Letters to the Editor

Therapeutic Possibility of Ascofuranone for Autosomal Dominant Polycystic Kidney Disease – Response

Ji-Hak Jeong, Junji Magae, and Young-Chae Chang

ADPKD1 is mainly associated with mutations in the PKD1 gene encoding PC-1. PKD1 overexpression leads to increased expression of c-Myc and failed upregulation of p21WAF1/CIP1, resulting in abnormal increase of RTE proliferation. c-Myc is reported as a major downstream effector of PKD1 signaling pathways and as a transcriptional repressor of p21WAF1/CIP1. Because there is no effective treatment available for PKD, it is reasonable that downstream target genes of PKD, including c-Myc and p21WAF1/CIP1, are considered as therapeutic targets for autosomal dominant polycystic kidney disease (ADPKD). In this regard, roscovintine is a salutary agent that has antiproliferative effects by increasing p21WAF1/CIP1 in RTE. Rapamycin, a mTOR inhibitor, prevents cyst formation, and thus is also considered an effective agent against ADPKD.

In our experience and that of our collaborative groups, ascofuranone has antitumor activities and various physiologic effects without inducing DNA damage in vivo and in vitro, similar with roscovintine, and it is a more safe and useful agent than other prenyl-phenol compounds, such as aschocrin and derivatives, in animal studies. Ascofuranone activates p53 through phosphorylation of serine 392, involved in mitochondrial respiration, and ascofuranone activates p53 through phosphorylation such as ascochlorin and derivatives, in animal studies.

Ascofuranone is associated with the p53-independent and downstream kinase pathways, such as the Ras/Raf/ERK pathway. On the basis of our results, ascofuranone has appropriate properties that could be developed as a therapeutic tool for ADPKD as follows. First, ascofuranone induces cytostatic G1 arrest without DNA damage. Second, ascofuranone not only upregulates p21WAF1/CIP1 but also suppresses c-Myc, both proteins being therapeutic targets for ADPKD. Finally, ascofuranone inhibits the phosphorylation of ADPKD-related kinases including EGFR and ERK. Further study on the pharmacologic action of ascofuranone might provide a new therapeutic tool for ADPKD.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

Mid-Career Researcher Program through National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST: no. R01-2008-000-20078-0).

Published OnlineFirst 10/26/2010.

References

Molecular Cancer Therapeutics

Therapeutic Possibility of Ascofuranone for Autosomal Dominant Polycystic Kidney Disease – Response

Ji-Hak Jeong, Junji Magae and Young-Chae Chang

Mol Cancer Ther 2010;9:3101. Published OnlineFirst October 26, 2010.

Updated version Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-10-0823

Cited articles This article cites 5 articles, 2 of which you can access for free at: http://mct.aacrjournals.org/content/9/11/3101.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.