Highlights of This Issue

EDITORIAL

2447
Targeting Insulin-Like Growth Factor Signaling: Rational Combination Strategies
David Olmos, Bristi Basu, and Johann S. de Bono

2450
Significance of Cancer Stem Cell-Defining Molecules
Stephen B. Keysar and Antonio Jimeno

2458
Triethylenetetramine Pharmacology and Its Clinical Applications
Jun Lu

REVIEWS

2457
Dihydroartemisinin Induces Apoptosis by a Bak-Dependent Intrinsic Pathway
René Handrick, Teona Ontikatze, Kerstin-Daniela Bauer, Florian Freier, Amelie Ruebel, Jan Dürig, Claus Belka, and Verena Jendrossek

2468
From NPC Therapeutic Target Identification to Potential Treatment Strategy

2478
Architectonics of Phage-Liposome Nanowebs as Optimized Photosensitizer Vehicles for Photodynamic Cancer Therapy
Sreeam Kalirical Janardhanan, Shoba Narayan, Gopal Abbineni, Andrew Hayhurst, and Chuanbin Mao

2488
Substitution of Adenovirus Serotype 3 Hexon onto a Serotype 5 Oncolytic Adenovirus Reduces Factor X Binding, Decreases Liver Tropism, and Improves Antitumor Efficacy
Joshua J. Short, Angel A. Rivera, Hongju Wu, Mark R. Walter, Masato Yamamoto, J. Michael Mathis, and David T. Curiel

2497
The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreeff

2511
The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreeff

2524
BNP7787-Mediated Modulation of Paclitaxel- and Cisplatin-Induced Aberrant Microtubule Protein Polymerization In vitro
Aulma R. Parker, Pavankumar N. Petluru, Meizhen Wu, Min Zhao, Harry Kochat, and Frederick H. Hausheer
A new nanoweb-like drug delivery system integrating cationic liposomes that encapsulated photosensitizer and filamentous M13 phages that were genetically engineered to display anionic peptides on side walls was developed. Morphological evolution of the phage-liposome complexes was studied, and their chemical and biological properties were evaluated for possible application in drug delivery. The study highlights the ability of the phage-liposome nanowebs to serve as efficient carriers to transport photosensitizer to cancer cells. For details, see article by Kalarical Janardhanan and colleagues on page 2524.
Molecular Cancer Therapeutics

9 (9)

Mol Cancer Ther 2010;9:2447-2637.

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/9/9

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.