Highlights of This Issue 2445

EDITORIAL

2447 Targeting Insulin-Like Growth Factor Signaling: Rational Combination Strategies
David Olmos, Bristi Basu, and Johann S. de Bono

2450 Significance of Cancer Stem Cell-Defining Molecules
Stephen B. Keysar and Antonio Jimeno

2458 Triethylenetetramine Pharmacology and Its Clinical Applications
Jun Lu

REVIEWS

2454 More than Markers: Biological Significance of Cancer Stem Cell-Defining Molecules
Stephen B. Keysar and Antonio Jimeno

2468 Discovery and Characterization of Novel Mutant FLT3 Kinase Inhibitors

2478 PIM Kinase Inhibitors Downregulate STAT3 Tyr705 Phosphorylation
Marisa Chang, Nisha Kanwar, Eric Feng, Allan Stu, Xiujie Liu, Duwei Ma, and Jan Jongstra

2488 Activating Stress-Activated Protein Kinase–Mediated Cell Death and Inhibiting Epidermal Growth Factor Receptor Signaling: A Promising Therapeutic Strategy for Prostate Cancer
Raj Kumar, Sowmyalakshmi Srinivasan, Pallab Pahari, Jürgen Rohr, and Chendil Damodaran

2497 Dihydroartemisinin Induces Apoptosis by a Bak-Dependent Intrinsic Pathway
René Handrick, Teona Ontikatze, Kerstin-Daniela Bauer, Florian Freier, Amelie Rüebel, Jan Dürig, Claus Belka, and Verena Jendrossek

2500 From NPC Therapeutic Target Identification to Potential Treatment Strategy

2511 Architectonics of Phage-Liposome Nanowebs as Optimized Photosensitizer Vehicles for Photodynamic Cancer Therapy
Sreeram Kalarical Janardhanan, Shoba Narayan, Gopal Abbineni, Andrew Hayhurst, and Chuanbin Mao

2524 Substitution of Adenovirus Serotype 3 Hexon onto a Serotype 5 Oncolytic Adenovirus Reduces Factor X Binding, Decreases Liver Tropism, and Improves Antitumor Efficacy
Joshua J. Short, Angel A. Rivera, Hongju Wu, Mark R. Walter, Masato Yamamoto, J. Michael Mathis, and David T. Curiel

2536 The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreff

2545 The Novel Tryptamine Derivative JNJ-26854165 Induces Wild-Type p53- and E2F1-Mediated Apoptosis in Acute Myeloid and Lymphoid Leukemias
Kensuke Kojima, Jared K. Burks, Janine Arts, and Michael Andreff

2558 BNP7787-Mediated Modulation of Paclitaxel- and Cisplatin-Induced Aberrant Microtubule Protein Polymerization In vitro
Aulma R. Parker, Pavankumar N. Petluru, Meizhen Wu, Min Zhao, Harry Kochat, and Frederick H. Hausheer
Histone Deacetylase Inhibition Attenuates Cell Growth with Associated Telomerase Inhibition in High-Grade Childhood Brain Tumor Cells
Ruman Rahman, Teresa Osteso-Ibanez, Robert A. Hirst, Jane Levesley, John-Paul Kilday, Siobhan Quinn, Andrew Peet, Chris O'Callaghan, Beth Coyle, and Richard G. Grundy

A Combination of DR5 Agonistic Monoclonal Antibody with Gemcitabine Targets Pancreatic Cancer Stem Cells and Results in Long-term Disease Control in Human Pancreatic Cancer Model

Combination of Two Insulin-Like Growth Factor-I Receptor Inhibitory Antibodies Targeting Distinct Epitopes Leads to an Enhanced Antitumor Response

Urokinase Plasminogen Activator Receptor and/or Matrix Metalloproteinase-9 Inhibition Induces Apoptosis Signaling through Lipid Rafts in Glioblastoma Xenograft Cells
Chandramu Chetty, Sajani S. Lakka, Praveen Bhoopathi, Christopher S. Gondi, Krishna Kumar Veeravalli, Daniel Fassett, Jeffrey D. Klopfenstein, Dzung H. Dinh, Meena Gujrati, and Jasti S. Rao

The Novel Hsp90 Inhibitor NXD30001 Induces Tumor Regression in a Genetically Engineered Mouse Model of Glioblastoma Multiforme
Haihao Zhu, Steve Woolfenden, Roderick T. Bronson, Zahara M. Jaffer, Sofia Barluenga, Nicolas Winssinger, Allan E. Rubenstein, Ruihong Chen, and Al Charest

Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma
Valerie Coon, Tamara Laukert, Carolyn A. Pedone, John Laterra, K. Jin Kim, and Daniel W. Fults

Correction: ErbB-Inhibitory Protein: A Modified Ectodomain of Epidermal Growth Factor Receptor Synergizes with Dasatinib to Inhibit Growth of Breast Cancer Cells

ABOUT THE COVER
A new nanoweb-like drug delivery system integrating cationic liposomes that encapsulated photosensitizer and filamentous M13 phages that were genetically engineered to display anionic peptides on side walls was developed. Morphological evolution of the phage-liposome complexes was studied, and their chemical and biological properties were evaluated for possible application in drug delivery. The study highlights the ability of the phage-liposome nanowebs to serve as efficient carriers to transport photosensitizer to cancer cells. For details, see article by Kalarical Janardhanan and colleagues on page 2524.