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plastic thyroid carcinomas are deadly tumors that are highly invasive, particularly into the bones.
gh oncogenic Ras can transform thyroid cells into a severely malignant phenotype, thyroid carcino-
o not usually harbor ras gene mutations. Therefore, it is not known whether chronically active Ras
butes to thyroid carcinoma cell proliferation, although galectin-3 (Gal-3), which is strongly expressed
roid carcinomas but not in benign tumors or normal glands, is known to act as a K-Ras chaperone that
zes and drives K-Ras.GTP nanoclustering and signal robustness. Here, we examined the possibility
yroid carcinomas expressing high levels of Gal-3 exhibit chronically active K-Ras. Using cell lines re-
ting three types of malignant thyroid tumors—papillary, follicular, and anaplastic—we investigated the
le correlation between Gal-3 expression and active Ras content, and then examined the therapeutic
ial of the Ras inhibitor S-trans, trans-farnesylthiosalicylic acid (FTS; Salirasib) for thyroid carcinoma.
id carcinoma cells strongly expressing Gal-3 showed high levels of K-Ras.GTP expression, and
.GTP transmitted strong signals to extracellular signal-regulated kinase. FTS disrupted interactions
en Gal-3 and K.Ras, strongly reduced K-Ras.GTP and phospho-extracellular signal-regulated kinase
sion, and enhanced the expression of the cell cycle inhibitor p21 as well as of the thyroid transcription
1, which is involved in thyroid cell differentiation. FTS also inhibited anaplastic thyroid carcinoma cell
ration in vitro and tumor growth in nude mice. We conclude that wild-type K-Ras.GTP in association
prolife

with Gal-3 contributes to thyroid carcinoma malignancy and that Ras inhibition might be a useful treatment
strategy against these deadly tumors. Mol Cancer Ther; 9(8); 2208–19. ©2010 AACR.
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re than 95% of thyroid carcinomas are derived from
lar cells, whereas a minority of thyroid tumors (3%)
edullary in origin (1). Most of the carcinomas de-
from follicular epithelial cells are indolent tumors
an be effectively managed by surgical resection with
hout radioactive iodine ablation. However, a subset
se tumors can behave aggressively, and there is cur-
no effective form of treatment (2).
icular thyroid carcinomas comprise a broad spectrum
ors that range, on the basis of histologic and clinical
eters, from well-differentiated to undifferentiated
(3). Well-differentiated types include papillary and
id carcinomas for which the prognosis is
, in contrast to the undifferentiated anaplas-
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roid carcinomas, which are extremely aggressive and
y lethal (4). Anaplastic thyroid carcinomas are charac-
d by high cellular proliferation rates, increased vascu-
tion, and focal necrosis, which result in a neck mass
nlarges rapidly, invading adjacent tissues and metas-
g particularly into bones. No effective treatment is
ble and death usually occurs within 1 year of diagno-
. Surgery, chemotherapy, and radiotherapy are the
ntional therapeutic strategies used in an attempt to
ve survival. In many patients, surgery is not feasible,
perability varying from 17% to 65% across reported
(6). Due to the aggressive character of these tumors
eir potential for systemic spread, many different che-
rapy regimens have been tried, including doxorubi-
hich has shown at best a 22% partial response rate.
aracterization of thyroid carcinomas is based
lia on molecular markers (7). Several important mar-
or thyroid carcinomas have been described. One of
is galectin-3 (Gal-3), which acts extracellularly as a
ctoside–binding protein (8) and intracellularly as a
ld of the K-Ras protein (9–11). Ras proteins act as bi-
witches alternating between guanosine diphosphate-
(inactive) and guanosine triphosphate-bound (active)
(12). They activate a multitude of effectors including
hosphatidylinositol-3-OH kinase (PI3-K), and Ral-

ne nucleotide exchange factors), which together regu-
ll proliferation, differentiation, survival, and death (13).

10 American Association for Cancer Research. 
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proteins also play a major role in human malignan-
pproximately 30% of all human tumors express on-
ic Ras proteins that are constitutively active and
bute to tumorigenesis, tumormaintenance, invasion,
rogression (14). The most prevalent oncogenic ras
ions are detected in the K-ras gene in pancreatic, co-
d lung cancers (15). The frequency of ras gene muta-
in thyroid cancer varies with the type of tumor,
g from21% to 60% (1). Other factors that can contrib-
Ras activation in thyroid tumors include hyperactive
ne kinase growth factor receptors (16) and the expres-
f Ras scaffold proteins that may lead to chronic acti-
of Ras (9, 17). Among themost common aberrations
roid tumors are chimeras of the epidermal growth
receptor, which are constitutively active and act up-
of Ras especially in papillary thyroid carcinoma

nd B-Rafmutations leading to constitutive activation
ogen-activated protein/extracellular signal-regulated
(ERK) kinase (MEK) and ERK (19).

r group has previously shown that Gal-3 acts as a
ive intracellular scaffold of K-Ras.GTP in the plasma
rane and enhances Ras signaling (9). More recently,
und that Gal-3 acts as the driving force for K-Ras
lustering and signal robustness (11). We showed
al-3 overexpression in cancer cells, which increases
signal output, represents an oncogenic subversion
as.GTP nanoclusters in the plasma membrane. An
tant finding was that relatively high expression le-
f Gal-3 can be detected in thyroid carcinomas,
as relatively low levels of Gal-3 are detected in be-
umors or normal glands (20, 21). Accordingly, we
lated that overexpression of Gal-3 contributes to
n increase in K-Ras.GTP and Ras signaling in ma-
t thyroid carcinomas. If this is shown to be the
Ras inhibitors might be considered as a potential
ed therapy for highly malignant thyroid carcino-
Here, we examined this possibility using cell lines
epresent three types of malignant tumors of the
id gland: papillary (NPA cell line), follicular
and MRO cell lines), and anaplastic (ARO cell
We first sought a possible correlation between
ssion levels of Gal-3 and active Ras. We then exam-
he potential use of the Ras inhibitor S-trans, trans-
ylthiosalicylic acid (FTS; Salirasib) as a therapeutic
for the treatment of thyroid carcinoma. Our results
ated that cells that strongly express Gal-3 are
icantly associated with high expression levels
TP and K-Ras.GTP, and are highly sensitive to FTS.

rials and Methods

ines and reagents
r well-established and extensively studied human
id carcinoma cell lines, namely ARO 81-1 (anaplas-
RO 87-1 and WRO 82-1 (follicular), and NPA (pap-
), were kindly provided by Dr. G.J.F. Juillard

ersity of California at Los Angeles, Los Angeles,
he medullar thyroid carcinoma cell line TTwas ob-

cultur
treate

acrjournals.org
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from American Type Culture Collection. The pres-
f the thyroid-specific transcription factors TTF-1 and
in these cell lines confirmed their thyroid origin. Be-
uman thyroid cells (N465, P473, andD499) were ob-
at thyroid dichotomy from tissues of patients with

n colloid nodules (22, 23). All cell lines were cultured
05 cells per 10-cm plate for 48 h in RPMI containing
CS, 2 mmol/L L-glutamine, 100 U/mL penicillin,
00 g/mL streptomycin). The cells were incubated
C in a humidified atmosphere with 5% CO2.
was a gift from Concordia Pharmaceuticals. An
ced chemiluminescence (ECL) kit was purchased
Amersham Pharmacia Biotech; Hoechst 33258
urchased from Sigma-Aldrich; and U0126 and
4 were purchased from AG Scientific. Mouse
an-Ras (Ab-3), mouse anti–N-Ras, and mouse
-Ras antibodies (Ab) were obtained from Calbio-
; rabbit anti-p21, rabbit anti–TTF-1, and rabbit
-tubulin Abs were from Santa Cruz Biotechnology;
e anti–phospho-ERK Ab was from Sigma-Aldrich;
anti–phospho-Akt (ser473) and rabbit anti–glycer-
yde-3-phosphate dehydrogenase (14C10) Abs were
Cell Signaling Technology. Peroxidase-conjugated
nti-mouse IgG, peroxidase-conjugated goat anti-
G, and peroxidase-conjugated goat anti-rabbit IgG
from Jackson ImmunoResearch Laboratories.
tein bands were quantified by densitometry with
age EZQuant-Gel software (EZQuant Ltd.).

fection assays
transfection assays, 2 × 105 ARO cells per well and
me number of MRO cells per well were plated in
ell plates. On the following day, the cells were trans-
with plasmid DNA coding for green fluorescent
n (GFP)-Ras(17N) (2 μg) or with a vector with con-
oding for GFP (2 μg), using a Lipofectamine 2000
ection kit (Invitrogen).

roliferation assay
O, MRO, and NPA cells were plated in 5% FCS me-
t a density of 1.5 × 104 cells per well in 96-well
. On the following day, cells were treated with 50,
100 μmol/L FTS or the vehicle (0.1% DMSO). Pro-
ion was assessed by incorporation of bromodeox-
ine (BrdUrd), using the BrdUrd cell proliferation
kit (Calbiochem).

iability
O, MRO, and NPA cells (all at 1.5 × 104 cells/well in
ll plates) were treated for 24 hours with 50, 75, or
mol/L FTS or the vehicle (0.1% DMSO). Cell viabil-
as estimated by the alamarBlue assay (Serotec)
ing to the manufacturer's instructions.

ern immunoblotting
O, MRO, and NPA (0.4 × 106 cells/10-cm) were

ed in RPMI 1640 containing 5% FCS. Cells were
d with 75 μmol/L FTS or with the vehicle (0.1%

Mol Cancer Ther; 9(8) August 2010 2209
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) for 48 hours, then lysed and subjected, as previ-
described (17), to SDS-PAGE and immunoblotting
ne of the following Abs: 1:2,500 pan-Ras, 1:50 anti-
s, 1:1,000 anti–β-tubulin, 1:1,000 anti–Gal-3,
00 anti–phospho-ERK, 1:2,000 anti-ERK, 1:750 anti-
and 1:500 anti-TTF-1. Immunoblots were then
ed to peroxidase-conjugated goat anti-mouse IgG,
idase-conjugated goat anti-rabbit IgG, or peroxidase-
ated goat anti-rat IgG (all at 1:5,000), and protein
were visualized using the ECL kit.

TP assays
ates containing 1 mg protein were used for determi-
of Ras-GTP by the glutathione S-transferase-Ras
g domain of Raf pull-down assay, as previously
ibed (17), followed by Western immunoblotting
as isoform–specific Abs as described above.

tions and short hairpin RNAs
ses were produced by transient triple-transfections
K 293 cells using 6 μg retroviral vectors (Open-
stems) encoding for specific short hairpin RNA
A) against Gal-3 (V2HS_133963) in combination
μg pMD2G and 3 μg pCGP encoding the retroviral

ope, and the Gag and Pol proteins, respectively.
ontrol, we used 6 μg of no-silencing shRNA (Open-
stems, RHS1707) or MSCV-PIG–encoding GFP.
es were collected 48 hours after transfection. Two
ters of viral supernatant containing 8 μg/mL poly-
(H9268; Sigma) were used for infections using very
ensity cultured cells as indicated. Infected cells were
ed to recover and used at least 72 hours after infec-

ed by ECL. A, thyroid carcinoma cell lines. B, benign human thyroid and thy
control. C,MROcellswere infectedwith retroviruses containing distinct shRN
for Western blotting, Ras-GTP pull-down assay as
bed below.

group
determ

ancer Ther; 9(8) August 2010

on February 22, 2019. © 20mct.aacrjournals.org wnloaded from 
T solution was added to a final concentration of
g/mL for 2 hours at 37°C, followed by DMSO.
lates were read on a micro-ELISA reader at a test
length of 570 nm and a reference wavelength of
m.

cal microscopy
O cells (2 × 105 cells) were plated on glass coverslips
eated for 48 hours with 75 μmol/L FTS or the vehicle
ol; 0.1% DMSO). After 72 hours, the cells were fixed
ermeabilized with 0.5% Triton X-100. Samples were
ed with 2% bovine serum albumin and 200 μg/mL
globulin for 30 minutes. Cells were labeled with

mL anti–TTF-1, rat anti–Gal-3, or anti–pan-Ras Abs
our, and then with 1:750 goat anti-rabbit fluorescein,
nti-rat fluorescein, or donkey anti-mouse cy3 Abs
on), respectively. Each incubation was followed by
extensive washes. Staining intensity was analyzed
Meta Zeiss LSM 510 confocal microscope. TTF-1 in
cleus of each cell was quantified by ImageJ software.

al experiments
ymic nude mice (ages 6 wk) were housed in barrier
ies on a 12-hour light/dark cycle. Food and water
supplied ad libitum. On day 0, ARO cells (5 × 106

n 0.1 mL PBS) were implanted s.c. just above the
femoral joint as previously described (17). After
s, by which time tumor volumes were 0.3 to
3, mice were separated randomly into two groups
ice per group). Mice in one group were treated daily
oral Salirasib (100 mg/kg FTS) and in the other

rcinoma WRO and NPA cell lines. The NPA cell line served as a
ence against Gal-3 or nonsilencing shRNAsequences (sh−) orGFP.
1. Gal-3 expression in thyroid carcinoma cells correlates positivelywith the expression of K-Ras.GTP.Cells of themedullary thyroid carcinoma cell line TT
he thyroid carcinoma cell lines ARO, NPA, MRO, and WRO were homogenized, and expression levels of Ras.GTP, Ras total, Gal-3, K-Ras.GTP,
otal, and the Ras downstream effector ERK and phospho-ERK were determined in aliquots of the cell homogenates by SDS-PAGE followed by
blotting with the relevant specific Abs as described in Materials and Methods. β-Tubulin served as a loading control. Shown are typical immunoblots
with the vehicle only, and their volumes were
ined as previously described (17).
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er 25 days, the mice were killed by cervical translo-
and the tumors were weighed. Tumors were then
genized.

tical analysis
entages of control cell numbers. The experiment was repeated three times; column
. Right, results obtained for thyroid epithelial cells from benign thyroid nodules.

acrjournals.org
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lts

expression in thyroid carcinoma correlates
ively with high expression levels of K-Ras.GTP
ng the Ras binding domaine of Raf pull-down assay
dent's t test was used for statistical analysis. Avalue
0.05 was considered significant.

and pan-Ras Abs to determine expression levels of active
Ras (Fig. 1A), we found that ARO, MRO, and NPA—all

2. The Ras inhibitor FTS inhibits cell growth of thyroid carcinoma cells expressing high levels of Gal-3 protein. A, thyroid carcinoma cell growth
ited by FTS. Cells of the ARO, MRO, and NPA cell lines were grown (4 × 105 cells per 10-cm plate) for 48 h in the presence of 5% serum as described
rials and Methods. They were then treated with 75 μmol/L FTS or 0.1% DMSO (vehicle control) for 72 h and visualized under a microscope.
phase-contrast images are shown (magnification, ×20). B, top, reduction in cell proliferation of thyroid carcinoma cells by FTS. The above cell
.5 × 104 cells) were grown in the presence 5% FCS and then treated for 24 h with 50, 75, 80, or 100 μmol/L FTS or 0.1% DMSO (control).
ration of BrdUrd into the DNA of FTS-treated cells is expressed as a percentage of its incorporation into the control; columns, mean; bars, SEM
**, P < 0.01. Bottom, viability of FTS-treated thyroid carcinoma cells. Cells were grown and treated as described above, and then assayed for viability
e alamarBlue reagent (see Materials and Methods). Cell viability is recorded as the amount of alamarBlue fluorescence in the FTS-treated cells
ed as a percentage of its amount in the control; columns, mean; bars, SEM (n = 3). C, comparison of FTS-induced reduction in cell proliferation
nant and benign thyroid cells. WRO thyroid carcinoma cells and benign human thyroid cells N466, P473, and D499 were grown (8 × 103 cells
well plate) in the presence of 5% FCS, and then treated for 72 h with FTS or 0.1% DMSO (control). Numbers of FTS-treated cells are expressed
s, mean; bars, SEM. Left, results obtained for the WRO carcinoma

Mol Cancer Ther; 9(8) August 2010 2211
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d carcinoma cell lines—expressed Ras.GTP at high
relative to the TT cell line, a thyroid carcinoma de-

resence of 5% serum as described in Materials and Methods. They were the
control). Cell viability was then measured by MTT assay as described in Mat
from the medullary rather than from the follicular
elium, making it suitable for use as a negative

Ras.G
mas a

ancer Ther; 9(8) August 2010

on February 22, 2019. © 20mct.aacrjournals.org wnloaded from 
l. Because none of the cell lines under study bears
mutation (24, 25), the relatively high levels of

d with LY (20 μmol/L), UO126 (30 μmol/L), or 0.1% DMSO
nd Methods; columns, means; bars, SEM (n = 3); **, P < 0.01.
3. FTS inhibits Ras and its signals in the thyroid carcinoma ARO and MRO cells. A, FTS (75 μmol/L) reduces Ras.GTP expression in thyroid carcinoma
s.Cells wereplated asdescribed in Fig. 1A, treated for 48 hwith 75 μmol/L FTS or vehicle (control), and then lysed. Lysateswere subjected toquantification
e Ras.GTP and total Ras by SDS-PAGE, and this was followed by immunoblotting with pan-Ras Abs as described in Materials and Methods.
lin served as a loading control. Typical immunoblots visualized by ECL are shown. Immunoblots were quantified as described in Materials and
s; right, results; columns, mean; bars, SEM (n = 3); *,P < 0.05. B, FTS (10 μmol/L) reducesK-Ras.GTPexpression in thyroid carcinoma cell lines. Cells were
s in A but at a much lower serum concentration (0.5%), treated for 24 h with FTS or vehicle (control), and then lysed. Lysates were subjected to
cation of active K-Ras.GTP and total K-Ras by SDS-PAGE and immunoblotting as described for A. β-Tubulin served as a loading control. Left, typical
blots visualized by ECL; right, K-Ras.GTP expression levels; columns, means; bars, SEM (n = 3). C, FTS (75 μmol/L) reduces phospho-ERK in ARO
O cells. Cells were treated as in A, lysed, and the lysateswere subjected to SDS-PAGE followed by immunoblotting with anti-ERK and anti–phospho-ERK
ft, typical immunoblots visualized by ECL; right, expression levels of phospho-ERK; columns, mean; bars, SEM (n = 3); *, P < 0.05. D, the MEK
r UO126 but not the PI3-K inhibitor LY-294 inhibits cell growth of thyroid carcinoma. Cells of the ARO and the MRO were grown (8 × 103 cells) for 72 h
TP expression observed in these thyroid carcino-
re probably attributable to stimulation of Ras

Molecular Cancer Therapeutics
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nge factors by growth factor receptors (16), and
ly also in part to the action of Ras chaperones that
ize the active Ras.GTP (9, 17). To verify the latter
ility, we assayed Gal-3, which is known to play a
n thyroid malignancies (20, 21) and is a known
rone of K-Ras.GTP (9, 11). We found that whereas
MRO, and NPA cells expressed relatively high le-
f Gal-3, the expression of this protein by the TTcells
ery low (Fig. 1A). Importantly, H-Ras levels in all cell
ere so low that the levels detectedwith the available
–specific Ab were not significant. N-Ras expression
-Ras.GTP could be detected, but there were no direc-
differences among the cell lines used (data not
). Therefore, there is no evidence for any importance
-3 expression on activation of H-Ras or N-Ras in thy-
arcinoma cells, consistent with our previous results
al-3 interacts only with K-Ras.GTP (9–11).
then compared Gal-3 and active Ras expression
in benign thyroid cells with those in malignant
d cells. In line with previous reports, all cell lines
ere found here to express Gal-3 also expressed rel-
y high levels of K-Ras.GTP, whereas in the benign
K-Ras.GTP expression was very low, despite
expression by these cells of the K-Ras protein it-
ig. 1B). It should be noted that because of differ-
in the expression of total-ERK protein between the
n and the malignant thyroid cells, phospho-ERK
ssion in these experiments might be variable.
theless the low levels of phospho-ERK in WRO
Fig. 1B) in the presence of high levels of Ras-GTP
al-3 might be associated with additional factors
lling ERK phosphorylation/dephosphorylation.
in all, these results are consistent with earlier
s (9, 11, 26) that Gal-3 expression promotes high
.GTP expression, as well as signaling that allows
lls to proliferate rapidly and to exhibit marked
ivity to the Ras inhibitor FTS. -Ras levels were
that levels detected with the available H-Ras–

ic Ab were not significant. N-Ras expression and
.GTP could be detected, but therewere no direction-
ferences among the cell line. Thus, there was no
ence among cell lines in the levels of N-Ras.GTP/
-Ras as we see in the case of K-Ras.GTP. Therefore,
is no evidence for any significance of Gal-3 on the
tion of H-Ras orN-Ras, consistent with our previous
s (9–11).
ally, we performed experiments to examine if the
phenotype thyroid carcinoma can be rescued.
und that MRO cells expressing shRNA to Gal-3
ited much lower levels of Gal-3, K-Ras-GTP,
hospho-ERK compared with the control (GFP or
lencing shRNA; Fig. 1C)

levels of K-Ras.GTP in thyroid carcinoma cell
correlates with inhibition of cell growth by FTS
first examined the effects of the Ras inhibitor FTS

growth of three types of thyroid carcinoma cells,

ly the ARO (anaplastic), MRO (follicular), and NPA
detect
treatm

acrjournals.org

on February 22, 2019. © 20mct.aacrjournals.org wnloaded from 
lary; refs. 24, 25) cell lines. Figure 2A shows typical
micrographs of cells that were plated and cultured
cribed in Materials and Methods, and then grown
hours with the addition of 75 μmol/L FTS or vehi-
ontrol). Of all these cell lines, ARO cells exhibited
ost markedly transformed phenotype and grew in
rs (Fig. 2A) consistent with their high degree of
nancy. Treatment of each of the cell lines with FTS
a reduction in their numbers and alterations in

morphology, as well as in the cell-to-cell contacts
O cells and of MRO cells (Fig. 2A). The clearest
was observed in ARO cells, which are highly
ive to FTS treatment.
of the BrdUrd assay to examine the effects of the Ras
tor FTS on cell proliferation revealed a strong, dose-
dent inhibition of BrdUrd incorporation into the
of all three cell lines (Fig. 2B, top). The cell viability
t alamarBlue indicated induction of death in all cell
Fig. 2B, bottom). Both the BrdUrd and the cell viability
disclosed an IC50 of <50 μmol/L for FTS (Fig. 2B).
results are in line with early reports indicating
e higher the proliferation rate of a given tumor cell
ith marked dependency on active Ras.GTP, the more
ive the cells will be to inhibition of proliferation by
7, 28).
then compared the effect of FTS on the growth of a
stablished follicular thyroid carcinoma cell line
(29) to its effect on the proliferation of benign

id cells. The malignant cells exhibited much more
ivity than the benign cells to FTS (Fig. 2C).

ownregulates K-Ras.GTP and affects K-Ras
ling to ERK in the Gal-3–expressing ARO and
cells
examining the effects of FTS on Ras.GTP in the
us thyroid carcinoma cell lines, we found that
75 μmol/L, applied for 48 h) reduced Ras.GTP ex-
ion levels while affecting total Ras only slightly
3A). A separate experiment showed that FTS also
ed the levels of K-Ras.GTP expression (Fig. 3B).
is latter experiment, we used serum-starved cells
t the effect of FTS could be determined under basal
tions, i.e., free from any serum-related stimulatory
s. Notable are the relatively low FTS concentration
in these experiments (Fig. 3B) because they are done
serum.Under these conditions, the free concentration
is highbecause serumbindingof the drug is avoided.
shown in Fig. 3B, even under conditions of serum
tion, K-Ras.GTP expression was relatively high in
MRO, and NPA cell lines and was reduced by FTS.
etermine whether the decrease in K-Ras.GTP expres-
n the FTS-treated thyroid carcinoma cells was trans-
into a reduction in Ras signaling, we examined
ho-ERK and phospho-Akt expression levels as read-
f the two prominent Ras pathways, Raf/MEK/ERK
I3-K/Akt, respectively. Because phospho-Aktwas not

ed in any of the cell lines even in the absence of drug
ent (data not shown), it could not be used as readout
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s signaling. However, as described above (see Fig. 1),
ho-ERKwas detectable in all cell lines, and treatment

S significantly reduced the amounts of phospho- MRO (Fig. 3D). FTS, moreover, had no inhibitory effect
T

in
ancer Ther; 9(8) August 2010
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inhibitor UO126 but not the PI3-K inhibitor LY-294
ited cell growth of thyroid carcinoma ARO and
ARO and MRO cells (Fig. 3C). In addition, the on phospho-ERK in NPA cells (Fig. 3C). The observed
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tion in phospho-ERK in ARO and MRO cells, which
ated with cell growth inhibition by FTS in these
ell lines, is consistent with reports that the Raf/
ERK pathway plays a critical role in thyroid carcino-
4, 30, 31). In NPA cells, whose high K-Ras.GTP was
regulated (like that in ARO and MRO cells) by FTS
3B), the lack of effect of FTS on phospho-ERK is
bly attributable to the fact that these cells carry acti-
B-Raf mutations (V600E) in both alleles (32). In NPA
therefore, an active Ras-independent Raf signal to
s relatively strong. This is not the case in ARO cells,
are heterozygous with respect to the activated mu-
-Raf and carry one wild-type B-Raf allele, or in MRO
hich carry no B-Raf mutations (24, 32). Thus, it can

pected that in ARO and MRO cell lines, the Ras-
dent activation of wild-type B-Raf will be inhibited
their K-Ras.GTP is downregulated by FTS (Fig. 3).

pregulates the cell cycle inhibitor p21 and the
id transcription factor 1 in thyroid carcinoma
nes
lier studies by our group using cancer cell lines
active Ras showed that the cell cycle inhibitor
hich inhibits cyclin-dependent kinase 2, is nega-
regulated, at least in part, by active Ras (33);

dingly, FTS was found to increase the levels of
xpression in several cancer cell lines (34). On ex-
ng whether FTS affects p21 in the thyroid cell lines
in this study, we found that ARO, MRO, and NPA
all exhibited an FTS-induced increase in p21 ex-
on levels (Fig. 4A), which was accompanied by a
tion in K-Ras.GTP expression and inhibition of cell
h in these cells (Figs. 2 and 3A). Similar results
obtained with DN-Ras (Fig. 4B). It thus seems that
crease in p21 expression induced by FTS is a
factor inhibiting cell proliferation in thyroid cells
xpress high levels of Gal-3.
t, we examined whether FTS affects the expression

F-1, which in thyroid carcinomas is negatively reg-
by the Raf/MEK/ERK pathway (35). We found

and t
MEK/

ed in Materials and Methods; right, results; columns, mean; bars, SEM (n = 3); *

acrjournals.org

on February 22, 2019. © 20mct.aacrjournals.org wnloaded from 
TF-1 was upregulated by FTS in ARO and MRO
but not in NPA cells (Fig. 4A), consistently with
nding that Ras-dependent ERK activation is more
tive to FTS in ARO and MRO cells than in the
cell line (Fig. 3C). Like FTS, dominant-negative
Ras downregulated phospho-ERK and upregulated
21 and TTF-1 in ARO and MRO cells (Fig. 4B).
above findings thus suggested that Ras inhibition by
r by DN-Ras reverses, at least in part, the malignant
type of the most malignant cell line studied here
) by arresting cell growth and increasing the differen-
transcription factor TTF-1, known to be a critical fac-
differentiation of thyroid cells (36). Microscopic

ination of FTS-treated ARO cells indeed revealed a
e in their morphology with the cells becoming more
d out and less clustered (Fig. 1A). In addition, we ob-
d a pronounced increase in nuclear TTF-1 in these
fter FTS treatment, as well as some increase, as yet
lained, in paranuclear TTF-1 (Fig. 4C). Like FTS,
EK inhibitor UO126 induced a marked increase in
vels of p21 and TTF-1 expression in ARO and MRO
Fig. 4D), suggesting that these increases aremediated
gh inhibition of the Ras/Raf/MEK/ERK pathway.
en together, the results described above suggested
nteractions of Gal-3 with K-Ras.GTP in ARO and
cells result in a robust signal to the Raf/MEK/
cascade, which negatively regulates p21 (28, 33)
TF-1 (35, 37), and hence that K-Ras.GTP-Gal-3 com-
induce cell growth and inhibit differentiation.

isrupts K-Ras-Gal-3 colocalization in cell
branes of ARO cells
observed FTS-induced reduction in Ras.GTP,
was much stronger than the FTS effect on total
ig. 3A and B), is consistent with early reports that
nterferes with the interactions between active Ras
e cell membrane (38, 39). It does this mostly by dis-
g the Gal-3–driven nanoclustering of K-Ras.GTP

he robust signal of the nanocluster to the Raf/
ERK cascade (9, 11, 26). To verify that FTS indeed
4. FTS treatment increases the carcinoma cell inhibitor p21 and thyroid transcription factor 1 in thyroid carcinoma cells. A, FTS upregulates
d TTF-1 expression levels in thyroid carcinoma cell lines. ARO, MRO, and NPA cells were plated and treated with 75 μmol/L FTS as described
3A. The cells were then lysed and subjected to SDS-PAGE followed by immunoblotting with anti-p21 and anti–TTF-1 or anti-β–tubulin (control)
ft, typical immunoblots visualized by ECL; right, record expression levels of p21 and TTF-1; columns, means; bars, SEM (n = 3); *, P < 0.05.
ion levels of p21 in the FTS-treated ARO, MRO, and NPA cells were significantly higher than in the corresponding controls (*, P < 0.05), as were
xpression levels in the FTS-treated ARO and MRO cells (*, P ≤ 0.05). No such differences in TTF-1 expression levels were observed in the NPA
, DN-Ras decreases phospho-ERK and increases TTF-1 expression in thyroid carcinoma cells. Cells were transfected with vectors expressing
P-Ras(17N) or GFP (control) as described in Materials and Methods. Cells were lysed 48 h after transfection, and the lysates were subjected to
GE followed by immunoblotting with anti–TTF-1, anti-p21, anti–phospho-ERK, anti-ERK, and anti–β-tubulin Abs. Left, typical immunoblots from

three experiments visualized by ECL. Right, expression levels of GFP [control and DN-GFP-Ras(17N); *, P < 0.05]. C, confocal fluorescence images
treated and FTS-nontreated (control) ARO cells. Cells were plated on glass coverslips and treated with FTS or vehicle (control) as described in
ls and Methods. They were then labeled with Hoechst stain and rabbit anti-TTF-1 Ab, and then with fluorescein-labeled goat anti-rabbit Ab,
aged as described in Materials and Methods. Typical images, including dual-fluorescence merged images (green, TTF-1; blue, Hoechst-stained
are shown. Similar results were obtained in three independent experiments. Right, the relative extent of fluorescine fluorescence recorded in the
ent [FTS treated/control; columns, mean; bars, SEM (n = 25 cells); **, P < 0.01]. D, the MEK inhibitor UO126 increases p21 and TTF-1 expression
ARO and MRO cells. Cells (2 × 105 cells per 6-cm plate) were grown for 24 h in RPMI containing 5% FCS with or without UO126 (10 μmol/L).

ere lysed, and the lysates were subjected to SDS-PAGE followed by immunoblotting with anti–TTF-1, anti-p21, anti–phospho-ERK, anti-ERK, and
tubulin Abs as described in Materials and Methods. Left, typical immunoblots from one of three experiments. Immunoblots were quantified as
, P < 0.05).
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ts the interaction between K-Ras and Gal-3 in the
embrane, we used ARO cells, the most malignant
cell lines in our series, and stained them, before

fter FTS treatment, with both mouse anti-pan Ras
d rat anti–Gal-3 Ab. The cells were then stained
cy3-labeled anti-mouse Ab (Ras labeling, red in
A) and with fluorescein-labeled anti-rat Ab (Gal-3
g, green in Fig. 5A). Typical confocal fluorescence
s from these experiments showed that Ras was
zed mainly to the cell membranes of the control
Fig. 5A, ii), and that after FTS treatment, a major
on of Ras was mislocalized on the cytoplasm
5A, v). It is important to note that Gal-3 in these
cells was found to be localized before being treated
FTS, both on the cytoplasm and on the cell mem-
(Fig. 5A, i), whereas after FTS treatment most of
al-3 was cytoplasmic (Fig. 5A, iv). The pronounced
of FTS on interactions between endogenous Ras
al-3 proteins is clearly shown in the observed dis-
n of Gal-3 and Ras colocalization on the plasma
rane of the drug-treated cells (Fig. 5A, iii and
uantitative analysis of the results is shown in
B. Importantly, these results show disruption of
teraction between Ras and Gal-3 in cancer cells
ut any exogenous expression of the two binding
rs. Because we know from earlier reports that of
s isoforms only K-Ras.GTP interacts with Gal-3,
n view of our demonstration that expression of
.GTP levels in ARO cells is high (Fig. 1), we
ude that FTS disrupted the interaction between
.GTP and Gal-3 in the cellular plasma membranes.
esults also support the notion that FTS dislodges
om the plasma membrane and that the cytosolic
en degrades. First, we see a clear FTS-induced re-
uting of K-Ras from its typical plasma membrane
ation to the cytososl (Fig. 5). Second, determina-
f the levels of total K-Ras in the cells showed
TS caused a reduction in the levels of the protein
B). These results suggest that Ras, which was dis-
d from the cell membrane by FTS (Fig. 5), was
egraded.

nhibits ARO cell tumor growth in a nude
e model
determine whether FTS can inhibit the growth of
id carcinomas in vivo, we again used ARO, the
malignant anaplastic carcinoma cell line. This

of tumor is currently incurable. After cancer cell
ntation and treatment with FTS or vehicle as de-
d in Materials and Methods, the mice were killed
mor weight measurement and pharmacodynamic
sis. Figure 6 presents typical results of one exper-
of three that yielded similar results. Each lane re-
ts blots obtained from one mouse (controls 1–4;
eated 1–4). As shown, FTS treatment caused a sig-
nt reduction in the rate of tumor growth (Fig. 6A).

r weight at the end point was also significantly
in the FTS-treated group than in the control

plasma
of cells
numbe

ancer Ther; 9(8) August 2010

on February 22, 2019. © 20mct.aacrjournals.org wnloaded from 
6B). Figure 6C presents the results of the pharma-
amic analysis. FTS treatment caused significant
tions in Ras.GTP, Gal-3, and phospho-ERK
C, i; for quantification see Fig. 6C, ii) and upregu-
of TTF-1 and p21 (Fig. 6C, iii; for quantification see
C, iv). Taken together, these results showed that
its its target in the tumors in vivo and inhibits
owth of this anaplastic thyroid tumor.

ssion

results of this study showed that the Ras inhibitor
n vitro (Fig. 2) and the growth of thyroid tumors in

5. FTS disrupts K-Ras-Gal-3 colocalization in the cell membranes
cells. ARO cells were treated with FTS or vehicle and prepared
focal microscopy as described in Materials and Methods.
g with mouse anti-pan Ras Ab was followed by labeling with
eled donkey anti-mouse and rat anti–Gal-3 Abs, and then with
ein-labeled goat anti-rat Ab as described in Materials and
s. A, typical dual fluorescence images (green, Gal-3; red, Ras;
ars, 10 μm). Ras and Gal-3 are colocalized in the cell membranes
rol cells. FTS treatment caused mislocalization of Ras and
d Gal-3 in the plasma membrane. B, statistical analysis of the
Data are presented as the numbers of cells with Ras in the
membrane relative to the total cell numbers and the numbers

with Gal-3 in the plasma membrane relative to the total cell
rs; columns, mean; bars, SEM (n = 45 cells); *, P < 0.05.
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e mouse model (Fig. 6). Consistently with the
n anti-Ras activity of FTS, we showed here that
ignificantly reduced the expression levels of
.GTP and its downstream target phospho-ERK in
d cancer cells (Fig. 3). These findings are in accord
the mode of action of FTS, as reported in many
cell lines that harbor activated Ras (40, 41). More-

in agreement with reports that FTS can inhibit the
h of tumor cells that do not harbor ras gene muta-
(42, 43), we found here that FTS inhibits the

o-ERK, TTF1, and p21 expression, normalized by β-tubulin expression, in FT
h of ARO, MRO, WRO, and NPA thyroid carcino-
ll lines (Fig. 2), none of which harbors mutated

chron
ARO,

acrjournals.org

on February 22, 2019. © 20mct.aacrjournals.org wnloaded from 
he lack of correlation between ras gene mutations
he growth-inhibitory effects of FTS might be ex-
d by the presence of other factors, such as hyper-
growth factor receptors that activate Ras (16, 44,

r the expression of Ras scaffold proteins that might
o chronic activation of Ras (9, 17).
e, we examined the possibility that overexpression
roid cancer cells of Gal-3, a selective intracellular
ld protein of K-Ras.GTP (9, 11, 26), enhances Ras
ling and, as a consequence, may contribute to

ted and control mice; columns, mean; bars, SEM (n = 4); *, P < 0.05.
6. FTS inhibits ARO thyroid cell tumor growth in a nude mouse model. Nude mice were injected s.c. in the flank with ARO cells and treated with
vehicle (control) as described in Results. Tumor volumes and weights were determined as described in Materials and Methods. A, ARO cell tumor
in FTS-treated and control mice as a function of time; points, mean; bars, SEM; *, P < 0.05. B, ARO cell tumor weight on day 25 of treatment in
ated and control mice; columns, mean; bas, SEM; **, P < 0.01. C, levels of phospho-ERK, ERK, Ras.GTP, total Ras, Gal-3, and β-tubulin in one
ent (top) and levels of TTF-1, p21, and β-tubulin in a second experiment (bottom) were determined in the tumor homogenates. Each lane represents
ic activation of K-Ras. The thyroid cancer cell lines
MRO, and NPA, all of which strongly express
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indeed exhibited high levels of K-Ras.GTP expres-
hen compared with TT thyroid cancer cells, in
Gal-3 expression is very low (Fig. 1). These results
rt our previously reported finding in a breast
r cell line that overexpression of Gal-3 represents
enic subversion of K-Ras.GTP nanoclustering in
asma membrane, thereby increasing K-Ras signal
t (11, 26). In the present study, oncogenic sub-
n was detected in thyroid cancer cells with no
nous expression of Ras, Gal-3, or any other onco-
or tumor suppressor. This is of particular interest
se thyroid tumors that strongly express Gal-3 are
ely invasive, and their prognosis is poor (20, 21).
ow here that FTS, which disrupts the interaction
en K-Ras.GTP and Gal-3, induces mislocalization
h proteins from the cell membrane to the cytoplasm
), thereby explaining the drug-induced reduction
as.GTP. It is interesting to note that the reduction
as.GTP in ARO and in MRO was accompanied by
tion in signaling to ERK, but not to Akt, in agree-
with previous reports that ERK is important and
ess important for thyroid carcinoma growth
0, 31). We also showed here that, as in many other
nes with active Ras pathways (33, 34), FTS causes
rease in expression of the cell cycle inhibitor p21
), and that this increase contributes to the attenua-
f thyroid carcinoma cell proliferation in the pres-
f FTS.
ther important finding of this study was the pro-
ed stimulatory effect of FTS on the specific factor
, a major player in thyroid cell differentiation (7,
). This factor is negatively regulated by the Ras/
EK/ERK cascade (35, 37), and indeed, its expres-

s almost completely lost in thyroid anaplastic carci-
s (46). Consistent with those reports, we found here
hibition of the active K-Ras.GTP-Gal-3 complex by

as accompanied by the downregulation of phos-
RK and upregulation of TTF-1 expression (Fig. 4).
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