BNP7787-Mediated Modulation of Paclitaxel- and Cisplatin-Induced Aberrant Microtubule Protein Polymerization In vitro

Aulma R. Parker, Pavankumar N. Petluru, Meizhen Wu, Min Zhao, Harry Kochat, and Frederick H. Hausheer

Abstract

Taxane and platinum drugs are important agents in the treatment of cancer and have shown activity against a variety of tumors, including ovarian, breast, and lung cancer, either as single agents or in combination with other chemotherapy drugs. However, a serious and prevalent side effect of taxane (docetaxel and all formulations/derivatives of paclitaxel) and platinum (cisplatin, carboplatin, and oxaliplatin) agents is dose-limiting chemotherapy-induced peripheral neuropathy (CIPN). CIPN can result in treatment delays, dose modifications, and, in severe cases, discontinuation of chemotherapy. Consequently, effective treatments for CIPN are needed. Dimesna (BNP7787; Tavocept™; disodium 2,2′-dithio-bis-ethanesulfonate) is an investigational drug that is undergoing international clinical development as a treatment that is coadministered with first-line taxane and platinum combination chemotherapy in patients with inoperable advanced primary adenocarcinoma of the lung. BNP7787 is currently being developed with the objective of increasing the survival of cancer patients receiving taxane- and/or cisplatin-based chemotherapy. Additional data indicate that BNP7787 may also protect against common and serious chemotherapy-induced toxicities, including chemotherapy-induced anemia, nausea, emesis, nephrotoxicity, and neuropathy, without interfering with antitumor activity of the chemotherapeutic agent(s). Studies herein show that BNP7787 prevents aberrant microtubule protein (MTP) polymerization that is caused by exposure of MTP to paclitaxel or cisplatin. BNP7787 modulates paclitaxel-induced hyperpolymerization of MTP in a dose-dependent manner, and mesna, an in vivo metabolite of BNP7787, protects against time-dependent cisplatin-induced inactivation of MTP. We propose that interactions between BNP7787 and MTP may play a role in BNP7787-mediated protection against CIPN.

Mol Cancer Ther; 9(9); 2558–67. ©2010 AACR.
taxane-induced CIPN is believed to be a consequence of damage to nerves that are rich in MTP (4–6, 15–25). Paclitaxel (Fig. 1B) binds to several regions on β-tubulin, a major protein component of both cytoskeletal and nerve MTP. The paclitaxel-binding site on β-tubulin includes portions of the NH2-terminal Val23, Asp26 amino acids, and the amino acid residues 217 to 236 and 272 to 278 (26–29). Paclitaxel (in the presence or absence of GTP) has been shown in vitro to induce polymerization of MTP beyond levels observed in control reactions (30–32). This phenomenon is referred to as hyperpolymerization or enhanced tubulin polymerization.

Cisplatin exerts its antitumor effect by forming platinum-DNA adducts with preference for two adjacent GG residues on the same DNA strand (1,2-intrastrand adducts; Fig. 1C; refs. 1, 33). These platinum-DNA adducts interfere with DNA replication and cause DNA damage that triggers activation of intracellular apoptotic pathways (34). Unlike paclitaxel, cisplatin interactions with MTP are not thought to be important for its antitumor activity. However, interactions between cisplatin and MTP have been reported (21–24), and these interactions might adversely affect the structural integrity of axons and impair axonal transport, thereby contributing to peripheral neuropathy accompanying cisplatin chemotherapy (6, 19, 20, 35).

Although much effort has been expended toward the development of a clinically useful neuroprotective agent that does not interfere with taxane- or cisplatin-mediated antitumor activity, the prevention of CIPN remains an important unmet need (9–11). Dimesna (BNP7787; Tavocept; disodium 2,2′-dithio-bis-ethanesulfonate; Fig. 1A) is a water-soluble disulfide currently undergoing international phase III clinical testing in patients with advanced non–small cell lung cancer (11, 36–40). In previous clinical studies, BNP7787 showed the potential to increase overall and 1-year survival in patients with non–small cell lung cancer receiving taxane and platinum combination chemotherapy (36). These improved survival outcomes were accompanied by medically and statistically significant reductions in favor of BNP7787 treatment in the incidence and severity of side effects commonly observed with taxane and platinum combination chemotherapy, including reductions in kidney toxicity, anemia, nausea, and vomiting, and significantly reduced treatment discontinuations due to CIPN.

BNP7787 seems to protect against neurotoxicity that traditionally accompanies taxane and platinum chemotherapeutic regimens (11, 38, 41), and importantly, we have previously reported that BNP7787 does not interfere with paclitaxel-induced apoptosis or with taxane-, platinum-, Vinca alkaloid–, or epothilone-induced cytotoxicity in human cancer cell lines (11). Although the mechanism(s) for potential BNP7787-mediated neuroprotective benefits is not fully elucidated, it may involve interactions between BNP7787 and MTP composed of tubulin isotypes, microtubule-associated proteins (MAP), and other proteins. The objectives of the experiments described herein were to examine the effect of BNP7787 (Fig. 1A) in vitro on aberrant MTP polymerization, induced by paclitaxel and cisplatin, to begin to elucidate the mechanisms involved in BNP7787-mediated neuroprotection.

Materials and Methods

Mesna (mercaptoethanesulfonic acid, sodium salt), GTP, cytochrome c, and sucrose were purchased from Sigma-Aldrich. BNP7787 and monoaquocisplatin were...
MTP purification

MTP was purified from bovine brain cerebrum as described in the literature (42). Meninges were removed from fresh bovine cerebrum, and the cerebrum was placed into a 1-L beaker containing ∼300 mL of ice-cold buffer A [0.1 mol/L MES, 1 mmol/L EGTA, 0.5 mmol/L MgCl₂, 0.1 mmol/L EDTA (pH 6.5)]. Grey matter (100 g) was carefully cut from the cerebrum and placed in a chilled blender to which buffer A (100 mL), GTP (2.2 mL of 100 mmol/L stock), and β-mercaptoethanol (β-ME; 7 μL of a 14.3 mol/L stock) were added. This heterogeneous mixture was homogenized at high speed in a Waring blender (3 × 15 seconds). The resulting thick, homogeneous mixture was poured into high-speed polycarbonate centrifuge tubes (26.9 mL volume) and centrifuged at 4°C for 75 minutes (RCFₜᵥ = 118,747 × g). The clear, bright red supernatant off of the large grey pellet was poured into a 500-mL graduated cylinder. Then, the bright red supernatant, an equal volume of buffer B (100 mL) + buffer A (30 mL) was added to clear, bright red supernatant of the large grey pellet. The pellet was rinsed with warm buffer A (room temperature) to remove as much of the residual buffer as possible and then covered with warm buffer B containing β-ME (7 μL of 14.3 mol/L β-ME per 100 mL) without any additional GTP beyond that present through the preparation. MTP pellets were stored at −80°C.

MTP polymerization assays

MTP polymerization assays were conducted using standard approaches (30–32). The polymerization of α- and β-tubulin subunits into microtubules was monitored at 350 nm (A₃₅₀) on a Cary 100 UV-Vis spectrometer using the Cary 100 Kinetics application (Varian Instruments) or on a SpectraMax Plus microtiter UV-Vis plate reader using SpectraMax Pro software (Molecular Devices).

Removal of chloride ion and GTP for incubations of platinum with MTP

Immediately before use in assays, frozen, clear MTP pellets were depolymerized and residual chloride ion and GTP were removed by a gel filtration step using a NAP G-25 column. Briefly, pellets were washed in chloride-free buffer, buffer P [0.1 mol/L PIPES free acid and 1 mmol/L EGTA (pH 6.5)]. Pellets were resuspended in chloride-free buffer P (1–2 mL), transferred to a chilled 2-mL Kontes tissue grinder, and incubated on ice for 30 minutes with two homogenizations (2 × 15 pestle strokes). MTP was centrifuged at 4°C for 20 minutes (39,191 × g), and the supernatant containing MTP was transferred to a clean Falcon tube. MTP supernatant (1.2 mL maximum of a solution that was usually 10–12 mg/mL total protein) was loaded onto G-25 columns pre-equilibrated in chloride-free buffer P and allowed to fully enter the column, followed by 0.8 mL of chloride-free buffer P. MTP was then eluted with 3.1 mL of chloride-free buffer P. Protein concentration was determined by the method of Bradford (43). From SDS-PAGE, MTP preparations were ∼75% tubulin and 25% MAPs.

GTP-catalyzed MTP polymerization assays of MTP incubated with platinum alone, mesna alone, or platinum and mesna

G-25-chromatographed MTP (∼9.7 mg total protein per incubation) was incubated with (a) buffer only, (b) mesna only, (c) cysteine only, (d) monoaquocisplatin only, (e) mesna plus monoaquocisplatin, or (f) cysteine plus monoaquocisplatin. Typically, each sample was 1.25 mL of an ∼7.8 μg/μL protein sample plus 76 μL of a preincubated mixture of mesna, cysteine, monoaquocisplatin, mesna plus monoaquocisplatin, or cysteine plus monoaquocisplatin. The final assay concentrations of mesna, cysteine, or monoaquocisplatin were 200, 200, and 36 μmol/L, respectively. At selected time intervals (e.g., 4, 8, 12, 16, and 24 hours), an aliquot (typically 186 μL) from the various incubation reactions was removed and brought to 750 μL final volume with buffer P. Final tubulin concentration was ∼10 μmol/L. From this 750-μL sample, three 196-μL aliquots were transferred to microtiter plate wells, and the baseline at A₃₅₀ was monitored for 1 to 3 minutes. MTP polymerization was initiated at 37°C by addition of GTP (1 mmol/L) and MgSO₄ (0.5 mmol/L) to wells using an automatic pipetman. For these monoaquoplatinum experiments, MgSO₄ was used instead of MgCl₂ to avoid chloride-mediated complications (note section above describing that chloride ion was removed from solutions for these platinum-related experiments using G-25 size exclusion chromatography; chloride ion will replace the aquo adduct of monoaquoplatinum). The polymerization reaction was followed by monitoring the increase in
A<sub>350</sub> in a microtiter plate format using the SpectraMax Plus plate reader.

**MTP polymerization assays of MTP protein incubated with paclitaxel, BNP7787, or mesna alone or in combination**

MTP (10 μmol/L) was preincubated with BNP7787 (0–16 mmol/L), mesna (200 μmol/L), or NaCl (32 mmol/L; each mole of BNP7787 contains 2 moles of sodium; NaCl was used as a control) in microcentrifuge tubes, on ice, for 20 minutes before initiation of MTP assays. Reactions were transferred from the microcentrifuge tubes to cuvettes or to 96-well plates; polymerization was initiated by addition of (a) GTP/MgCl<sub>2</sub> (1 mmol/L/1 mmol/L final concentration), (b) paclitaxel alone (10 μmol/L), or (c) paclitaxel (10 μmol/L) and GTP/MgCl<sub>2</sub> (1 mmol/L/1 mmol/L final concentration); and microtubule formation was monitored at A<sub>350</sub> using UV-Vis spectroscopy.

**Electron microscopy analysis**

MTP was preincubated with BNP7787 (6 mmol/L) for 20 minutes in buffer P on ice. After this preincubation, MTP polymerization reactions were initiated with GTP/MgCl<sub>2</sub> (1 mmol/L/1 mmol/L) or GTP/MgCl<sub>2</sub>/paclitaxel (1 mmol/L/1 mmol/L/6 μmol/L). Electron micrograph samples were prepared by gently mixing samples of reactions with an equal volume of 50% sucrose in buffer P [0.1 mol/L PIPES, 1 mmol/L EGTA (pH 6.5)] and mounting on carbon-coated grids (400 mesh formvar/carbon; Electron Microscopy Sciences). Grids were washed with cytochrome c (1%) and water and stained with uranyl acetate (1%). Electron microscopy was done using a Philips 2085 electron microscope (Philips Instruments) at an accelerating voltage of 60 kV. Micrographs were taken at ×36,000 and ×7,000 magnifications.

**Normalization of data from platinum-related MTP experiments**

MTP loses its ability to polymerize over time (referred to as decay), and a decay profile of MTP polymerization is shown in Fig. 2A. All data from the extended exposures of MTP to monoaquocisplatin with and without mesna or cysteine were normalized by setting the % polymerization values for the pH buffer control to 100% and normalizing the % polymerization values from the other reactions to this 100% buffer control value (assays were run in triplicate). Decay, or decreases in polymerization, occurs over time most likely because tubulin denatures and precipitates over time. This denatured and/or precipitated tubulin cannot assemble into microtubules, and a decrease in total polymerization, as monitored by turbidity at A<sub>350</sub>, occurs.

**Results**

**Effect of extended exposure to monoaquocisplatin on MTP polymerization in vitro**

The aquated form of cisplatin, monoaquocisplatin, is believed to be the chemotherapeutically active form of cisplatin (Fig. 1C; ref. 1). The equilibrium between cisplatin and monoaquocisplatin is affected by the prevailing chloride concentration in plasma and inside the cell. At high chloride concentrations (e.g., 100 mmol/L in...
plasma), cisplatin predominates over monoaquocisplatin. However, chloride concentration in most cells is very low (in some cases essentially zero), and once cisplatin enters the cell, the low chloride environment facilitates formation of the highly reactive monoaquocisplatin (1). Several groups have reported that extended exposure of MTP to platinum compounds results in the loss of the ability of MTP to polymerize into microtubules, a phenomenon called decay (21–23). Consistent with these reports, we observed that when monoaquocisplatin was incubated with MTP before initiation of MTP polymerization assays, with increasing incubation time, there was increased protein denaturation/precipitation. This was reflected in increased background \( A_{350} \) readings (before initiation of polymerization assays) for samples from longer incubation times and a smaller net change in \( A_{350} \) when polymerization was initiated (Fig. 2A). This denaturation/precipitation was especially prominent in samples where incubation times before initiation of polymerization were \( \geq 8 \) hours and resulted in a starting absorbance that was higher (due to denaturation/precipitation of MTP over time) and a smaller total absorbance change when polymerization was initiated (Fig. 2A). Despite the complications of this decay phenomenon, studies described herein show that extended exposure of MTP to monoaquocisplatin resulted in the notable and reproducible loss of the ability of MTP to polymerize (i.e., loss of ability to polymerize that is beyond the well-documented tubulin decay phenomenon; Fig. 2B).

Experiments also showed that short preincubation (30 minutes) of mesna with monoaquocisplatin prevented the monoaquocisplatin-induced loss of the ability of MTP to polymerize (Fig. 2B, black columns). Mesna is a metabolite of BNP7787 (Fig. 3A) and is postulated to displace the aquo group from monoaquocisplatin, resulting in the formation of a platinum-mesna species (Fig. 3B) that is unreactive with MTP. Similar results were observed with the cysteine thiol but were not seen in incubations that contained glutamine or glutamate instead of a thiol such as mesna or cysteine (data not shown). The cysteine effect was interesting, but unlike BNP7787, administering millimolar concentrations of the cysteine parent disulfide, cystine, would be difficult due to solubility limits at physiologic pH and, at millimolar concentrations, cystine could be toxic to humans.

The inhibition of MTP polymerization due to exposure to monoaquocisplatin over time was attributable solely to monoaquocisplatin [4 \( \mu \)L of the low pH monoaquocisplatin solution (pH 3.8) was used in assays with a final volume of 200 \( \mu \)L but the pH of the final 200 \( \mu \)L assay was not changed; additionally, low pH solution controls lacking monoaquocisplatin alone had no effect relative to regular pH, control MTP assays; Fig. 2B]. Neither mesna
nor cysteine alone (in the absence of monoaquocisplatin) had any effect on MTP polymerization.

**Effect of BNP7787 and mesna on GTP-catalyzed MTP polymerization**

BNP7787 (4, 6, 8, and 10 mmol/L), preincubated with MTP on ice (20 minutes), inhibited GTP-catalyzed polymerization of MTP at 37°C in a dose-dependent manner (Fig. 4A). These data trends were reproducible using different MTP preparations and different lots of BNP7787. The in vivo metabolite of BNP7787, mesna, did not affect MTP polymerization in an appreciable manner even at very high levels that are not physiologically achievable (e.g., 10 mmol/L; Fig. 4B). At lower mesna concentrations that correspond more closely with peak plasma levels observed in patients, there was no effect on in vitro MTP polymerization [at 41 g/m² BNP7787 (~14 mmol/L BNP7787 in plasma), the C_{max} for mesna was ~323 μmol/L; ref. 38]. MTP polymerization was unchanged in assays where MTP was preincubated with clinically achievable concentrations of mesna (up to 300 μmol/L) before initiation of polymerization, and higher concentrations of mesna also had no effect (Fig. 4B).

**Effect of BNP7787 on paclitaxel-catalyzed MTP hyperpolymerization**

BNP7787 (1, 4, 8, 12, and 16 mmol/L), preincubated with MTP on ice (20 minutes), inhibited paclitaxel-promoted MTP hyperpolymerization in a dose-dependent manner (Fig. 4D). Plasma concentrations equivalent to 10 mmol/L for BNP7787 are achieved in clinical trials (11, 37, 38). Paclitaxel peak plasma concentrations can be as high as

![Figure 4](https://www.aacrjournals.org/mct/article-pdf/9/9/2563/75622/MCT-10-0300.pdf)
10 μmol/L (8). In our studies, paclitaxel (10 μmol/L) was used to achieve a 1:1 (drug:tubulin) subunit ratio and optimal hyperpolymerization effects in the in vitro MTP polymerization assay. Paclitaxel (10 μmol/L)–promoted MTP hyperpolymerization was reproducibly inhibited by BNP7787 at concentrations of >1 mmol/L (Fig. 4C and D). Although all data herein should be interpreted qualitatively, we observed ∼50% inhibition of paclitaxel-promoted MTP polymerization by BNP7787 at concentrations of 12 mmol/L (Fig. 4D), and final polymerization levels of MTP exposed to paclitaxel were essentially equal to controls that lacked BNP7787 and paclitaxel (GTP control; Fig. 4C) when ≥6 mmol/L BNP7787 was present (Fig. 4C).

Effect of BNP7787 on paclitaxel/GTP/MgCl2-catalyzed MTP hyperpolymerization

BNP7787 (6, 8, 10, and 12 mmol/L), preincubated with MTP on ice (20 minutes), inhibited paclitaxel/GTP/MgCl2-catalyzed MTP hyperpolymerization in a dose-dependent manner (Fig. 4C). This dose-dependent inhibitory trend was reproducible using different MTP preparations and different lots of BNP7787 (data not shown). When MTP polymerization was initiated by a paclitaxel/GTP/MgCl2 mixture (10 μmol/L/1 mmol/L/1 mmol/L, respectively), BNP7787 concentrations of 6 to 8 mmol/L resulted in a net paclitaxel/GTP/MgCl2-catalyzed polymerization of MTP equivalent to that observed for a control reaction where polymerization is initiated with GTP/MgCl2 only. Because 6 to 10 mmol/L concentrations of BNP7787 are pharmacologically achievable, the in vitro inhibitory effects of BNP7787 on the MTP polymerization catalyzed by paclitaxel/GTP may be achieved in vivo as well. At lower paclitaxel concentrations, correspondingly lower levels of BNP7787 antagonized the effect of paclitaxel on MTP polymerization (data not shown). These data trends were reproducible using different MTP preparations and different lots of BNP7787. Furthermore, sodium chloride (32 mmol/L; Fig. 4D) does not inhibit MTP polymerization; therefore, the sodium in BNP7787 does not exert the inhibitory effect, and the inhibitory/protective effects on MTP polymerization under these experimental conditions are attributed solely to BNP7787.

Qualitative evaluation of the effect of BNP7787 on MTP morphology in the presence and absence of paclitaxel

Qualitative evaluation of electron microscopy grids indicated that BNP7787, preincubated with MTP on ice (20 minutes) before initiation of MTP polymerization using GTP/MgCl2, resulted in a reduction in the abundance of microtubules visible in sectors of the grids in the presence and absence of paclitaxel (Fig. 5B and D). This corresponded well with the decrease in A355 observed in reactions containing BNP7787 in the presence and absence of paclitaxel. There were no effects on overall gross microtubule morphology by BNP7787 that were discernible using this approach, and the effect of BNP7787 on MTP polymerization in the presence of paclitaxel does not result in the formation of morphologically or structurally aberrant microtubules. However, it seems that when BNP7787 and paclitaxel (Fig. 5D) are both present, that fewer microtubules (qualitative assessment) are formed compared with when BNP7787 is not present (Fig. 5C).

Discussion and Conclusions

Physicians often underreport and underestimate the severity of the CIPN that patients experience, and there is an important, unmet need for agents that reduce the discomfort, severity, and long-term side effects of CIPN (44, 45). Paclitaxel-induced CIPN often initially presents as numbness and tingling in the hands and feet or impaired deep tendon reflexes (8) and can include axonopathy, myelinopathy, and/or neuropathy (7, 8). Cisplatin-induced CIPN is a frequent and often dose-limiting toxicity that often manifests itself in patients as numbness and paresthesia in the hands and feet and becomes progressively more debilitating as chemotherapy continues (1, 14).

BNP7787 is an investigational drug that is undergoing clinical development to increase survival and prevent or mitigate serious chemotherapy-induced toxicities in patients with inoperable advanced primary adenocarcinoma of the lung receiving platinum and taxane chemotherapy (11, 37–40, 46, 47). BNP7787 has the potential to protect against neurotoxicity that traditionally accompanies taxane and platinum chemotherapeutic regimens (11, 38, 41). BNP7787 substantially differs in pharmacology and mechanisms from other sulfur-containing small molecules that have been evaluated for the potential
to neuroprotect against platinum- and taxane-induced neuropathy. BNP7787 has the potential to be administered to patients in large doses (e.g., 18.4 g/m²) without toxicity and without significant perturbations in plasma disulfide proportions or in the strongly oxidizing extracellular environment (Fig. 2; ref. 11) and thereby provides substantial pharmacologically available thiol and disulfide augmentation, which in turn may affect numerous physiologic processes, including the oxidative state of the plasma, interstitial space, and intracellularly, as well as by targeting thioredoxin and glutaredoxin systems (36). These characteristics make BNP7787 distinct from previous sulfur-containing small molecules that have been examined for neuroprotective potential (9–11). Although BNP7787 is expected to remain predominantly in the disulfide form in the plasma (11, 48), the intracellular environment and the interstitial space are likely venues for BNP7787 metabolism to a key metabolite, mesna (Fig. 6A), and we have reported in detail on thiol-disulfide exchange reactions that occur between BNP7787 and physiologic thiols previously (11, 37, 48).

Herein, we report that the BNP7787 metabolite mesna completely protected MTP from monoaquocisplatin-induced losses of MTP polymerization activity (Fig. 2B). In the absence of a protecting agent such as BNP7787-derived mesna, monoaquocisplatin is highly reactive and interacts most probably with surface-accessible cysteine residues on αβ-tubulin, forming a mesna-cysteine adduct close to the paclitaxel-binding site.
sulfur-containing groups (e.g., cysteine residues) on tubulin and MAPs. In contrast, an inactive mesna–platinum species (Fig. 3B) would not be reactive with these moieties on tubulin or MAPs. Cisplatin interactions with MTP are not thought to contribute to its antitumor effects but may be one contributing mechanism behind cisplatin-induced neurotoxicity (6, 21–24). Mesna, a metabolite of BNP7787, was able to protect against monoaquocisplatin-induced perturbation of MTP polymerization, and we propose that, in vivo, at specific locations BNP7787 may undergo reduction to mesna (Fig. 3A) and/or form BNP7787-derived mesna-disulfide heteroconjugates (Fig. 6A), and these BNP7787-derived species could provide significant protection against cisplatin-induced neurotoxicity. In contrast, we observed no detectable effect of mesna alone on MTP polymerization (Fig. 4B) or on paclitaxel-induced hyperpolymerization of MTP (data not shown). Furthermore, we observed (Fig. 4C) that BNP7787 normalizes the well-characterized paclitaxel-induced hyperpolymerization of MTP (30–32), and because plasma levels of 8 mmol/L BNP7787 and higher are pharmacologically achievable at doses of 18.4 g/m² and higher (39), BNP7787-mediated protection against paclitaxel-induced hyperpolymerization of MTP observed in vitro may potentially occur in patients receiving paclitaxel as well. For example, BNP7787-mediated oxidation of surface-accessible cysteine residues on tubulin, resulting in formation of mesna-cysteine disulfides, may be one mechanism behind BNP7787-mediated inhibition of paclitaxel-induced hyperpolymerization of MTP. Computational studies to examine this hypothesis are under way (Fig. 6B).

Many agents have been evaluated for potential neuroprotective benefits in patients receiving paclitaxel and cisplatin chemotherapy, but none are currently approved to treat CIPN (9–11). As noted earlier, BNP7787 does not interfere with paclitaxel-induced apoptosis or with taxane-, platinum-, Vinca alkaloid-, or epothilone-induced cytotoxicity in human cancer cell lines (11). Further, in animal models, BNP7787 did not exhibit tumor protection when given with taxane and platinum agents and concurrently prevented lethal chemotherapy-induced toxicity from paclitaxel, cisplatin, carboplatin, and oxaliplatin (11, 37, 38, 40, 46). In phase I and III clinical trials, BNP7787 was not observed to interfere with the antitumor activity of cisplatin and paclitaxel (11, 47). In an additional phase III clinical trial, treatment with BNP7787 seemed to significantly improve 1-year survival of patients with advanced primary adenocarcinoma of the lung who were being treated with cisplatin and paclitaxel regimens in the first-line setting (36). Previous studies have suggested that BNP7787 seems to have significant cisplatin nephroprotective benefits (11, 37, 38, 40, 46, 49, 50). Based on data presented herein, we propose that BNP7787 interactions with MTP may be one mechanism through which BNP7787 may act to protect against taxane- or platinum-induced neurotoxicity by normalizing paclitaxel-induced hyperpolymerization of MTP and by forming BNP7787-derived mesna in vivo, which reacts with and inactivates the highly reactive monoaquocisplatin species.

Disclosure of Potential Conflicts of Interest

F.H. Hausheer is the Chairman, Chief Executive Officer, and a substantial shareholder of BioNumerik Pharmaceuticals, Inc., a private pharmaceutical company that owns the proprietary rights and patents relating to BNP7787 and provided funding relating to the research described in the publication. A.R. Parker, P.N. Petliaru, M. Zhao, and H. Kochat are employees and shareholders and/or option holders of BioNumerik Pharmaceuticals, Inc. M. Wu is a former employee of BioNumerik Pharmaceuticals, Inc.

Acknowledgments

We thank Dr. Israr Khan for doing electron microscopy on the prepared electron microscopy grids, Vanessa Sandoval and Erika Ramirez for outstanding editorial assistance, and Dr. Kamwing Jair for reviewing the manuscript.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 03/25/2010; revised 07/21/2010; accepted 07/26/2010; published OnlineFirst 08/31/2010.

References

BNP7787-Mediated Modulation of MTP Polymerization

Molecular Cancer Therapeutics

BNP7787-Mediated Modulation of Paclitaxel- and Cisplatin-Induced Aberrant Microtubule Protein Polymerization

In vitro

Aulma R. Parker, Pavankumar N. Petluru, Meizhen Wu, et al.

Mol Cancer Ther  Published OnlineFirst August 31, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-10-0300

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.