Highlights of This Issue

EDITORIAL

2447 | Targeting Insulin-Like Growth Factor Signaling: Rational Combination Strategies
David Olmos, Bristi Basu, and Johann S. de Bono

REVIEWS

2450 | More than Markers: Biological Significance of Cancer Stem Cell-Defining Molecules
Stephen B. Keysar and Antonio Jimeno

2458 | Triethylenetetramine Pharmacology and Its Clinical Applications
Jun Lu

THERAPEUTIC DISCOVERY

2468 | Discovery and Characterization of Novel Mutant FLT3 Kinase Inhibitors

2478 | PIM Kinase Inhibitors Downregulate STAT3Tyr705 Phosphorylation
Marisa Chang, Nisha Kanwar, Eric Feng, Allan Stu, Xiujie Liu, Duwei Ma, and Jan Jongstra

2488 | Activating Stress-Activated Protein Kinase-Mediated Cell Death and Inhibiting Epidermal Growth Factor Receptor Signaling: A Promising Therapeutic Strategy for Prostate Cancer
Raj Kumar, Sowmyalakshmi Srinivasan, Pallab Pahari, Jürgen Rohr, and Chendil Damodaran

PRECLINICAL DEVELOPMENT

2545 | The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreeff

2558 | BNP7787-Mediated Modulation of Paclitaxel- and Cisplatin-Induced Aberrant Microtubule Protein Polymerization \textit{In vitro}
Aulma R. Parker, Pavankumar N. Petluru, Meizhen Wu, Min Zhao, Harry Kochat, and Frederick H. Hausheer
MOLECULAR MEDICINE IN PRACTICE

2618 | The Novel Hsp90 Inhibitor NXD30001 Induces Tumor Regression in a Genetically Engineered Mouse Model of Glioblastoma Multiforme

2627 | Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma
Valerie Coon, Tamara Laukert, Carolyn A. Pedone, John Laterra, K. Jin Kim, and Daniel W. Fults

2637 | Correction: ErbB-Inhibitory Protein: A Modified Ectodomain of Epidermal Growth Factor Receptor Synergizes with Dasatinib to Inhibit Growth of Breast Cancer Cells

ABOUT THE COVER

A new nanoweb-like drug delivery system integrating cationic liposomes that encapsulated photosensitizer and filamentous M13 phages that were genetically engineered to display anionic peptides on side walls was developed. Morphological evolution of the phage-liposome complexes was studied, and their chemical and biological properties were evaluated for possible application in drug delivery. The study highlights the ability of the phage-liposome nanowebs to serve as efficient carriers to transport photosensitizer to cancer cells. For details, see article by Kalarical Janardhanan and colleagues on page 2524.
Molecular Cancer Therapeutics

9 (9)

Mol Cancer Ther 2010;9:2447-2637.

Updated version Access the most recent version of this article at:
http://mct.aacrjournals.org/content/9/9

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/9/9. Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.