,1 Hisakazu Iwama,2 Akira Kitanaka,3 Joji Tani,1 Hisaaki Miyoshi,1 Kei Nomura,1 Shima Mimura,1 Mitsuyoshi Kobayashi,1 Yuuichi Aritomo,1 Hideyuki Kobara,1 Hirohito Mori,1 Takashi Himoto,4 Keiichi Okano,5 Yasuyuki Suzuki,5 Koji Murao,3 and Tsutomu Masaki1

1Department of Gastroenterology and Neurology, 2Life Science Research Center, 3Department of Laboratory Medicine, 4Department of Integrated Medicine, 5Department of Gastroenterological Surgery, Kagawa University Schhol of Medicine, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
Abstract

Recent studies suggest that metformin, which is commonly used as an oral anti-hyperglycemic agent of the biguanide family, may reduce cancer risk and improve prognosis, but the mechanisms by which metformin affects various cancers, including gastric cancer, remains unknown. The goal of the present study was to evaluate the effects of metformin on human gastric cancer cell proliferation \textit{in vitro} and \textit{in vivo}, and to study microRNAs (miRNAs) associated with metformin’s anti-tumor effect. We used MKN1, MKN45 and MKN74 human gastric cancer cell lines to study the effects of metformin on human gastric cancer cells. Athymic nude mice bearing xenograft tumors were treated with or without metformin. Tumor growth was recorded after 4 weeks, and the expression of cell cycle-related proteins was determined. In addition, we used miRNA array tips to explore the differences among miRNAs in MKN74 cells bearing xenograft tumors treated with or without metformin \textit{in vitro} and \textit{in vivo}. Metformin inhibited the proliferation of MKN1, MKN45 and MKN74 \textit{in vitro}. Metformin blocked the cell cycle in G0/G1 \textit{in vitro} and \textit{in vivo}. This blockade was accompanied by a strong decrease of G1 cyclins, especially in cyclin D1, cyclin-dependent kinase4 (Cdk4), Cdk6 and by a decrease in retinoblastoma protein (Rb) phosphorylation. In addition, metformin reduced the phosphorylation of EGFR and IGF-1R \textit{in vitro} and \textit{in vivo}. The
miRNA expression was markedly altered with the treatment of metformin \textit{in vitro} and \textit{in vivo}. Various miRNAs altered by metformin also may contribute to tumor growth \textit{in vitro} and \textit{in vivo}.

\textit{Running title}

Metformin inhibits gastric cancer cell proliferation \textit{in vitro} and \textit{in vivo}.

\textit{Key words}

gastric cancer, metformin, microRNA

\textit{Abbreviations used in this paper:}

miRNA, microRNA; Cdk, cyclin-dependent kinase; Rb, retinoblastoma; PBS, phosphate-buffered saline. P-RTKs, phosho-receptor tyrosine kinases
Introduction

Gastric cancer is now the second-leading cause of cancer-related mortality worldwide, and the prognosis of advanced gastric cancer is poor (1). Apart from potentially curative surgery, chemotherapy and radio-chemotherapy may be applied at advanced stages of gastric cancer, but neither of these can be curative (2). Thus, there is a strong demand for new curative approaches to advanced gastric cancer.

Metformin is an oral biguanide drug introduced into clinical practice in the 1950s for the treatment of type 2 diabetes (3). It lowers hyperglycemia by inhibiting hepatic glucose production. According to a recent epidemiological survey, metformin has significant effects on tumorigenesis. For instance, it is reported that patients with type 2 diabetes who are prescribed metformin have a lower risk of pancreatic cancer compared to patients who do not take metformin (4). In the basic investigations, metformin inhibited the proliferation of various human cancer cell types, such as those of prostate (5), breast (6) colon (7) and glial cancer (8). Metformin also inhibited tumor growth in prostate cancer (5) and breast cancer (9) in a mouse xenograft model. Furthermore, in a cancer animal model, metformin treatment decreased the incidence and size of mammary adenocarcinomas in Her2/Neu mice and prevented carcinogen-induced pancreatic cancer in hamsters (10). However, the mechanism underlying the suppression of cancer growth by metformin remains relatively unknown.
Here we have shown that metformin inhibits the growth of gastric cancer by reducing cyclin D1, Cdk 4, Cdk 6. In addition, we have identified microRNA (miRNA) associated with the anti-tumor effect of metformin.

Materials and Methods

Chemicals

Metformin (1, 1-dimethylbiguanide monohydrochloride) was purchased from Dainippon Sumitomo Pharma (Osaka, Japan). A Cell Counting Kit (CCK-8) was purchased from Dojindo Laboratories (Kumamoto, Japan), and all other chemicals were obtained from Sigma Chemical (Tokyo, Japan).

Antibodies

In this study, the following antibodies were used: Anti-β-actin monoclonal antibody (Sigma-Aldrich, A5441, used at 1:3,000), cyclin D1 (Thermo Fisher Scientific, Waltham, MA, USA; RB-9041, used at 1:1000), cyclin E (BD BioSciences, Franklin Lakes, NJ, USA; used at 1:1000), Cdk6 (Santa Cruz Biotechnology, Santa Cruz, CA, USA; sc-177, used at 1:1000), Cdk4 (Cell Signaling Technology, Danvers, MA, USA; #2906,
used at 1:1000), Cdk2 (Santa Cruz Biotechnology, sc-163, used at 1:2000), phosphorylated Rb (BD Pharmingen, Franklin Lakes, NJ, USA; 558385, used at 1:1000), Rb (Cell Signaling Technology; #9309, used at 1:1000), Secondary horseradish peroxidase-linked anti-mouse and anti-rabbit IgG antibodies (GE Healthcare UK, Buckinghamshire, UK; used at 1:2000).

Cell lines and culture

The human gastric cancer cell lines MKN1, MKN45 and MKN74 were obtained from the Japanese Cancer Research Resources Bank (Osaka, Japan) and passaged in our laboratory for fewer than 6 months. The cell lines were authenticated by the cell bank using short tandem repeat PCR. Cells were grown in RPMI 1640 (Gibco Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (533-69545, Wako, Osaka, Japan), penicillin-streptomycin (100 mg/l, Invitrogen) in a humidified atmosphere of 5% CO₂ at 37°C.

Cell proliferation assay

Cell proliferation assays were performed using the CCK-8 according to the manufacturer’s instructions. Each cell line (1 × 10⁴) was seeded into a well of a 96-well
plate and cultured in 100 μL of RPMI 1640 supplemented with 10% FBS. After 24 hours, seeding cells were treated with 1, 5 and 10 mM metformin and without metformin into the culture medium. At the indicated time points, the medium was exchanged for 110 μl of RPMI 1640 with CCK-8 reagent (10 μL CCK-8 and 100 μl RPMI 1640), and the cells were incubated for 2 hours. Absorbance was measured for each well at a wavelength of 450 nm using an auto-microplate reader.

Cell lysate and tissue lysate

The lysate was performed according to the methods described in our previous reports (11). All steps were carried out at 4°C. Protein concentration was measured using a dye-binding protein assay based on the Bradford method (12).

Gel electrophoresis and Western blotting analysis

Samples were electrophoresed using 7.5% to 10% sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) (13), and the proteins were transferred to nitrocellulose membranes. The membranes were incubated with primary antibodies after blocking and then were incubated with horseradish peroxidase-conjugated secondary antibodies (14). Immunoreactive proteins were visualized with an enhanced
chemiluminescence detection system (Perkin Elmer Co, Waltham, MA, USA) on X-ray film.

Flow cytometry analysis

To evaluate the mechanism of growth inhibition by metformin, the cell-cycle profile was analyzed after treatment with metformin. MKN74 cells (1.0×10^6 cells in a 6-well plate dish) were treated with 10 mM metformin or without metformin for 24-72 h. After treatment, the cells were harvested and fixed in 80% ethanol. The fixed cells were washed with PBS and then stored at −20 °C until flow cytometric analysis was performed. On the day of analysis, cells were washed and centrifuged using cold PBS, suspended in 100 μl PBS and 10 μl RNase A solution (250 μg/ml) followed by incubation for 30 min at 37 °C. Then, 110 μl propidium iodide (PI) stain (100 μg/ml) was added to each tube, which was then incubated at 4 °C for at least 30 min prior to analysis. Flow cytometric analysis was performed using a Cytomics FC 500 flow cytometer (Beckman Coulter, Brea, CA, USA) appointed with an argon laser (488 nm). The percentages of cells in different phases of the cell cycle were analyzed by using FlowJo software (Tree Star, Ashland, OR). All experiments were performed in triplicate to assess for consistency of response.
Xenograft model analysis

Animal experiments were performed according to the guidelines of the Committee on Experimental Animals of Kagawa University. We purchased 30 male athymic mice (BALB/c-nu/nu; 8 weeks old; 20–25 g) from Japan SLC (Hamamatsu, Japan). The animals were maintained under specific pathogen-free conditions using a laminar airflow rack and had continuous free access to sterilized food (gamma-ray-irradiated food, CL-2; CLEA Japan, Tokyo, Japan) and autoclaved water. Each mouse was inoculated with MKN74 cells (5×10⁶ cells/animal) subcutaneously on the flank regions of the mouse. Two weeks later, the xenografts were identifiable as a mass of more than 6 mm in maximal diameter in all recipients. The animals were randomly assigned to three groups. These groups were treated with 1 mg metformin, 2 mg metformin, or control (PBS only), respectively.

The metformin-treated group was injected 5 times a week intraperitoneally (i.p.) at 1 mg/body or 2 mg/body per day for 4 weeks. Only PBS was administered to the control group (n=10) for 4 weeks. After the initiation of the metformin administration, the tumor growth was monitored by the same investigators (K.K., T.M.), and the tumorigenesis of gastric cancer was monitored every day. Tumor size was measured weekly by measuring the two greatest perpendicular tumor dimensions. To examine the
significance of the differences between growth curves in this study, all the measurements of tumor volume for each growth curve from the start of the treatment to the end, typically about 30 observations, were analyzed by one-way analysis of variance (ANOVA). Tumor volume was calculated as follows: tumor volume (mm3) = [tumor length (mm) × tumor width(mm)2]/2 (15). All animals were sacrificed on day 28 after treatment. All animals were alive during the observation.

Antibody arrays of phosphorylated receptor tyrosine kinase (p-RTK).

RayBio™ Human Phospho Array Kit (Catalog no. ARY 001) was purchased from RayBiotech, Inc. (Norcross, GA, USA). An assay for p-RTK array was performed according to the manufacturer's instructions. Briefly, p-RTK array membranes were blocked with 5% BSA/TBS (0.01 M Tris-HCl, pH 7.6) for 1 h. The membranes were then incubated with 2 ml of lysate prepared from cell lines or tumorous tissues after normalization with equal amounts of protein. After extensive washing with TBS including 0.1%v/v Tween-20, three times for 10 min each, and TBS alone, twice for 10 min each, to remove unbound materials, the membranes were then incubated with anti-phospho-tyrosine-HRP antibody for 2 h at room temperature. The unbound HRP antibody was washed out with TBS including 0.1% Tween-20. Finally, each array
membrane was exposed to X-ray film using a chemiluminescence detection system (Perkin Elmer Co.). The density of the immunoreactive band obtained on the p-RTK array was analyzed by densitometric scanning (Tlc scanner, Shimizu Co., Ltd., Kyoto, Japan).

Analysis of miRNA microarray

The samples of tumor and cancer cell lines were processed for total RNA extraction with the miRNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA samples typically showed A260/280 ratios of between 1.9 and 2.1, using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

After RNA measurement with an RNA 6000 Nano kit (Agilent Technologies), the samples were labeled using a miRCURY Hy3/Hy5 Power labeling kit and were hybridized on a human miRNA Oligo chip (v.14.0; Toray Industries, Tokyo, Japan). Scanning was performed with the 3D-Gene Scanner 3000 (Toray Industries). 3D-Gene extraction version 1.2 software (Toray Industries) was used to read the raw intensity of the image. To determine the change in miRNA expression between metformin-treated and control samples, the raw data were analyzed via GeneSpringGX v 10.0 (Agilent...
Technologies). Samples were first normalized relative to 28sRNA and baseline corrected to the median of all samples.

Replicate data were consolidated into two groups: those from metformin-treated animals and those from control animals, and were organized by using the hierarchical clustering and ANOVA functions in the GeneSpring software. Hierarchical clustering was done by the use of the clustering function (condition tree) and Euclidean correlation as a distance metric. Two-way ANOVA analysis and asymptotic p-value computation without any error correction on the samples were performed to search for the miRNAs that varied most prominently across the different groups. The p-value cutoff was set to 0.05. Only changes >50% at least one of the time points for each sample were considered significant. All the analyzed data were scaled by global normalization. The statistical significance of differentially expressed miRNAs was analyzed by Student’s t-test.

Statistical analysis

All analyses were performed using the computer-assisted JMP8.0 (SAS Institute, Cary, NC, USA). Paired analysis between the groups was performed using the t-test. A p value of 0.05 was considered to indicate a significant difference between groups.
Results

Metformin inhibits the proliferation of human gastric cancer cell growth

To evaluate the effect of the growth activity of metformin on human gastric cancer cells in vitro, we examined metformin’s effect on proliferation in three gastric cancer cell lines: MKN1, MKN45, MKN74. Cells were grown in 10% fetal bovine serum (FBS) and treated with 1, 5 and 10 mM metformin or, as a control, without metformin. The cell proliferation assay was performed 3 days after the addition of the agents. As shown in Fig. 1A, metformin led to a dose-dependent and strong inhibition of cell proliferation in all gastric cancer cell lines, with 49%, 35% and 51% decreases in the viability of MKN1, MKN45 and MKN74 cells, respectively, with 10 mM metformin.

To discern the direct relationship between the decrease in cell viability and the inhibition of cell proliferation, we followed the course of proliferation over 3 days after the addition of metformin. Metformin (0, 1, 5 and 10 mM) led to a decrease in cell proliferation in a dose- and time-dependent manner in all three cell lines tested (Fig. 1B). Together, the results show that metformin inhibits gastric cancer proliferation.

Effects of metformin on cell-cycle regulatory proteins in MKN74

To study whether or not metformin affects the MKN74 cell cycle, Western blotting
analysis was used to examine the expression of various cell-cycle-related molecules in MKN74 with and without metformin treatment. Cells were treated with 10 mM metformin or without metformin for 24-72 h. The most remarkable change was the loss of cyclin D1, a key protein implicated in the transition of the G0/G1 phase. In short, the cyclin D1 level declined slightly at 24 h after the addition of metformin and was no longer detectable at 48 h and 72 h (Fig. 2A). The level of phosphorylated pRb also decreased progressively in metformin-treated cells. As shown in Fig. 2A, we then studied the expression of other cell-cycle-related proteins (Cdk4, Cdk6, cyclin E and Cdk2) implicated in the G0/G1 transition. Although Cdk6, the catalytic subunit of cyclin D1, was decreased at 48 and 72 h after the addition of metformin, Cdk4 was slightly decreased at 48 and 72 h after. Cyclin E was unchanged at 24 h after metformin treatment, but was decreased at 48 and 72 h after. The catalytic subunit of cyclin E, Cdk2, was also slightly decreased at 48 and 72 h after the addition of metformin. The level of phosphorylated Rb also decreased progressively in metformin-treated cells. On the other hand, total Rb was the same in cell line irrespective of metformin treatment. These events were detected in other cancer cell lines, such as MKN1 and MKN45 (data not shown).

Next, to further investigate the inhibition of MKN74 cell proliferation in the
presence of metformin, the cell-cycle progression was examined by flow cytometry. We treated proliferating MKN74 cells with 10 mM metformin for different durations. After the addition of 10 mM metformin, an increasing number of cells started to accumulate in G0/G1, 63.0% after 48 h and 63.5% by 72 h (Fig. 2B). In parallel, after the addition of 10 mM metformin, we observed reductions in the percentage of cells in the S phase and G2/M phase (Fig. 2B). These data suggest that metformin inhibits cell-cycle progression from G0/G1 into S phase, resulting in G1 cell-cycle arrest.

Metformin inhibits tumor proliferation in vivo

In order to determine whether or not metformin could affect tumor growth in vivo, we injected nude mice subcutaneously (s.c.) with MKN 74 cells. Metformin was injected daily intraperitoneally (i.p.) at 1 mg or 2 mg per day.

On the basis of the integrated values of the tumor growth curves, i.p. administration of metformin led to the substantial inhibition of tumor growth, by 41% (1 mg/day) and 78% (2 mg/day) (Fig. 3A and B, p=0.0207, one-way ANOVA). These growth rates were significantly above those of the control (p<0.01 and p<0.004, respectively). In addition, 2 mg metformin treatment significantly inhibited tumor growth compared with 1 mg metformin-treated mice (p<0.007). In this study, metformin exhibited no apparent
changes in mice and did not affect their weight (data not shown). All animals were alive during the experiment.

In order to determine whether or not metformin also affects cell-cycle regulatory protein levels in vivo, we analyzed protein expression using Western blotting analysis in tumors obtained from the xenograft experiments. Metformin reduced significantly the levels of these proteins (phosphorylated Rb, cyclin D1, Cdk2, Cdk4, Cdk6 and cyclin E) in treated tumors compared to controls (Fig. 3C). On the other hand, total Rb was the same in cell line irrespective of metformin. These results suggest that, similar to the results of the in vitro observations (Fig. 2A), metformin decreases tumor growth by reducing cell-cycle regulatory protein levels, resulting in G1 cell-cycle arrest.

Differences in phosphorylated-receptor tyrosine kinases p-(RTKs) in vitro and in vivo treated with and without metformin

We used a phosphorylated-RTK array system to identify the “key RTKs” associated with metformin’s anti-tumor effect. By using the antibody array (Fig. 4A), we simultaneously screened the expressions of 42 different activated RTKs in MKN74 cells and tumors with or without metformin. Metformin reduced the expression of phosphorylated- epidermal growth factor (p-EGFR) (Fig. 4B and D) and that of
phosphorylated-insulin-like growth factor-1 receptor (p-IGF-1R) (Fig. 4C and D) \textit{in vitro} and \textit{in vivo}, as the protein array detected.

Densitometric data on p-EGFR and p-IGF-1R in cell line and tumorous tissue were expressed as black and white, respectively. The density of the p-EGFR and that of the p-IGF-1R obtained from the membrane array were analyzed by means of a Image Station (Eastman Kodak, Rochester NY, USA). The densitometric ratios of the p-EGFR and p-IGF-1R spots of the metformin-treated cell line to nontreated metformin were 68.8% and 4.0%, respectively (Fig. 4D). In addition, the ratios of p-EGFR and p-IGFR of metformin-treated tumorous tissue to nontreated metformin were 39.7% and 19.8%, respectively (Fig. 4D).

\textit{Differences in miRNA expression in the cell lines in vitro and tumorous tissues in vivo treated with and without metformin}

Using a custom microarray platform, we analyzed the expression levels of 985 human miRNA probes in the cell lines \textit{in vitro} and tumorous tissues \textit{in vivo} that were treated with and without metformin. As shown Table 1, when the expression of miRNAs was studied in MKN74 cells treated with 10 mM metformin and without metformin \textit{in vitro}, 30 miRNAs were significantly upregulated (Table.1) in MKN74 cells after 72 h of
metformin treatment, while 21 miRNAs were downregulated (Table 1). In a tumor xenograft model, in the metformin group there were 22 upregulated (Table 2) and 21 downregulated miRNAs (Table 2) out of the 985 miRNAs (GEO, Accession No. GSE30289). In Tables 1 and 2, the 7 miRNAs marked with a dagger were matched with ones from both cultured cells and xenograft tissues after metformin treatment.

Unsupervised hierarchical clustering analysis, using Pearson’s correlation, showed that cell lines in vitro and tumorous tissues in vivo treated with metformin clustered together and separately from the untreated cell lines (Fig. 5A) and tissues (Fig. 5B). These subsets of 51 microRNAs in cell lines and 43 miRNAs in tissues were found to exhibit >1.5fold alterations in expression levels between the metformin-treated and control groups.
Discussion

The incidence and mortality rate of gastric cancer have decreased dramatically over the past several decades. Nonetheless, the disease remains a major public health issue as the second leading cause of cancer death worldwide (16). Apart from potentially curative surgery, chemotherapy and radiochemotherapy may be applied at advanced stages in gastric cancer, but neither can cure the disease in such cases, and the prognosis is poor. Thus there is strong demand for new curative approaches to gastric cancer therapy.

The role of the antidiabetic drug metformin in glucose and fatty acid metabolism is very well known (17,18). In mice, at doses of 1-3 mg per day, it stimulates glucose uptake and increases fatty acid oxidation in muscle and liver with no side effects (5). Recent data suggest that metformin could protect from cancer and inhibit proliferation in various cancer cell lines, such as breast cancer (11), glial cancer (9) and prostate cancer (5). However, the anti-tumor effect of metformin for gastric cancer remains unknown. Here we show that metformin not only is a very potent inhibitor of human gastric cancer cell growth but also inhibits tumorigenesis in a xenograft model when administered i.p.

Specific cyclin/cyclin-dependent kinase (Cdk) complexes are activated at different
intervals during the cell cycle. Complexes of Cdk4 and Cdk6 with cyclin D1 are required for G1 phase progression, whereas complexes of Cdk2 with cyclin E are required for the G1/S transition (19). In previous reports, downregulation of cyclin D1 in response to metformin has been demonstrated in various cancer cell lines, such as colon cancer (7), breast cancer (20) and prostate cancer (5). However, the effects of metformin on catalytic subunits of cyclin D1, Cdk4 and Cdk6, remain unknown. In the present study, the major cell-cycle regulators (cyclin D1, Cdk4, Cdk6, cyclin E, Cdk2, phosphorylated pRb) could be intracellular targets of the metformin-mediated anti-proliferative effect in human gastric cancers in vitro. In addition, flow cytometry revealed that metformin arrested gastric cancer cells at the G0/G1 phase in vitro. A subsequent in vitro experiment using subcutaneous gastric cancer-bearing athymic nude mice also demonstrated that metformin markedly suppressed the growth of gastric cancer, and the expression levels of numerous cell-cycle molecules (cyclin D1, Cdk4, Cdk6, cyclin E, Cdk2, pRb) were found to be reduced by treatment with metformin, indicating that metformin may inhibit the expression of cell-cycle-related molecules, especially in cyclin D1 in MKN74 cells in vivo. These data suggest that the anti-tumor effect of metformin may be related to the reduction of various cell-cycle-related proteins, especially in cyclin D1.
Our *in vitro* study was performed using a higher dose of metformin than the human therapeutic concentration (6 to 30 μM). The use of such higher doses has been the subject of criticism of similar studies in other cancer cell types, such as breast (6), prostate (5), and colon cancer cell lines (7). However, it is important to consider that cells in culture are grown under hyperglycemic conditions (21). Tissue culture medium alone contains high concentrations of glucose, and 5-10% fetal bovine serum is typically added, resulting in excessive growth stimulation. This may explain why, in order to see the anti-tumor effects of metformin in cell culture systems, it is necessary to use higher doses than are used in diabetic patients.

Many previous reports have shown the enhanced expression of various cell-cycle-related molecules (cyclin D1, Cdk4, Cdk6, cyclin E and Cdk2) in various cancers, including gastric cancer (22,23). Therefore, inhibition of these cell-cycle-related molecules, including cyclin D1, may be an interesting molecular target for controlling tumor proliferation.

Metformin leads to changes in the phosphorylation of various proteins. To date, the change in phosphorylation of various molecules, such as Akt, β-catenin, CREB, Chk2 (24) and c-Src (21) has been detected in cell lines treated with metformin. We also detected the reduction of p-EGFR and p-IGF-1R in gastric cancers with metformin
treatment using protein arrays. These data suggest that the expression of p-EGFR and that of p-IGF-1R are reduced by metformin treatment in gastric cancer cells. Recently, some studies have also reported that metformin reduces the expression levels of p-EGFR and p-IGF-1R in breast cancer (21) and pancreatic cancer (25). Together, these studies suggest that metformin might reduce the expression levels of p-EGFR and p-IGF in many cancer types, including gastric cancer.

The EGFR pathway is important in controlling cell-cycle events. EGFR activation’s role in cell-cycle progression in some human cancers was studied. EGFR activation induced cyclin D1, a protein that is important in cell-cycle progression (26, 27). Like EGFR, IGF-R1 has been shown to regulate both the expression and activity of many proteins involved in cell-cycle progression (28, 29). In Rat L6E9 skeletal muscle cells, IGF-1 activation is upregulated with the expression of Cdk4 and cyclinD1 (30). Therefore, metformin blocks the cell cycle in G0/G1 in vitro and in vivo through the reduction of EGFR and IGF-1R activity.

To identify miRNA associated with the anti-tumor effect of metformin, using miRNA expression arrays, we have determined variations in miRNA profiles in gastric cancer cell lines both in culture and in xenograft tumorous tissues treated with metformin compared to those not treated with metformin. The cluster analyses we performed
clearly demonstrated that metformin treatment affects the extent of miRNA expression in cultured cells and in tumorous tissues. In the analyses, we selected sets of miRNAs that altered their expression levels significantly before and after metformin treatment. We identified 51 miRNAs differentially expressed (30 upregulated and 21 downregulated) in culture and 43 miRNAs differentially expressed (22 upregulated and 21 downregulated) in xenograft tumorous tissues. These miRNAs are meaningful candidates to gauge the effectiveness of metformin treatment and to provide clues to the molecular basis of metformin’s anti-cancer effects, particularly when mediated with miRNAs.

We found that members of the let-7 family are upregulated in both cultured cells and tumorous tissues treated with metformin. The human let-7 family containing 13 members is widely recognized as a class of miRNAs producing a tumor-suppressing effect (31). Consistent with this events, downregulation of let-7 family members has been reported in many cancers, such as lung cancer (32), breast cancer (33), colorectal cancer (34) and melanoma (35). The let-7 family acts as a tumor suppressor by binding its target oncogenes, including the Ras (36), HMGA2 (37), c-Myc (38) and various cell-cycle regulators. Among upregulated let-7 family members in cell culture in the present study, let-7b overexpression in melanoma cells in vitro leads to the
downregulation of the expression of cyclins D1, D3 and A, as well as to the downregulation of cyclin-dependent kinase (Cdk) 4 (35,39). In addition, let-7g targets cell-cycle control genes such as cyclin D1, E2F1, Ras and c-myc and restrains the growth of hepatoma cells (40). Thus, our results suggest that metformin-induced inhibition of human gastric cancer cell proliferation is mediated in part by the tumor suppressor activities caused by upregulation of let-7 family members.

We also found differentially expressed miRNAs in cultured cells and tumorous tissues treated with metformin as compared with untreated cells. Among upregulated miRNAs in culture cells treated, hsa-mir-663 inhibits the growth of gastric cancer (41), hsa-mir-22 inhibits the growth of hepatocellular carcinoma (42) and hsa-mir-182 inhibits the growth of lung cancer (43). Especially, the expression of hsa-mir-638 in metformin-treated cells was 3.3 times higher than that in untreated cells. Hsa-mir-638 is one of the miRNAs most abundantly expressed in normal serum. Although has-mir-638’s physiological significance is not adequately known, one report shows decreased expression of hsa-mir-638 in gastric cancer tissues (44). Thus, our data suggest that hsa-mir-638 may be a candidate for a new therapeutic target in gastric cancer.

In the present study, we found only 7 matched miRNAs extracted from cultured
cells and tumorous tissues after treatment with metformin. Although many miRNAs were significantly altered after metformin treatment, we found several differences in the profiles of miRNA expression between the cultured cells and tumorous tissues. This discrepancy could reflect the differences between \textit{in vitro} and \textit{in vivo} models. In short, metformin is directly exposed to \textit{in vitro} cultured cells, while intraperitoneally administered metformin is metabolized \textit{in vivo}. Additionally, tumor cells in mice are affected by the host's immune response. Furthermore, there are differences in exposure times and metformin concentrations between the \textit{in vitro} and \textit{in vivo} models. Therefore, differences in exposure times and concentrations of metformin may result in the differential expression profiles of miRNAs.

In conclusion, our results revealed that metformin inhibits human gastric cancer cell proliferation and tumor growth, possibly by suppressing the cell-cycle-related molecules via alteration of miRNAs. Metformin postponed spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats, and hamsters (45). In addition, in female SHR mice, metformin increased life span and postponed tumors when started at young or middle age but not when started at old age (46). These data suggest that metformin might be a more effective treatment for young patients with gastric cancer.
Metformin is a drug widely used for the treatment of type 2 diabetes with limited side effects. Therefore, metformin may become a novel and effective therapy for the treatment and long-term management of gastric cancer, providing additional benefits at low cost.

Supporting information available

Reference

7. Zhou XZ, Xue YM, Zhu B, Sha JP. Effects of metformin on proliferation of human
colon carcinoma cell line SW-480. Nan Fang Yi Ke Da Xue Xue Bao
2010;30:1935-8, 42.

31. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell

45. Vladimir N. Anisimov. Metformin for aging and cancer prevention. AGING
<table>
<thead>
<tr>
<th>NO.</th>
<th>miRNA</th>
<th>Fold (treated/nontreated)</th>
<th>Chromosomal localization</th>
<th>P-value</th>
<th>NO.</th>
<th>miRNA</th>
<th>Fold (treated/nontreated)</th>
<th>Chromosomal localization</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>has-miR-638</td>
<td>3.31 ±1.05</td>
<td>19p13.2</td>
<td>0.0083</td>
<td>1</td>
<td>has-miR-1826</td>
<td>0.520 ±0.166</td>
<td>16</td>
<td>0.0147</td>
</tr>
<tr>
<td>2</td>
<td>has-miR-1246</td>
<td>2.65 ±1.12</td>
<td>2q31.1</td>
<td>0.0036</td>
<td>2</td>
<td>has-miR-1979</td>
<td>0.621 ±0.100</td>
<td>4q32.3</td>
<td>0.0002</td>
</tr>
<tr>
<td>3</td>
<td>has-miR-1228*</td>
<td>2.59 ±1.56</td>
<td>12</td>
<td>0.0145</td>
<td>3</td>
<td>has-miR-1260</td>
<td>0.630 ±0.121</td>
<td>1</td>
<td>0.0009</td>
</tr>
<tr>
<td>4</td>
<td>has-miR-1469</td>
<td>2.55 ±1.73</td>
<td>15q26.2</td>
<td>0.029</td>
<td>4</td>
<td>has-miR-30c*</td>
<td>0.679 ±0.229</td>
<td>1p34.2</td>
<td>0.0182</td>
</tr>
<tr>
<td>5</td>
<td>has-miR-762</td>
<td>2.30 ±0.25</td>
<td>16</td>
<td>0.0008</td>
<td>5</td>
<td>has-miR-182*</td>
<td>0.682 ±0.274</td>
<td>7q32.2</td>
<td>0.0045</td>
</tr>
<tr>
<td>6</td>
<td>has-miR-1268</td>
<td>2.24 ±0.96</td>
<td>15q11.2</td>
<td>0.0248</td>
<td>6</td>
<td>has-miR-422a</td>
<td>0.691 ±0.245</td>
<td>15q22.31</td>
<td>0.0255</td>
</tr>
<tr>
<td>7</td>
<td>has-miR-1908</td>
<td>2.04 ±0.87</td>
<td>11</td>
<td>0.0081</td>
<td>7</td>
<td>has-miR-372</td>
<td>0.692 ±0.226</td>
<td>19q13.42</td>
<td>0.0026</td>
</tr>
<tr>
<td>8</td>
<td>has-miR-663</td>
<td>2.04 ±0.72</td>
<td>20p11.1</td>
<td>0.0133</td>
<td>8</td>
<td>has-miR-1280</td>
<td>0.703 ±0.197</td>
<td>3</td>
<td>0.0171</td>
</tr>
<tr>
<td>9</td>
<td>has-miR-423-3p</td>
<td>2.01 ±0.84</td>
<td>17q11.2</td>
<td>0.0186</td>
<td>9</td>
<td>has-miR-130b</td>
<td>0.708 ±0.325</td>
<td>22</td>
<td>0.001</td>
</tr>
<tr>
<td>10</td>
<td>has-miR-31</td>
<td>1.79 ±0.99</td>
<td>9p21.3</td>
<td>0.0367</td>
<td>10</td>
<td>has-miR-18b</td>
<td>0.716 ±0.290</td>
<td>Xq26.2</td>
<td>0.0086</td>
</tr>
<tr>
<td>11</td>
<td>has-let-7b</td>
<td>1.67 ±1.02</td>
<td>22q13.31</td>
<td>0.0024</td>
<td>11</td>
<td>has-miR-221</td>
<td>0.719 ±0.224</td>
<td>Xp11.3</td>
<td>0.0111</td>
</tr>
<tr>
<td>12</td>
<td>has-miR-1973</td>
<td>1.63 ±0.70</td>
<td>4</td>
<td>0.0106</td>
<td>12</td>
<td>has-miR-320b</td>
<td>0.734 ±0.215</td>
<td>1</td>
<td>0.014</td>
</tr>
<tr>
<td>13</td>
<td>has-miR-934</td>
<td>1.58 ±0.53</td>
<td>Xq26.3</td>
<td>0.0349</td>
<td>13</td>
<td>has-miR-320c</td>
<td>0.738 ±0.301</td>
<td>18q11.2</td>
<td>0.0164</td>
</tr>
<tr>
<td>14</td>
<td>has-miR-27b</td>
<td>1.53 ±0.56</td>
<td>9q22.32</td>
<td>0.0204</td>
<td>14</td>
<td>has-miR-151-3p</td>
<td>0.751 ±0.238</td>
<td>8</td>
<td>0.0178</td>
</tr>
<tr>
<td>15</td>
<td>has-miR-182</td>
<td>1.52 ±0.45</td>
<td>7q32.2</td>
<td>0.0173</td>
<td>15</td>
<td>has-miR-1274b</td>
<td>0.759 ±0.235</td>
<td>19</td>
<td>0.0316</td>
</tr>
<tr>
<td>16</td>
<td>has-miR-1977</td>
<td>1.51 ±0.35</td>
<td>1</td>
<td>0.0003</td>
<td>16</td>
<td>has-miR-7</td>
<td>0.771 ±0.202</td>
<td>9q21.32</td>
<td>0.0152</td>
</tr>
<tr>
<td>17</td>
<td>has-miR-149</td>
<td>1.48 ±0.46</td>
<td>2q37.3</td>
<td>0.0026</td>
<td>17</td>
<td>has-miR-30c</td>
<td>0.774 ±0.171</td>
<td>1p34.2</td>
<td>0.002</td>
</tr>
<tr>
<td>18</td>
<td>has-miR-125a-5p</td>
<td>1.48 ±0.81</td>
<td>19q13.41</td>
<td>0.0353</td>
<td>18</td>
<td>has-miR-24-2*</td>
<td>0.775 ±0.253</td>
<td>19q13.13</td>
<td>0.0126</td>
</tr>
<tr>
<td>19</td>
<td>has-miR-27a</td>
<td>1.47 ±0.42</td>
<td>19p13.13</td>
<td>0.0016</td>
<td>19</td>
<td>has-miR-1274a</td>
<td>0.818 ±0.156</td>
<td>5p13.1</td>
<td>0.0302</td>
</tr>
<tr>
<td>20</td>
<td>has-miR-361-5p</td>
<td>1.47 ±0.61</td>
<td>X</td>
<td>0.0477</td>
<td>20</td>
<td>has-miR-720</td>
<td>0.827 ±0.196</td>
<td>3</td>
<td>0.0376</td>
</tr>
<tr>
<td>21</td>
<td>has-miR-200a</td>
<td>1.41 ±0.33</td>
<td>1p36.33</td>
<td>0.0144</td>
<td>21</td>
<td>has-miR-23b</td>
<td>0.858 ±0.240</td>
<td>9q22.32</td>
<td>0.0265</td>
</tr>
<tr>
<td>22</td>
<td>has-miR-26b</td>
<td>1.40 ±0.29</td>
<td>2q35</td>
<td>0.0039</td>
<td>22</td>
<td>has-miR-22</td>
<td>1p73.3</td>
<td>0.0018</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>has-miR-24</td>
<td>1.39 ±0.29</td>
<td>17p13.3</td>
<td>0.0018</td>
<td>23</td>
<td>has-miR-24</td>
<td>0.003</td>
<td>9q22.32</td>
<td>0.041</td>
</tr>
<tr>
<td>24</td>
<td>has-miR-24</td>
<td>1.35 ±0.40</td>
<td>9q22.32</td>
<td>0.003</td>
<td>24</td>
<td>has-miR-18a</td>
<td>0.048</td>
<td>13q31.3</td>
<td>0.128</td>
</tr>
<tr>
<td>25</td>
<td>has-let-7c</td>
<td>1.28 ±0.26</td>
<td>21q21.1</td>
<td>0.041</td>
<td>25</td>
<td>has-miR-200c</td>
<td>0.0012</td>
<td>12p13.31</td>
<td>0.128</td>
</tr>
<tr>
<td>26</td>
<td>has-miR-21</td>
<td>1.27 ±0.17</td>
<td>17q23.1</td>
<td>0.0034</td>
<td>26</td>
<td>has-miR-200c</td>
<td>0.0012</td>
<td>12p13.31</td>
<td>0.128</td>
</tr>
<tr>
<td>27</td>
<td>has-miR-18a</td>
<td>1.25 ±0.43</td>
<td>13q31.3</td>
<td>0.048</td>
<td>27</td>
<td>has-miR-720</td>
<td>0.827 ±0.196</td>
<td>3</td>
<td>0.0376</td>
</tr>
<tr>
<td>28</td>
<td>has-miR-200c</td>
<td>1.23 ±0.12</td>
<td>12p13.31</td>
<td>0.0047</td>
<td>28</td>
<td>has-miR-200c</td>
<td>0.0047</td>
<td>9q22.32</td>
<td>0.0376</td>
</tr>
<tr>
<td>29</td>
<td>has-let-7f</td>
<td>1.17 ±0.12</td>
<td>19q22.32</td>
<td>0.0144</td>
<td>29</td>
<td>has-miR-1975</td>
<td>1.16 ±0.21</td>
<td>7</td>
<td>0.0341</td>
</tr>
</tbody>
</table>

NOTE: MiRNAs marked with a dagger were matched to miRNAs extracted from cultured cells and tumorous tissues after treatment with metformin.
<table>
<thead>
<tr>
<th>NO.</th>
<th>miRNAs</th>
<th>Fold (treated/nontreated) mean ± SD</th>
<th>Chromosomal localization</th>
<th>NO.</th>
<th>miRNAs</th>
<th>Fold (treated/nontreated) mean ± SD</th>
<th>Chromosomal localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hsa-miR-199a-3p</td>
<td>6.03 ±3.23</td>
<td>19p13.2</td>
<td>1</td>
<td>hsa-miR-1978</td>
<td>0.316 ±0.153</td>
<td>5q31.2</td>
</tr>
<tr>
<td>2</td>
<td>hsa-miR-21</td>
<td>4.03 ±2.77</td>
<td>17q23.1</td>
<td>2</td>
<td>hsa-miR-711</td>
<td>0.399 ±0.338</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>hsa-miR-223</td>
<td>3.63 ±2.23</td>
<td>Xq12</td>
<td>3</td>
<td>hsa-miR-874</td>
<td>0.488 ±0.176</td>
<td>0.0056</td>
</tr>
<tr>
<td>4</td>
<td>hsa-miR-342-3p</td>
<td>3.56 ±1.80</td>
<td>14q32.2</td>
<td>4</td>
<td>hsa-miR-1973</td>
<td>0.519 ±0.205</td>
<td>0.004</td>
</tr>
<tr>
<td>5</td>
<td>hsa-miR-126</td>
<td>3.43 ±2.62</td>
<td>9q34.3</td>
<td>5</td>
<td>hsa-miR-532-3p</td>
<td>0.589 ±0.437</td>
<td>0.033</td>
</tr>
<tr>
<td>6</td>
<td>hsa-miR-146b-5p</td>
<td>3.18 ±1.23</td>
<td>10q24.32</td>
<td>6</td>
<td>hsa-miR-886-5p</td>
<td>0.603 ±0.332</td>
<td>5q31.1</td>
</tr>
<tr>
<td>7</td>
<td>hsa-miR-361-5p</td>
<td>3.13 ±1.52</td>
<td>X</td>
<td>7</td>
<td>hsa-miR-760</td>
<td>0.606 ±0.371</td>
<td>1p22.1</td>
</tr>
<tr>
<td>8</td>
<td>hsa-miR-99a</td>
<td>3.11 ±1.53</td>
<td>21q21.1</td>
<td>8</td>
<td>hsa-miR-1977</td>
<td>0.609 ±0.277</td>
<td>0.0059</td>
</tr>
<tr>
<td>9</td>
<td>hsa-miR-16</td>
<td>2.31 ±1.17</td>
<td>13q14.2</td>
<td>9</td>
<td>hsa-miR-1908</td>
<td>0.616 ±0.176</td>
<td>0.002</td>
</tr>
<tr>
<td>10</td>
<td>hsa-miR-1308</td>
<td>2.10 ±0.93</td>
<td>Xp22.1</td>
<td>10</td>
<td>hsa-miR-1826</td>
<td>0.618 ±0.085</td>
<td>0.021</td>
</tr>
<tr>
<td>11</td>
<td>hsa-miR-20b</td>
<td>2.28 ±0.97</td>
<td>2q35</td>
<td>11</td>
<td>hsa-miR-125a-3p</td>
<td>0.643 ±0.230</td>
<td>19q13.41</td>
</tr>
<tr>
<td>12</td>
<td>hsa-lct-7g</td>
<td>1.98 ±0.90</td>
<td>3p21.1</td>
<td>12</td>
<td>hsa-miR-1975</td>
<td>0.649 ±0.154</td>
<td>0.0075</td>
</tr>
<tr>
<td>13</td>
<td>hsa-lct-7e</td>
<td>1.97 ±1.36</td>
<td>19q13.41</td>
<td>13</td>
<td>hsa-miR-1285</td>
<td>0.652 ±0.326</td>
<td>0.032</td>
</tr>
<tr>
<td>14</td>
<td>hsa-miR-191</td>
<td>1.97 ±0.49</td>
<td>3p21.31</td>
<td>14</td>
<td>hsa-miR-494</td>
<td>0.665 ±0.141</td>
<td>0.006</td>
</tr>
<tr>
<td>15</td>
<td>hsa-lct-7f</td>
<td>1.90 ±0.85</td>
<td>9q22.32</td>
<td>15</td>
<td>hsa-miR-361-3p</td>
<td>0.736 ±0.288</td>
<td>0.045</td>
</tr>
<tr>
<td>16</td>
<td>hsa-miR-26a</td>
<td>1.80 ±0.73</td>
<td>3p22.2</td>
<td>16</td>
<td>hsa-miR-1913</td>
<td>0.751 ±0.195</td>
<td>0.014</td>
</tr>
<tr>
<td>17</td>
<td>hsa-miR-425</td>
<td>1.67 ±0.34</td>
<td>3p21.31</td>
<td>17</td>
<td>hsa-miR-339-5p</td>
<td>0.765 ±0.203</td>
<td>0.018</td>
</tr>
<tr>
<td>18</td>
<td>hsa-miR-18a</td>
<td>1.56 ±0.51</td>
<td>13q31.3</td>
<td>18</td>
<td>hsa-miR-926</td>
<td>0.776 ±0.191</td>
<td>0.012</td>
</tr>
<tr>
<td>19</td>
<td>hsa-miR-25</td>
<td>1.47 ±0.57</td>
<td>7q22.1</td>
<td>19</td>
<td>hsa-miR-1260</td>
<td>0.812 ±0.141</td>
<td>0.028</td>
</tr>
<tr>
<td>20</td>
<td>hsa-miR-483-3p</td>
<td>1.43 ±0.13</td>
<td>11p15.5</td>
<td>20</td>
<td>hsa-miR-744</td>
<td>0.828 ±0.190</td>
<td>0.045</td>
</tr>
<tr>
<td>21</td>
<td>hsa-miR-106a</td>
<td>1.43 ±0.47</td>
<td>Xq26.2</td>
<td>21</td>
<td>hsa-miR-1280</td>
<td>0.854 ±0.177</td>
<td>0.015</td>
</tr>
<tr>
<td>22</td>
<td>hsa-miR-934</td>
<td>1.29 ±0.17</td>
<td>Xq26.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: MiRNAs marked with a dagger were matched to miRNAs extracted from cultured cells and tumorous tissues after treatment with metformin.
Figure legend

Figure 1

A. Metformin inhibits the proliferation of cultured gastric cancer cells. A. MKN1, MKN45 and MKN74 were seeded in 96-well plates. After 24 h, metformin (1, 5 and 10 mM) was added to the culture medium. Two days after the addition of the agents, a cell counting kit assay was performed as described in Materials and Methods. The results are expressed as percentages of viable cells compared to control (0 mM). The mean cell number from three independent cultures is shown. Error bars represent standard deviation. Using Student’s t-test, all treatments were significantly different from the control (p<0.05). B. MKN1, MKN45 and MKN74 cells were seeded at 10,000 cells per well in a 96-well plate and the agents were added at time 0 hour. A viability assay was performed daily from time 0 to 72 hours. The data points represent the mean cell number from three independent cultures, and the error bars represent standard deviations. For each cell line, the conditions at 48 and 72 hours are significantly different compared to the control (0 mM), with P<0.05.
Figure 2

Metformin blocks the cell cycle in G0/G1 and affects the expression levels of the various cell-cycle-regulatory proteins in MKN74 cells. (A) Western blotting of cyclin D1, Cdk4, Cdk6, cyclin E, Cdk2, pRb and Rb in MKN74 cells of 24, 48 and 72 h after the addition of 10 mM metformin for the indicated time. B. Flow cytometry analysis of proliferating MKN74 cells 24, 48 and 72 h after the addition of 10 mM metformin. Results are representative of three independent experiments.

Figure 3

In vivo antitumor effects of metformin on established gastric cancer in nude mice. (A) (a, b and c) are representative photographs of the gross MKN 74 tumors from nude mice treated with either control (a), 1 mg metformin (b) or 2 mg metformin (c). (B) MKN74 cells implanted subcutaneously into the flank regions of nude mice. When a tumor became palpable, 1 mg and 2 mg metformin was injected intraperitoneally for 4 weeks, 5 times per week. Animals in the control group developed rapidly growing subcutaneous gastric cancer. In contrast, animals in the metformin groups exhibited significantly retarded tumor development. The tumors in the mice treated with 2 mg metformin were significantly smaller compared with those in the mice treated with 1 mg metformin.
metformin. Each data point represents the mean ± SD of 10 animals. p=0.0207, one-way analysis of variance: ANOVA, *p<0.01, **p<0.007, and ***p<0.004. Tumor volumes (mm³) are expressed as follows: tumor volume (mm³) = [tumor length(mm)×tumor width(mm)²]/2. (C) Representative Western blotting analysis of cell-cycle regulatory protein expression in tumors from mice treated with and without metformin. Various cell-cycle-related proteins in the tumorous tissues treated with metformin were reduced as compared with control nude mice.

Figure 4

(A) Template showing the location of tyrosine kinase antibody spotted onto the RayBio Human Phospho Array Kit. (B and C) Representative expression of various phosphor-tyrosine kinase receptors in gastric cancer cell lines and tumors with or without metformin treatment. The reduced expression levels of p-EGFR and p-IGF-1R were detected in metformin-treated cell lines and tumors. (D) The densitometric ratios of the p-EGFR and p-IGF-1R spots of the metformin-treated cell line to the nontreated line were 68.8% and 4.0%, respectively. The ratios of p-EGFR and p-IGFR of metformin-treated tumorous tissue to nontreated tissue were 39.7% and 19.8%, respectively.
(A) Hierarchical clustering of MKN74 with metformin and without metformin.

MKN74 cells were clustered according to the expression profiles of 51 differently expressed miRNAs between MKN74 cells treated with metformin and those treated without it. (B) Hierarchical clustering of tumor samples from a xenograft animal model with metformin and without metformin. Tumorous tissues were clustered according to the expression profiles of 41 differentially expressed miRNAs between tumorous tissues with metformin treatment and those without it. (A) and (B) The analyzed samples are in columns and the miRNAs are presented in rows. The miRNA clustering tree is shown on the left and the sample-clustering tree appears at the top. The color scale shown at the top illustrates the relative expression level of miRNAs; red represents a high expression level, blue represents a low expression level. MiRNAs marked with a dagger were matched miRNAs extracted from cultured cells and tumorous tissues after treatment with metformin.
Fig. 1

A

Viable cells (% control)

- **MKN1**
 - 0mM
 - 1mM
 - 5mM
 - 10mM

- **MKN45**
 - 0mM
 - 1mM
 - 5mM
 - 10mM

- **MKN74**
 - 0mM
 - 1mM
 - 5mM
 - 10mM

B

Viable cells (% control) vs. time

- **MKN1**
 - 0mM
 - 1mM
 - 5mM
 - 10mM

- **MKN45**
 - 0mM
 - 1mM
 - 5mM
 - 10mM

- **MKN74**
 - 0mM
 - 1mM
 - 5mM
 - 10mM

Downloaded from mct.aacrjournals.org on June 21, 2017. © 2012 American Association for Cancer Research. mct.aacrjournals.org Downloaded from on June 21, 2017. © 2012 American Association for Cancer Research.
Fig. 2

(A) CyclinD1, Cdk4, Cdk6, CyclinE, Cdk2, pRb, Rb, β-actin

(B) Met - +

- 24h - 48h - 72h
Fig. 3

(A)

a, Met 0mg/day
b, Met 1mg/day
c, Met 2mg/day

(B)

mm³

0mg
1mg
2mg

(C)

Cyclin D1
Cdk4
Cdk6
Cyclin E
Cdk2
pRb
Rb
β-actin

Met 0mg/day 1mg/day 2mg/day

*p<0.01
**p<0.007
***p<0.004
Fig. 4

(A) | PY-control | Mer | HGFR | MSPR | PDGFRα | PDGFRβ | SCFR | Flt-3 | M-CSFR | c-Ret | ROR1 | ROR2 | Tie-1 | EphA6 | EphA7 | EphB1 | EphB2 | EphB4 | EphB6 | Mouse IgG1 | Mouse IgG2A | Mouse IgG2B | Goat IgG | PBS |
EGFR | ErbB2 | ErbB3 | ErbB4 | FGFR1 | FGFR2α | FGFR3 | FGFR4 | InsulinR | IGF-1R | Axl | Dtk |

PY-control: Phospho tyrosine Positive Control

(B) MKN74 cell

![Image of MKN74 cell with EGFR and IGF-1R proteins](image)

Relative ratio (% control)

- EGFR: 100%
- IGF-1R: 100%

(C) MKN74 tumor

![Image of MKN74 tumor with EGFR and IGF-1R proteins](image)

Relative ratio (% control)

- EGFR: 100%
- IGF-1R: 100%
The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo

Kiyohito Kato, Jian Gong, Hisakazu Iwama, et al.

Mol Cancer Ther Published OnlineFirst January 5, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-11-0594

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2012/01/05/1535-7163.MCT-11-0594.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.