Highlights of This Issue 2445

EDITORIAL

2447 **Targeting Insulin-Like Growth Factor Signaling: Rational Combination Strategies**
David Olmos, Bristi Basu, and Johann S. de Bono

2450 **Significance of Cancer Stem Cell-Defining Molecules**
Stephen B. Keysar and Antonio Jimeno

2458 **Triethylenetetramine Pharmacology and Its Clinical Applications**
Jun Lu

REVIEWS

2468 **Discovery and Characterization of Novel Mutant FLT3 Kinase Inhibitors**

2478 **PIM Kinase Inhibitors Downregulate STAT3\(^{\text{Y705}}\) Phosphorylation**
Marisa Chang, Nisha Kanwar, Eric Feng, Allan Siu, Xiujie Liu, Duwei Ma, and Jan Jongstra

2488 **Activating Stress-Activated Protein Kinase–Mediated Cell Death and Inhibiting Epidermal Growth Factor Receptor Signaling: A Promising Therapeutic Strategy for Prostate Cancer**
Raj Kumar, Sowmyalakshmi Srinivasan, Pallab Pahari, Jürgen Rohr, and Chendil Damodaran

2497 **Dihydroartemisinin Induces Apoptosis by a Bak-Dependent Intrinsic Pathway**
René Handrick, Teona Ontikatze, Kerstin-Daniela Bauer, Florian Freier, Amelie Rüebel, Jan Dürig, Claus Belka, and Verena Jendrossek

2505 **From NPC Therapeutic Target Identification to Potential Treatment Strategy**

2511 **Architectonics of Phage-Liposome Nanowebs as Optimized Photosensitizer Vehicles for Photodynamic Cancer Therapy**
Sreeram Kalarical Janardhanan, Shoba Narayan, Gopal Abbineni, Andrew Hayhurst, and Chuanbin Mao

2524 **Substitution of Adenovirus Serotype 3 Hexon onto a Serotype 5 Oncolytic Adenovirus Reduces Factor X Binding, Decreases Liver Tropism, and Improves Antitumor Efficacy**
Joshua J. Short, Angel A. Rivera, Hongju Wu, Mark R. Walter, Masato Yamamoto, J. Michael Mathis, and David T. Curiel

2536 **The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias**
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreeff

2545 **BNP7787-Mediated Modulation of Paclitaxel- and Cisplatin-Induced Aberrant Microtubule Protein Polymerization In vitro**
Aulma R. Parker, Pavankumar N. Petluru, Meizhen Wu, Min Zhao, Harry Kochat, and Frederick H. Hausheer

2558 **The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias**
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreeff
MOLECULAR MEDICINE IN PRACTICE

2568 | Histone Deacetylase Inhibition Attenuates Cell Growth with Associated Telomerase Inhibition in High-Grade Childhood Brain Tumor Cells
Ruman Rahman, Teresa Osteso-Ibanez, Robert A. Hirst, Jane Levesley, John-Paul Kilday, Siobhan Quinn, Andrew Peet, Chris O’Callaghan, Beth Coyle, and Richard G. Grundy

2582 | A Combination of DR5 Agonistic Monoclonal Antibody with Gemcitabine Targets Pancreatic Cancer Stem Cells and Results in Long-term Disease Control in Human Pancreatic Cancer Model

2593 | Combination of Two Insulin-Like Growth Factor-I Receptor Inhibitory Antibodies Targeting Distinct Epitopes Leads to an Enhanced Antitumor Response

2605 | Urokinase Plasminogen Activator Receptor and/or Matrix Metalloproteinase-9 Inhibition Induces Apoptosis Signaling through Lipid Rafts in Glioblastoma Xenograft Cells
Chandramu Chetty, Sajani S. Lakka, Praveen Bhoopathi, Christopher S. Gondi, Krishna Kumar Veeravalli, Daniel Fasset, Jeffrey D. Klopfenstein, Dzung H. Dinh, Meena Gujrati, and Jasti S. Rao

2618 | The Novel Hsp90 Inhibitor NXD30001 Induces Tumor Regression in a Genetically Engineered Mouse Model of Glioblastoma Multiforme

2627 | Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma
Valerie Coon, Tamara Laukert, Carolyn A. Pedone, John Laterra, K. Jin Kim, and Daniel W. Fults

2637 | Correction: ErbB-Inhibitory Protein: A Modified Ectodomain of Epidermal Growth Factor Receptor Synergizes with Dasatinib to Inhibit Growth of Breast Cancer Cells

ABOUT THE COVER

A new nanoweb-like drug delivery system integrating cationic liposomes that encapsulated photosensitizer and filamentous M13 phages that were genetically engineered to display anionic peptides on side walls was developed. Morphological evolution of the phage-liposome complexes was studied, and their chemical and biological properties were evaluated for possible application in drug delivery. The study highlights the ability of the phage-liposome nanowebs to serve as efficient carriers to transport photosensitizer to cancer cells. For details, see article by Kalarical Janardhanan and colleagues on page 2524.
Molecular Cancer Therapeutics

9 (9)

Mol Cancer Ther 2010;9:2447-2637.

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/9/9

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.