Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines

Matthew A. Bill,¹ Courtney Bakan,¹ Don M. Benson, Jr.,¹ James Fuchs,² Gregory Young,³ and Gregory B. Lesinski¹

¹Department of Internal Medicine, Division of Hematology and Oncology, ²Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, ³The Center for Biostatistics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio

Abstract

Curcumin has potential as a chemopreventative and chemotherapeutic agent, but its interactions with clinically relevant cytokines are poorly characterized. Because cytokine immunotherapy is a mainstay of treatment for malignant melanoma, we hypothesized that curcumin could modulate the cellular responsiveness to interferons and interleukins. As a single agent, curcumin induced a dose-dependent increase in apoptosis of human melanoma cell lines, which was most prominent at doses > 10 μmol/L. Immunoblot analysis confirmed that curcumin induced apoptosis and revealed caspase-3 processing, poly ADP ribose polymerase cleavage, reduced Bcl-2, and decreased basal phosphorylated signal transducers and activators of transcription 3 (STAT3). Despite its proapoptotic effects, curcumin pretreatment of human melanoma cell lines inhibited the phosphorylation of STAT1 protein and downstream gene transcription following IFN-α and IFN-γ as determined by immunoblot analysis and real time PCR, respectively. Pretreatment of peripheral blood mononuclear cells from healthy donors with curcumin also inhibited the ability of IFN-α, IFN-γ, and interleukin-2 to phosphorylate STAT proteins critical for their antitumor activity (STAT1 and STAT5, respectively) and their respective downstream gene expression as measured by real time PCR. Finally, stimulation of natural killer (NK) cells with curcumin reduced the level of interleukin-12–induced IFN-γ secretion, and production of granzyme b or IFN-γ upon coculture with A375 melanoma cells or NK-sensitive K562 cells as targets. These data show that although curcumin can induce apoptosis of melanoma cells, it can also adversely affect the responsiveness of immune effector cells to clinically relevant cytokines that possess antitumor properties. [Mol Cancer Ther 2009;8(9):OF1–10]

Introduction

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadien-3,5-dione] is the primary bioactive component isolated from turmeric, a dietary spice made from the rhizome of Curcuma longa (1). Curcumin has chemopreventative and chemotherapeutic properties in numerous experimental models and has been shown to inhibit a variety of cellular targets that promote survival and metastasis, including nuclear factor κ-B (NF-κB) and signal transducer and activator of transcription-3 (STAT3), among others (1–3). These data suggest that curcumin may be an effective means to modulate pathways that contribute to chronic inflammation leading to cancer. Despite its broad target specificity, curcumin has a favorable safety profile in humans (no dose-limiting toxicity up to 12 g/d; refs. 4, 5), although dietary curcumin has poor bioavailability (6). Nonetheless, curcumin has shown antitumor effects in vivo when administered via dietary supplement, oral gavage, or injection, even at the low concentrations achieved in these physiologic systems (7–14). Although our understanding of how curcumin can elicit antitumor activity is incomplete, this agent is being investigated in human oncology trials and its use by cancer patients as a form of alternative medicine will likely continue or even increase as anecdotal reports of its anticancer potential become widespread.

One clinical area in which effective chemopreventative agents could make a tremendous impact is in the adjuvant setting of melanoma. Here patients have been rendered disease free following surgical excision of a high-risk lesion (>4 mm in depth, or with lymph node involvement). These patients are at a high risk of local recurrence or even metastatic disease. The only Food and Drug Administration–approved adjuvant therapy is the cytokine IFN-α. The use of this agent is somewhat controversial due to its toxicity profile, but a recent meta-analysis showed a significant benefit of IFN-α in relation to both relapse-free and overall survival in the adjuvant setting of melanoma (15, 16). Cytokine
immunotherapy with single agent, high-dose IFN-α and interleukin-2 (IL-2) are also mainstays of treatment in the setting of metastatic disease where they can mediate complete clinical responses in approximately 10% of patients (17, 18). The mechanisms by which IFN-α or IL-2 mediates antitumor activity involve stimulation of host immune effector cells (18–21), although IFN-α can also exert direct antiproliferative, proapoptotic, and antiangiogenic effects on melanoma cells (22–26).

In addition to the clinical use of cytokines, endogenously produced type I interferons (IFN-α, IFN-β) and type II interferons (IFN-γ) are critical components of tumor immunosurveillance (27–29). In a similar manner, IL-2 has been shown to play an important role in survival, proliferation, and effector function of natural killer (NK) and T cells (30–32). The adjuvant setting of melanoma and the presence of micrometastatic disease represent scenarios in which effective tumor immunosurveillance could be of great clinical benefit. Based on these data, identifying chemopreventative agents that might complement the cellular actions of interferons and interleukins could have the greatest potential for clinical success.

In the present report, we show that curcumin can induce apoptosis and down-regulate proteins involved in the survival of human melanoma cells. However, pretreatment with curcumin inhibited IFN-α- and IFN-γ-induced signal transduction and downstream gene expression in human melanoma cell lines. Curcumin also significantly inhibited the response of peripheral blood mononuclear cells (PBMC) from healthy donors to key cytokines involved in antitumor immunity (IFN-α, IFN-γ, IL-2) at the level of signal transduction and gene expression. Finally, curcumin adversely modulated the function of NK cells to secrete IFN-γ in response to IL-12, and inhibited cytotoxicity of A375 human melanoma cells and NK-sensitive K562 target cells in vitro. Although the ability of curcumin to inhibit the response to cytokines is desirable for the prevention of cancers associated with chronic inflammation, the present data caution that it may negate the cellular response to immunotherapeutic cytokines that mediate cancer immunosurveillance.

Materials and Methods

Cell Culture and Reagents

A375 and Hs294T human metastatic melanoma cell lines and K562 chronic myelogenous leukemia cells were purchased from the American Type Culture Collection. The 1106 MEL and F01 human metastatic melanoma cell lines were a kind gift from Dr. Soldano Ferrone (University of Pittsburgh, Pittsburgh, PA) and were cultured as previously described (23). The radial growth phase WM 1552c and vertical growth phase WM 793b human melanoma cell lines were provided by Dr. M. Herlyn (Wistar Institute, Philadelphia, PA) and cultured as previously described (33). Recombinant human IFN-α2b was purchased from Schering-Plough, Inc. Recombinant human IFN-γ and IL-2 were purchased from R & D Systems, Inc. Recombinant human IL-12 was provided by Genetics Institute.

PBMC Isolation

PBMCs were isolated from source leukocytes of healthy donors (American Red Cross) via density gradient centrifugation using Ficoll-Paque (Amersham, Pharmacia Biotech) as previously described (34). Where indicated, NK cells were enriched from source leukocytes by negative selection with Rosette Sep reagents (Stem Cell Technologies, Inc.).

Curcumin

Curcumin was prepared via condensation of pentane-2,4-dione and vanillin according to the procedure of Venkateswarlu (35). Recrystallization of the crude precipitate from ethanol provided curcumin as orange needles, mp: 181°C to 183°C (182–184°C; ref. 36). The spectral data for the synthetic curcumin (1H NMR and 13C NMR) were also identical to that reported for the natural product (36). This approach routinely resulted in curcumin that was of >95% purity as determined by nuclear magnetic resonance spectroscopy, which is equal or superior to most commercially available samples (data not shown).

Immunoblot Analysis

Lysates were prepared from melanoma cell lines or PBMCs in Laemelli buffer and assayed for protein expression by immunoblot analysis as previously described with antibodies to STAT1 (BD Biosciences), pSTAT1, STAT3, pSTAT3, poly ADP ribose polymerase (PARP), Bcl-2, cyclin D1, caspase-3 (Cell Signaling Technology), or β-actin (Sigma; ref. 23). Following incubation with the appropriate horseradish peroxidase-conjugated secondary antibody, immune complexes were detected using the SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific).

Flow Cytometric Analysis of Phosphatidyl Serine Exposure

Phosphatidyl serine exposure was assessed in tumor cells by flow cytometry using allophycocyanin-labeled Annexin V (BD Pharmingen) as previously described (37). Propidium iodide exclusion was not used concurrently in these experiments due to the observation that curcumin produces considerable spectral overlap at wavelengths used to detect this viability exclusion dye. Each analysis was done utilizing at least 10,000 events.

Real Time PCR Analysis

Real time PCR was used to evaluate the expression of the IFN-α-stimulated genes (IFIT2, ISG-15), IFN-γ-stimulated gene (IRF1), and IL-2-stimulated gene [cytokine-induced SH2-containing protein (CIS)] in melanoma cell cultures or PBMCs as previously described (38, 39). Following cytokine treatment, total RNA was isolated using via TRizol extraction (Invitrogen), quantitated, and converted to cDNA using random hexamers (Invitrogen) as primers for first-strand synthesis. Two microliters of the resulting cDNA were used as a template to measure mRNA transcripts by real time reverse transcription-PCR (RT-PCR) with pre-designed primer/probe sets (Assays On Demand, Applied Biosystems) and 2X TaqMan Universal PCR Master Mix (Applied Biosystems) per the manufacturer’s recommendations. Pre-designed primer/probe sets for 18s rRNA (Applied Biosystems) were used to normalize expression values (housekeeping gene) and data...
were acquired and analyzed using the ABI Prism 7900 HT Sequence Detection System (Applied Biosystems).

ELISA for Quantitation of IFN-γ

Culture supernatants from normal human NK cells were assayed for IFN-γ by ELISA using commercially available monoclonal antibody (mAb) pairs as previously described (40). Standard curves were prepared for each plate, and all plasma samples from a single donor were run in duplicate and in parallel to minimize interassay variability.

ELISPOT Assays for Granzyme B and IFN-γ

To measure IFN-γ and granzyme B (GrB) secretion, ELISPOT experiments were conducted using MultiScreen 96-well plates (Millipore) as described previously (41). The plates were coated overnight at 4°C with 50 μL of anti-human GrB (Mabtech) or antihuman IFN-γ capture antibody (Mabtech) diluted to 10 μg/mL in PBS. After incubation, coated plates were blocked with 1% fetal bovine serum in PBS for 1 h at room temperature, then washed four times with media. Freshly isolated NK cells (effectors) were incubated overnight in media with either 20 μmol/L curcumin or DMSO (vehicle). Effector cells were then coincubated in triplicate with A375 melanoma cells as targets, or K562 (positive control target; American Type Culture Collection) at an effector:target ratio of 20:1 for 4 h. Targets and effectors cultured alone were used as negative controls. After incubation, the plates were washed four times with 100 μL of PBS/Tween 0.05% Tween-20, and 100 μL of biotinylated monoclonal anti-human GrB or IFN-γ–detecting antibody (Mabtech) diluted to 1 μg/mL were added. After a 3-h incubation at room temperature, the plates were washed four times with PBS-Tween, and 100 μL of streptavidin-alkaline phosphatase (Mabtech) diluted to 1:1,000 with PBS were added for 2 h at room temperature. After the incubation, the plates were washed again with PBS-Tween, and 150 μL of BCIP/NBT phosphate substrate were added to each well. Plates were developed for 5 min at room temperature in the dark and the reaction was stopped by rinsing plates with distilled water. The membranes were air-dried and spots were visualized and counted using the ImmunoSpot Imaging Analyzer system (Cellular Technology Ltd.).

Statistical Analysis

Mixed effects regression models were used to analyze the results of the PBMC and ELISPOT experiments, including a random effect for donor and treatment. For the PBMC experiments, fold changes in gene expression were log-transformed to meet the model assumptions of normality. For ELISPOT experiments, data were obtained in at least three independent experiments with different NK cell donors. P values ≤0.05 were considered to be statistically significant.

Results

Curcumin Induces Apoptosis in Human Melanoma Cell Lines

Treatment of multiple human metastatic melanoma cell lines (A375, FO1, Hs294T, 1106 MEL) with curcumin for 48 hours induced a dose-dependent increase in Annexin V–positive cells that was most prominent at doses >10 μmol/L (Fig. 1A). Immunoblot analysis was used to confirm curcumin-induced apoptosis in representative lines by measuring the processing of caspase-3 and cleavage of PARP (Fig. 1B). Consistent with the documented ability of curcumin to inhibit the STAT3 and NF-κB signal transduction pathways (1, 42, 43), a reduced level of basal phosphorylated STAT3 and Bcl-2 proteins was observed in melanoma cells following curcumin treatment (Fig. 1C). Individual melanoma cell lines displayed differential curcumin sensitivity at the lower 10 μmol/L dose, but apoptosis was relatively uniform across all cell lines (~50%) after a 48-hour treatment with higher doses of curcumin (30 μmol/L; Fig. 1A). Curcumin also induced apoptosis at comparable concentrations in both the WM 1552c radial growth phase (41% apoptosis at 20 μmol/L curcumin) and WM 793b vertical growth phase (36% apoptosis at 20 μmol/L curcumin) human melanoma cell lines.

Curcumin Inhibits IFN-Induced Signal Transduction in Melanoma Cells

IFN-α and IFN-γ are clinically relevant cytokines that can induce direct proapoptotic effects against melanoma cells (26, 44). To determine whether curcumin can modulate the cellular response to these cytokines, representative human melanoma cell lines (A375 and FO1) were pretreated with curcumin (20 μmol/L) or vehicle (DMSO; negative control) for 6 hours (prior to the induction of apoptosis) and subsequently cultured for 15 minutes with PBS (vehicle), IFN-α (10 U/mL) or IFN-γ (10 ng/mL) to stimulate signal transduction. These doses were chosen as they induce a maximal degree of STAT1 phosphorylation at this time point (23). Cell lysates were evaluated by immunoblot analysis. Reduced levels of IFN-α and IFN-γ–induced STAT1 phosphorylation, and IFN-α–induced STAT3 phosphorylation was observed in these melanoma cell lines following pretreatment with curcumin (Fig. 2A and B). These data indicated that curcumin could modulate signal transduction events involved in promoting tumor progression (e.g., STAT3-mediated) or apoptosis (e.g., STAT1-mediated; ref. 43).

Curcumin Inhibits IFN-Induced Gene Expression in Melanoma Cells

The effect of curcumin on downstream IFN-induced gene expression was next evaluated by real time PCR. In these experiments, melanoma cell lines were pretreated for 1 hour with curcumin (20 μmol/L) or DMSO (vehicle) as a control and cultured in the presence of PBS, IFN-α (10^4 U/mL), or IFN-γ (10 ng/mL) for an additional 4 hours. Curcumin pretreatment of the multiple human melanoma cell lines led to consistent reductions in expression of the proapoptotic IFN-α-regulatory factor-1 (IRF1) gene expression following IFN-γ stimulation as compared with DMSO-pretreated cells (Fig. 2C). This gene has been previously shown to be transcribed via a STAT1-STAT1 homodimer binding to a γ-activated sequence element and is well characterized as an IFN-γ–responsive gene (46). Similar reductions in transcription of IFN-α–stimulated genes regulated by the ISGF3 complex (e.g., ISG-15) were also noted following curcumin pretreatment in representative melanoma cell lines (Fig. 2D and not shown).
Curcumin Inhibits IFN-Responsiveness of PBMCs

Stimulation of host immune effector cells is thought to contribute to the antitumor potential of interferons or interleukins (20, 21, 47). Similar to data obtained in melanoma cell lines, a 5-hour pretreatment of PBMCs isolated from healthy donors with curcumin (10 μmol/L or 20 μmol/L) also inhibited the ability of IFN-α and IFN-γ to phosphorylate STAT1 or STAT3 (Fig. 3A). Curcumin pretreatments also led to a striking inhibition of IL-2–induced STAT5 phosphorylation in PBMCs (Fig. 3B). These data suggested the inhibitory effects of curcumin were broad and not specific to the interferons. Subsequent real time PCR analysis in multiple donors further indicated that curcumin pretreatment significantly inhibited the IFN-γ–induced transcription of IRF1, and the IFN-α–induced transcription of ISG-15 in PBMC from all donors examined (Fig. 4A and B; \(P = 0.02 \) for IRF1; \(P = 0.05 \) for ISG-15). In some donors, the ability of curcumin to inhibit IFN responsiveness was dramatic. However, as shown in prior published studies, there was a high degree of donor variability in the individual responsiveness to IFN stimulation (38, 48). The curcumin-mediated inhibition of gene expression seemed to be dose-dependent, and was more pronounced for IFN-α–induced genes as compared with IFN-γ–induced genes (Fig. 4C and D). Similar data were obtained in PBMCs following curcumin pretreatment for the IL-2–responsive gene CIS (Fig. 4E), and were reproduced following a 4-hour costimulation of PBMCs with curcumin and these cytokines (not shown).

Curcumin Inhibits Innate NK Cell Function

We hypothesized that curcumin-mediated inhibition of signal transduction might also lead to a similar decrease in the function of NK cells. This cell subset can directly eliminate malignant cells and is activated in response to stimulation with a variety of immunoregulatory cytokines (49). Cotreatment of NK cells from healthy donors with curcumin and IL-12 (10 or 50 ng/mL) led to reduced secretion of IFN-γ as compared with NK cells cotreated with DMSO (vehicle) and IL-12 for 24 hours (Fig. 5A). Importantly, overnight treatment of healthy donor NK cells with curcumin (20 μmol/L) also impaired GrB release from NK cells against the A375 melanoma cell line, and the NK-sensitive K562 cell line, serving as a positive control target (Fig. 5B). Targets or effector NK cells cultured alone showed no GrB release (data not shown). Although an inherent degree of interindividual variability was observed in the NK cell response, the inhibitory effect of curcumin on NK cell function was consistently observed in three of three individual donors. Curcumin-treated NK cells exposed to A375 targets exhibited on average an 89 GrB spots/well decrease (± 29) over vehicle-treated NK cells from the same donor (\(P = 0.03 \)). A similar trend was seen against the K562 line where curcumin-treated NK cells yielded on average 65 less GrB spots/well (± 16) than vehicle-treated NK cells (\(P = 0.02 \)).

Consistent with our ELISA data obtained following IL-12 stimulation (Fig. 5A), curcumin also led to a slightly reduced production of IFN-γ by NK cells in the presence of A375.
melanoma and K562 target cell lines (Fig. 5C). Curcumin-treated NK cells exposed to A375 targets exhibited on average a 101 IFN-γ spots/well (± 68) decrease compared with vehicle-treated NK cells from the same donor ($P = 0.12$). A similar effect was seen against the K562 line where curcumin-treated NK cells produced on average 57 less IFN-γ spots/well (±18) than untreated NK cells ($P = 0.03$).

Discussion

The use of medicinal natural products is widespread in patients with various types of cancer. Recent estimates indicate that one third of Americans use medicinal natural products daily, and that possibly >50% of cancer patients use them as well (1). Curcumin represents a compound used in dietary supplements, and its antitumor potential is currently being evaluated in human clinical trials for various cancers, including multiple myeloma, pancreatic cancer, and colon cancer (50). Although the precise mechanisms by which many medicinal natural products elicit antitumor activity are unknown, these compounds do possess bioactive components that inhibit growth and promote apoptosis of malignant cells. However, few studies have explored in detail the off-target effects of these compounds on human immune cells, or their ability to modulate the cellular response to immunotherapeutic cytokines (51–53).

Due to the ability of the immune system to regulate tumor outgrowth, the interaction between bioactive compounds and host immune function is an important area of research. Data from the present study showed that curcumin induced apoptosis of human melanoma cells in vitro. Curcumin also inhibited the IFN-responsiveness of melanoma cells and

![Figure 2. Curcumin inhibits IFN-induced signal transduction and gene expression in melanoma cells. Pretreatment of human melanoma cells for 6 h with curcumin inhibited the phosphorylation of STAT1 (at Tyr701) in response to a subsequent 15-min stimulation with (A) IFN-γ (10 ng/mL) or (B) IFN-α (104 U/mL). Similar data were obtained in both the A375 and FO1 melanoma cell lines. Total STAT1 and STAT3 proteins were measured to control for loading. Curcumin pretreatment (20 μmol/L) inhibits the (C) IFN-γ-induced transcription of IRF1 and the IFN-α-induced transcription of (D) ISG-15 as determined by real time PCR. All PCR data were normalized to expression values for 18 s rRNA (housekeeping gene) and expressed as the fold change in gene expression relative to DMSO-treated cells. PCR data shown are representative of at least three independent experiments with similar results.](https://mct.aacrjournals.org/wp-content/uploads/2009/09/Figure2.png)
Curcumin inhibits cytokine-induced signal transduction. Efforts to improve the concentrations achieved in vivo have allowed for a more accurate interpretation as to whether the concentrations achieved in vitro were relevant for inducing tumor cell apoptosis. Efforts to improve the in vivo bioavailability and absorption of curcumin are being rigorously investigated and have produced promising initial results. For example, simply heating curcumin has been shown to increase its water solubility by 12-fold (68). In a similar manner, coadministration of curcumin together with piperine, an extract from black pepper, has been shown to increase the bioavailability of curcumin by 1,000% in normal human donors (5). This effect is primarily due to the ability of piperine to inhibit hepatic and intestinal glucuronidation, a major mechanism by which curcumin is rapidly metabolized (5). The present data suggest careful attention should be given to the immunomodulatory effects of curcumin once the hurdle of achieving systemic levels that induce apoptosis is overcome.

Although our understanding of melanoma development is in its infancy, the presence of activated lymphocytes in regressing tumors, the clinical activity of exogenous cytokines such as IL-2 and IFN-α, and the high incidence of autoimmune vitiligo observed in patients who respond clinically to IFN-α suggest that the immune system can influence the development and metastatic progression of melanoma (20, 23, 69). Consequently, melanoma represents a form of cancer.
that may be amenable to immune-based therapy. In particular, melanoma patients rendered disease free following surgery who are at high risk for recurrence represent a population in which chemopreventative agents could have a positive impact. Ideally, these agents could complement the actions of exogenous or endogenous immunostimulatory cytokines to provide a potentially greater clinical benefit.

Figure 4. Curcumin inhibits cytokine-induced gene expression in immune cells. PBMCs from normal donors were pretreated with curcumin (20 μmol/L) or DMSO (negative control) prior to stimulation with (A) IFN-γ (10 ng/mL) to induce IRF1 transcription or (B) IFN-α (10^4 U/mL) to induce ISG-15 transcription. C, IFN-γ–induced IRF1 expression and (D) IFN-α–induced ISG-15 and IFIT2 expression and (E) IL-2–induced CIS expression were evaluated by real time PCR in a representative normal donor following pretreatment with multiple doses of curcumin (10 or 20 μmol/L). All PCR data were normalized to expression values for 18 s rRNA (housekeeping gene) and expressed as the fold change in gene expression relative to DMSO-treated cells. Error bars in C–E are derived from triplicate wells in a single experiment with a representative donor.
In conclusion, data from the present study raise concern that utilizing medicinal natural products could negate the effects of immunotherapy or of the ability of the immune system to recognize tumors. Curcumin represents a single example of the numerous alternative medicine or nutritional supplements available over-the-counter that are used regularly in the absence of strong scientific data. In line with these concerns are recent reports that green tea polyphenols block
the antitumor properties of bortezomib and other boron-based proteasome inhibitors against multiple myeloma cells (70). These data suggest that the ability of bioactive natural products to modulate immune function and cytokine responsiveness deserves further investigation in a well-controlled manner before recommending their widespread use.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr. William E. Carson, III, for critical review of the manuscript, and the OSU CCC Analytical Cytometry, Nucleic Acid and Biostatistics Shared Resources.

References

Curcumin Inhibits Cytokine Response

Molecular Cancer Therapeutics

Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines

Matthew A. Bill, Courtney Bakan, Don M. Benson, Jr., et al.

Mol Cancer Ther Published OnlineFirst September 1, 2009.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-09-0377

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.