Xenogeneic immunization with human tyrosine hydroxylase DNA vaccines suppresses growth of established neuroblastoma

Nicole Huebener,1 Stefan Fest,3 Kerstin Hilt,2 Alexander Schramm,4 Angelika Eggert,4 Tahir Durmus,1 Anja Woehler,1 Alexander Stermann,1 Matthias Bleeke,1 Bianca Baykan,1 Silke Weixler,1 Gerhard Gaedicke,1 and Holger N. Lode1

Departments of 1Pediatrics, Experimental Oncology, Campus Virchow-Klinikum and 2Dermatology and Allergy, Allergy Center Charité, Charité-University Medicine Berlin, Berlin, Germany; 3Pediatric Immunotherapy, University Children’s Hospital, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany; and 4Department of Pediatric Hematology and Oncology, University of Essen, Essen, Germany

Abstract
Neuroblastoma (NB) is a challenging malignancy of the sympathetic nervous tissue characterized by a very poor prognosis. One important marker for NB is the expression of tyrosine hydroxylase (TH), the first-step enzyme of catecholamine biosynthesis. We could show stable and high TH gene expression in 67 NB samples independent of the clinical stage. Based on this observation, we addressed the question of whether xenogeneic TH DNA vaccination is effective in inducing an anti-NB immune response. For this purpose, we generated three DNA vaccines based on pCMV-F3Ub and pBUD-CE4.1 plasmids encoding for human (h)THcDNA (A), hTH minigene (B), and hTHcDNA in combination with the proinflammatory cytokine interleukin 12 (C), and tested prophylactic (B), and hTHcDNA in combination with the proinflammatory cytokine interleukin 12 (C), and tested prophylactic

Introduction
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Despite the introduction of new treatment strategies, including blood stem cell transplantation, differentiation therapy with retinoic acid, and passive immunotherapy with anti-GD2 antibodies, the long-term survival rate, especially of stage 4 NB patients, remains poor, ranging from 35% to 40% (1, 2). This emphasizes the need for effective adjuvant treatment strategies, which also involve the induction of an effective cellular anti-NB immune response.

NB, like many other malignancies, escape early immune surveillance by down-regulation of MHC class I expression (3, 4) or decrease in the production of lymphocyte-attracting chemokines, such as CCL2 (5). However, MHC class I antigen expression can be restored in NB cells within an inflammatory environment and become accessible for the cellular arm of the immune system (6). In fact, Morandi et al. were able to detect NB-specific CTLs in the blood of NB patients (7), showing that immunotherapy approaches, which induce an active CTL-mediated immune response, might be suitable for treatment.

A major obstacle in active immunotherapy for malignant disease is to overcome tolerance against self-antigens expressed by tumor tissue. Two objectives are crucial to achieve this goal: (a) the choice of a suitable antigen and (b) an effective vaccination strategy. The choice of antigen is limited by the nature of the tumor because it should be either tumor-specific (e.g., prostate specific antigen; refs. 8, 9) or tumor-associated (10, 11). With regard to the application method, the strategies are manifold, and differ in efficacy and handling. The most common vaccination strategies used for cancer patients up to now are peptide vaccinations with the use of either directly injected peptide formulations (12), or administration of peptide-pulsed or tumor lysate–pulsed donor-derived dendritic cells (7, 13). A more novel approach is the application of DNA plasmid vaccines, which have the advantages of high versatility and stability, and which also stimulate toll-like receptor 9 effector cells harvested from vaccinated mice suggested the participation of tumor-specific CTLs in the immune response. The depletion of CDB+ T cells completely abrogated the hTH vaccine–mediated anti-NB immune response. Furthermore, rechallenging of surviving mice resulted in reduced primary tumor growth, indicating the induction of a memory immune response. In conclusion, xenogeneic immunization with TH-derived DNA vaccines is effective against NB, and may open a new venue for a novel and effective immunotherapeutic strategy against this challenging childhood tumor. [Mol Cancer Ther 2009;8(8):2392–401]
(14). DNA vaccines can be injected directly into the muscle (15), given by electroporation or gene gun (16), or after transfection of dendritic cells, which ensures the production of the antigen of choice directly inside professional antigen-presenting cells (17). A fourth possibility is the oral application of DNA vaccines delivered by live attenuated bacteria, like *Salmonella typhimurium*, which are rapidly taken up by antigen-presenting cells of the gastrointestinal tract. This strategy provides for a proinflammatory milieu by signaling through toll-like receptors and subsequently mediates a danger signal (18).

In earlier experiments with a syngeneic NB mouse model, we could show that tyrosine hydroxylase (TH) is a suitable NB-associated antigen for DNA vaccination. In fact, murine TH-derived DNA vaccines were found to induce a CTL-mediated and NB-directed immune response in mice (19, 20). However, in contrast to preclinical mouse data, immune responses achieved in humans with syngeneic DNA vaccines are often disappointing, emphasizing the fact that results from animal models cannot be easily transferred to the human system (21). Nevertheless, several strategies are available to enhance DNA vaccine–induced immune responses in the patient. Thus, earlier studies showed that xenogeneic DNA vaccines not only induce immune responses against the "foreign" protein but also generate autoreactive CTLs that recognize the homologous host protein by cross-priming (12, 22). The mechanism underlying this phenomenon is probably based on the generation of so-called heteroclitic epitopes from the sequence of the xenogeneic protein. Here, peptides are generated during proteasomal degradation that differ from the host sequence in certain amino acid positions, which are important for binding into the groove of host MHC molecules. This may lead to a higher binding affinity to MHC molecules compared with the host epitopes, resulting in a stronger stimulation of T-cell receptors (23, 24).

Another possibility for enhancing antitumor immune responses induced by DNA vaccines is the introduction of costimulatory molecules into the coding sequence of the DNA vaccine plasmid (e.g., cytokines or chemokines; refs. 25, 26).

In the present study, we determined that TH is stably and highly expressed in 67 human NBs independent of the disease stage. This finding supports the hypothesis that TH is a suitable target antigen for anti-NB immunotherapy. Based on this observation, we are the first to investigate the effect of two xenogeneic TH-based DNA vaccines in a syngeneic NB mouse model, and to compare their efficacy in the presence and absence of the proinflammatory cytokine interleukin (IL)-12. Interestingly, stable monoubiquitination of the hTH DNA vaccine, which is mediated by the expression plasmid pCMV-F3Ub, in combination with attenuated *S. typhimurium* as vaccine vehicle, induces the most effective anti-NB immunity that could not be further enhanced by the addition of IL-12. Furthermore, we could show that the immune response is mediated by CTLs. Finally, the hTH DNA proved to be effective in a therapeutic vaccination setting, resulting in a memory response as indicated by protection against a lethal rechallenge with tumor cells.

Materials and Methods

Determination of TH Expression in NB Patients

TH expression was detected as described previously (27). Briefly, a cohort of 67 primary NBs profiled with the use of Affymetrix Gene Arrays was reanalyzed for expression of TH. Expression of TH was correlated to clinicopathologic variables with the use of one-way ANOVA (Fig. 1).

Design and Construction of DNA Vaccines

Three different DNA vaccines were designed: vaccines A and B based on the mammalian ubiquitin expression plasmid pCMV-F3Ub, kindly provided by Lindsay Whitten and Fernando Rodriguez, The Scripps Research Institute, La Jolla, CA (20, 28); and vaccine C based on pBUD-CE4.1 (= vaccine C; Invitrogen). Vaccine A encodes for the cDNA sequence of hTH (pCMV-hTHcDNA). Vaccine B encodes for a DNA minigene comprising the three major hTH-derived MHC class I epitopes in our mouse model (pCMV-hTH3; Fig. 2A and B), whereas in vaccine C, the sequences of hTH cDNA and single-chain IL-12 (scIL-12) are expressed by two independent expression units (Fig. 2A; pBUD-hTH-IL-12).

The cDNA sequence of hTH isoform 2 was amplified by PCR: (a) for pCMV-F3Ub with the use of primers hTH-pCMV-up (GAAGATCTTTATGCCACCCCCGGACCCA- CACGC ACCACAG), including a BglII restriction site; and (b) for pBUD-CE4.1 with the use of primers hTH-pBUD-down (CCCTTMCCATGCAGTGAT GCCATTGCTAGGAATTCAGATCTTC), including a BamHI restriction site downstream of mucin (MUC1) signal peptide (86) and a EcoRI restriction site upstream of signal peptide (86). Amplification was carried out under the following PCR conditions: 95°C for 30 s, 63°C, 45 s; 72°C, 90 s; 22 cycles.

The hTH3 minigene was constructed by overlapping reverse transcription-PCR as described previously (20). The minigene design included separation of each epitope by an AAY spacer sequence for each of the constructs, which was shown to be a preferential proteasomal cleavage site (ref. 29; Fig. 2B). Furthermore, a HA tag was added at the 3′ end to show peptide expression. Vaccines A and B were cloned into the mammalian expression vector pCMV-F3Ub with the use of a BglII restriction site downstream of mutated ubiquitin (A76; ref. 28).

The sequence for scIL-12 encoding for the two subunits of IL-12, p35 and p40 separated by a (Gly4Ser)3 linker (30), was subcloned into pBUD-CE4.1 with the use of XhoI and KpnI restriction sites. For this purpose, the scIL-12 fragment was cloned by PCR with the use of the primers scIL-12-pBUD-up (gggggtacccatgagtgtgcccactcagg‐ CGCGTCGACATGC‐ CCCCTGGCCCATGCGCTGAGTGCCATTGGCTAGGAAATCTAGATCTTC), including a SalI restriction site, and hTH-pBUD-down (ccgctcgagtag‐ CGCGCATGGGCAAAGGG), including a BamHI restriction site. Amplification was carried out under the following PCR conditions: 95°C for 30 s, 68°C for 45 s, and 72°C for 3 min running over 22 cycles.

The expression of hTH in tumor samples was determined by quantitative reverse transcription-PCR (Fig. 1). hTH expression was correlated to clinicopathologic variables with the use of one-way ANOVA (Fig. 1).
Protein Expression Analysis

The expression of hTH protein was tested after transient transfection of the DNA vaccines into CHO-1 cells with the use of the Metfectene transfection reagent (Biontex Laboratories) according to the manufacturer’s protocol. After 24 or 48 h, cells were lysed (0.1% SDS in PBS, pH 7.4, 4°C, 30 min) and centrifuged (10,000 g, 4°C, 45 min). Lysates were analyzed by SDS-PAGE with the use of the Novex system (Invitrogen). Proteins were blotted onto a nitrocellulose membrane (Amersham). Blots were blocked with blocking buffer (5% milk, 0.1% Tween 20, PBS, pH 7.4) and incubated with anti-hTH antibody (diluted 1:33 in blocking buffer; Sigma) was added (1:1,000 in blocking buffer). The antibody (Sigma) was added (1:1,000 in blocking buffer). The membrane was washed (thrice, 15 min, room temperature, 0.1% Tween 20, PBS), and signals were analyzed with the ECL Detection Reagents (Amersham). Blots were blocked with blocking buffer (5% milk, 0.1% Tween 20, PBS, pH 7.4) and incubated with anti-hTH antibody (diluted 1:33 in blocking buffer; Vector Laboratories). Peroxidase-labeled anti-mouse IgG antibody (Sigma) was added (1:1,000 in blocking buffer). The membrane was washed (thrice, 15 min, room temperature, 0.1% Tween 20, PBS), and signals were analyzed with the ECL Detection Reagents (Amersham).

Lymphoblast Proliferation Assay

To test the activity of IL-12 (p70), encoded by the vector design of pBUD-hTH–scIL-12, supernatants from vector-transfected CHO-1 cells were used in a lymphoblast proliferation assay, in which activated lymphoblasts produce IFN-γ upon stimulation with IL-12. Briefly, human peripheral blood mononuclear cells were isolated from peripheral blood of a healthy donor by Ficoll density centrifugation. Peripheral blood mononuclear cells were isolated from peripheral blood of a healthy donor by Ficoll density centrifugation. Peripheral blood mononuclear cells were cultured for 3 d at a concentration of 5 × 10^5/mL in RPMI 1640–based (PAA Laboratories) tissue culture medium [10 mmol/L HEPES (Gibco), 0.006% (w/v) L-arginine-monohydrochloride (Sigma), 0.1% (w/v) dextrose (Sigma), 5% human AB serum (Cambrex), 100 μg/mL penicillin-streptomycin (Invitrogen)]. For lymphoblast activation, 20 μg/mL phytohemagglutinin P (Sigma) and 50 IU/mL IL-2 were added. Activated lymphoblasts (50 μL) in a concentration of 4 × 10^5 cells/mL were added in triplicates to each well of a 96-well plate. Supernatants (50 μL) from CHO-1 cells transfected with pBUD-hTH–scIL-12 were added 48 h after transfection. Recombinant IL-12 (BD Pharmingen) applied at different concentrations and supernatants from mock-transfected CHO-1 cells were used as positive and negative controls, respectively. Plates were incubated at 37°C and with 5% CO2. After 48 h, supernatants were taken, and the amount of IFN-γ produced by lymphoblasts was measured by ELISA (human IFN-γ ELISA set; BD Pharmingen). From these results, a standard curve of IL-12 concentration–dependent IFN-γ production was generated.

Specific IL-12 bioactivity of vector-encoded scIL-12 was calculated from this standard curve.

DNA Vaccine Delivery

Attenuated *S. typhimurium* strain SL7207 (AroA−), kindly provided by Dr. Bruce A. D. Stocker, Stanford University School of Medicine, Stanford, CA, were used for *in vivo* vaccination experiments as described previously (20). Briefly, a single SL7207 colony was grown in Luria-Bertani medium, and mid-log phase bacteria were washed twice with ice-cold water. Bacterial cells (1 × 10^8) were admixed with 0.5 μg of plasmid DNA. Electroporation was done in the Eppendorf Multiporator at 2 kV, 25 μF, and 200 Ω for 0.5 s. Cells were immediately covered with 600 μL SOC medium (Invitrogen) and incubated for 45 min at 37°C. A sample of 100 μL was plated onto Luria-Bertani plates containing 50 μg/mL ampicillin (Sigma). Resistant colonies containing the DNA vaccines were cultured and stored after confirmation of the DNA sequence. Mice (*n* = 6–8) were immunized by oral gavage of SL7207 bacteria in mid-log growth phase carrying the vaccines and control plasmids.

Cells and Mice

NXS2 murine NB (31) and CHO-1 cells were grown in high-glucose DMEM or RPMI 1640, respectively (PAA Laboratories). All media were supplemented with 10% FCS (PAA Laboratories) and 100 μg/mL penicillin-streptomycin (Invitrogen). Syngeneic female A/J mice were obtained at 8 to 10 wk of age from Harlan-Winkelmann. The NXS2 cells and Mice

To test the activity of IL-12 (p70), encoded by the vector design of pBUD-hTH–scIL-12, supernatants from vector-transfected CHO-1 cells were used in a lymphoblast proliferation assay, in which activated lymphoblasts produce IFN-γ upon stimulation with IL-12. Briefly, human peripheral blood mononuclear cells were isolated from peripheral blood of a healthy donor by Ficoll density centrifugation. Peripheral blood mononuclear cells were cultured for 3 d at a concentration of 5 × 10^5/mL in RPMI 1640–based (PAA Laboratories) tissue culture medium [10 mmol/L HEPES (Gibco), 0.006% (w/v) L-arginine-monohydrochloride (Sigma), 0.1% (w/v) dextrose (Sigma), 5% human AB serum (Cambrex), 100 μg/mL penicillin-streptomycin (Invitrogen)]. For lymphoblast activation, 20 μg/mL phytohemagglutinin P (Sigma) and 50 IU/mL IL-2 were added. Activated lymphoblasts (50 μL) in a concentration of 4 × 10^5 cells/mL were added in triplicates to each well of a 96-well plate. Supernatants (50 μL) from CHO-1 cells transfected with pBUD-hTH–scIL-12 were added 48 h after transfection. Recombinant IL-12 (BD Pharmingen) applied at different concentrations and supernatants from mock-transfected CHO-1 cells were used as positive and negative controls, respectively. Plates were incubated at 37°C and with 5% CO2. After 48 h, supernatants were taken, and the amount of IFN-γ produced by lymphoblasts was measured by ELISA (human IFN-γ ELISA set; BD Pharmingen). From these results, a standard curve of IL-12 concentration–dependent IFN-γ production was generated.

Specific IL-12 bioactivity of vector-encoded scIL-12 was calculated from this standard curve.

DNA Vaccine Delivery

Attenuated *S. typhimurium* strain SL7207 (AroA−), kindly provided by Dr. Bruce A. D. Stocker, Stanford University School of Medicine, Stanford, CA, were used for *in vivo* vaccination experiments as described previously (20). Briefly, a single SL7207 colony was grown in Luria-Bertani medium, and mid-log phase bacteria were washed twice with ice-cold water. Bacterial cells (1 × 10^8) were admixed with 0.5 μg of plasmid DNA. Electroporation was done in the Eppendorf Multiporator at 2 kV, 25 μF, and 200 Ω for 0.5 s. Cells were immediately covered with 600 μL SOC medium (Invitrogen) and incubated for 45 min at 37°C. A sample of 100 μL was plated onto Luria-Bertani plates containing 50 μg/mL ampicillin (Sigma). Resistant colonies containing the DNA vaccines were cultured and stored after confirmation of the DNA sequence. Mice (*n* = 6–8) were immunized by oral gavage of SL7207 bacteria in mid-log growth phase carrying the vaccines and control plasmids.

Cells and Mice

NXS2 murine NB (31) and CHO-1 cells were grown in high-glucose DMEM or RPMI 1640, respectively (PAA Laboratories). All media were supplemented with 10% FCS (PAA Laboratories) and 100 μg/mL penicillin-streptomycin (Invitrogen). Syngeneic female A/J mice were obtained at 8 to 10 wk of age from Harlan-Winkelmann. The NXS2 model was used as previously described (31). Briefly, primary tumors were induced by s.c. injection of 2 × 10^6 NXS2 cells in serum-free DMEM (day 0), and primary tumor growth was analyzed by microcaliper measurements. The tumor volume was calculated according to 1/2*length* × *width*. When primary tumors reached a volume of 500 mm³ on average and/or showed signs of necrosis, they were surgically removed and their weights determined. Spontaneous metastasis was determined at indicated time points after removal of primary tumors by measurements of liver weights, counts of metastatic nodules on the liver and other organ surfaces, and scoring the metastatic load according to 0% = 0, <20% = 1, 20%–50% = 2, and >50% = 3. In the long-term therapeutic survival experiment, s.c. primary tumors were removed

Mol Cancer Ther 2009;8(8). August 2009
individually when they reached a volume of 500 mm³ or showed signs of necrosis or ulceration, in contrast to the prophylactic vaccination described above. Two vaccinations (5 × 10⁸ salmonella per mouse) were done on days 3 and 8 after s.c. tumor cell injection. A boost was given 2 wk after tumor removal, adjusted individually to the day of surgery (marked as days 30-50 in Fig. 3A). Survivor mice received a rechallenge with 2 × 10⁸ NXS2 cells on day 87 without receiving any further vaccinations. At this time point, new naïve and mock control mice entered the study (each n = 6) and were also challenged with the same dosage of NXS2 cells. This was followed by two vaccinations 4 and 9 d after tumor cell injection in the mock control group. Secondary s.c. tumor growth (rechallenge) was determined over the next 14 d and compared with tumor growth of the new controls (Fig. 3A).

T cells were depleted in vivo with the use of anti-CD8 (53-6.7) antibody (BD Pharmingen) as previously described (32). Briefly, depletion of CD8+ T cells was accomplished by i.p. injection of anti-CD8 (200 μg) on days −1, 7, and 14.

Figure 2. Vector design and expression of encoded antigens. Schematic of the two mammalian vector backbones used in this study (A). For vaccines A and B, the plasmid pCMV-F3Ub encoding for Ubi-Ala76 upstream of the BglII cloning site leading to the expression of a stably monoubiquitinated protein was used. Both the full-length hTHcDNA sequence and the hTH3 DNA minigene were subcloned with the use of the BglII restriction site. Vaccine C was constructed with the use of pBudCE4.1 equipped with two independent expression units driven by the CMV and EF-1α promoter, respectively. The sequences of scIL-12 and hTHcDNA were subcloned into pBudCE4.1 with the use of restriction sites XhoI and KpnI, as well as SalI and BamHI as indicated. Design of the hTH3 minigene (B). The selection of the hTH epitopes was accomplished as previously described (20) by using the MHC class I epitope prediction software SYFPEITHI. Additionally, the binding scores according to SYFPEITHI are shown. A HA tag was included at the 3’ end to allow detection in western blots. Expression analysis of vaccines A to C after transient transfection of CHO-1 cells (C). Protein expression was determined after 10% to 14% gradient SDS-PAGE and blotting onto a nitrocellulose membrane 24 or 48 h after transfection of CHO-1 cells. Expression of hTH (59 kDa) was analyzed with an anti-TH antibody (top). Lane 1, untransfected control; lane 2, pBud mock control; lane 3, hTHcDNA–scIL-12; lane 4, hTHcDNA. The detection of the hTH3 minigene (4.8 kDa) was accomplished with anti-HA antibody after 24 (lane 2) and 48 h (lane 3). Mock-transfected CHO-1 cells were used as a negative control (lane 1). Determination of the specific mIL-12 bioactivity of the scIL-12 construct in supernatants from transfected CHO-1 cells (D). For this purpose, a bioassay measuring the ability of the construct to induce IFN-γ was used (top). The bioactivity was compared with that of a standard mIL-12.
All animal experiments were done according to the German guide for the care and use of laboratory animals (i.e., Tierschutzgesetz). Animal experiments were repeated at least once, and the data shown are representative results from one experiment.

Immunohistochemistry
Infiltration of primary tumors by T cells was analyzed by immunohistochemistry with the use of anti-CD8 antibody (53-6.7) and anti-CD4 antibody (RM4-5; BD Pharmingen) as previously described (32). The average number of infiltrating T cells was quantified by light microscopy analyzing 10 high power fields at a magnification of ×400.

Cytotoxicity Assay
At indicated time points, splenocytes were harvested and incubated for 5 d in the presence of 5 Gy-irradiated NXS2 NB cells in RPMI 1640 [10% FCS, 100 μg/mL penicillin-streptomycin, 50 μmol/L β-mercaptoethanol (Sigma), 100 U/mL IL-2] at a ratio of 100:1. NXS2 NB served as target cells. CTL activity was determined with the use of a standard 51Cr release assay. Briefly, 2×10⁶ target cells were labeled (2 h, 37°C) with 0.5 mCi 51Cr (1 mCi/mL sodium chromate; Perkin Elmer) in a total volume of 2 mL and washed thrice with complete DMEM. Target cells were plated out at 5,000 cells per well in a 96-well plate. Effector cells were added to triplicate wells at varying effector to target cell ratios. Samples were taken after 4 and 8 h of incubation, and released radioactivity was determined in a gamma counter (1470 Wizard, Wallace; Perkin Elmer). Maximum release was induced by incubation of labeled target cells with 5 μL 10% SDS solution. Cytotoxicity was calculated according to lysis (%) = [experimental release (cpm) − spontaneous release (cpm)]/[maximum release (cpm) − spontaneous release (cpm)] × 100 (%).

IFN-γ ELISA
IFN-γ concentrations were measured to assess the activation of T cells in the splenocyte population upon incubation with NXS2 target cells. Briefly, 1 × 10⁴ irradiated NXS2 cells were cultured with freshly isolated splenocytes from vaccinated or control mice at an E:T ratio of 100:1 in RPMI 1640 [10% FCS, 100 μg/mL penicillin-streptomycin, 50 μmol/L β-mercaptoethanol (Sigma), 100 U/mL IL-2]. On days 3, 4, and 5, supernatants were collected, and an IFN-γ ELISA was done according to the manufacturer’s protocol (murine IFN-γ ELISA set; BD Pharmingen).

Statistics
The statistical significance of differential findings between experimental groups was determined by nonparametric Kruskal-Wallis test and further analyzed by Mann-Whitney U test. Primary tumor growth data after
therapeutic vaccination were analyzed by \(\chi^2 \) test. In all cases, differences were considered significant at \(P < 0.05 \).

Results

Expression of TH in Human NB Tissue

We first investigated the mRNA expression of TH by reanalysis of Affymetrix expression profiling data in a cohort of 67 primary NB. TH expression was found to be high in 66 of 67 samples without significant correlation of TH expression with stage international neuroblastoma staging system or clinical outcome. Interestingly, although TH expression is proposed as a marker for minimal residual disease, no significant difference was found for TH expression between localized and metastatic tumors (Fig. 1).

Design and Characterization of hTH DNA Vaccines

The design of hTH full-length DNA vaccines is based on pCMVF3Ub and pBudCE4.1 vectors (Fig. 2A). The minigene was selected by screening of the hTH sequence for three peptides with high affinity to MHC class I (H2K-k), each separated by an AAY spacer (Fig. 2B). The expression of full-length human TH gene and hTH minigenes encoded by DNA vaccines A, B, and C was shown by western blots after transient transfection of CHO-1 cells (Fig. 2C). The hTH protein (59 kDa) was detected in CHO-1 cells 48 h after transfection (top) both from the pBUD and the pCMV plasmids, respectively (Fig. 2C, top, lanes 3 and 4). Similarly, the hTH3 minigene expression was shown as indicated by a peptide signal at 4.8 kDa 24 and 48 h after transfection (Fig. 2C, bottom, lanes 2 and 3).

Bioactivity of pBUD-encoded scIL-12

The bioactivity of pBUD-encoded scIL-12 was determined with a lymphoblast proliferation assay with the production of IFN-\(\gamma \) as a readout for IL-12 activity (Fig. 2D). We could clearly show the release of IFN-\(\gamma \) from lymphoblasts incubated with supernatant from CHO-1 cells transfected with pBUD-hTH-scIL-12 in contrast to mock-transfected controls, indicating bioactivity of the scIL-12 construct (Fig. 2D). The specific bioactivity was calculated based on scIL-12 protein concentration and the amount of IFN-\(\gamma \) produced, which indicated that the scIL-12 construct revealed a specific IL-12 bioactivity of 10%. This is lower than previously reported, possibly due to a different IL-12 standard and the use of human instead of murine lymphoblasts in the bioassay.

Prophylactic Effect of hTH DNA Vaccines against Primary Tumor Growth and Spontaneous Liver Metastases

All three DNA vaccine constructs were tested in a prophylactic vaccination setting after oral vaccine delivery with the use of live attenuated S. typhimurium SL7207 as a vaccine carrier in the syngeneic NXS2 NB mouse model (Fig. 3A). Both the hTH cDNA and the hTH3 minigene DNA vaccine encoded by the ubiquitin vector pCMV induced a 50% reduction of primary tumor growth and prevented liver metastasis in the majority of animals (Fig. 3B and C). The pBUD vaccine encoding for both hTH and scIL-12 did not further enhance the antitumor immune response (Fig. 3B and C).

Mechanisms Involved in the Anti-NB Immune Response Induced by hTH DNA Vaccination

To determine whether there is a contribution by CD8\(^+\) effector T cells in the hTH-mediated anti-NB immune response, we depleted CD8\(^+\) T cells in vivo in the prophylactic vaccination setting, followed by a lethal challenge with NXS2 NB cells. Depletion of CD8\(^+\) cells completely abrogated protective immunity induced by hTH DNA vaccination in contrast to controls (Fig. 4). Furthermore, splenocytes from the pCMV-hTHcDNA group lysed NXS2 target cells in a cytotoxicity assay in contrast to effector cells from mock-vaccinated control mice (Fig. 5A). We could also show that splenocytes from mice vaccinated with hTHcDNA and hTH3 minigene are activated upon incubation with NXS2 target cells, resulting in a 10-fold and 7-fold increase of the TH1 cytokine IFN-\(\gamma \), respectively, compared with control splenocytes (Fig. 5B). These findings were further supported by the analysis of infiltrating CD8\(^+\) and CD4\(^+\) T cells into primary tumor tissue by immunohistochemistry. We show a

Figure 4. Determination of the tumor load (primary tumor and metastases) of mice depleted of CD8\(^+\) T cells in vivo. Mice (\(n = 6 \)) were depleted of CD8\(^+\) T cells by i.p. injection of anti-CD8 antibody (clone 53-6.7) as described in Materials and Methods. Groups of mice were immunized according to the prophylactic vaccination scheme shown in Fig. 3A and challenged by s.c. injection of 2 \(\times 10^6 \) NXS2 neuroblastoma cells. Primary tumor growth was measured for a period of 12 d until surgical tumor removal by micromanipulator measurements (left). The primary tumor sizes were calculated as \(1/2 \times width^2 \times length^2 \). Values, mean \(\pm SE \) (\(n = 6 \)) of tumor sizes in cubic millimeters. Disseminated metastasis of all mouse organs was scored at the end of the \(in vivo \) experiment (right): 0% = 0, <20% = 1, 20-50% = 2, >50% = 3 (left). Right column, numbers of mice free of primary tumor and metastases.
5-fold increase of infiltrating CD8+ T cells in the hTHcDNA-pCMV group, and a 7-fold and 5-fold increase of infiltrating CD4+ T cells for hTH3 groups (Fig. 5C and D). In summary, these data suggest primarily a CD8+ T-cell–mediated antitumor response.

Therapeutic Effect of Xenogeneic Vaccination (hTHcDNA)

To determine therapeutic efficacy, mice with established primary tumors were immunized with the hTHcDNA-pCMV vaccine by oral gavage at the indicated time points (Fig. 6A). Mice receiving the hTHcDNA-pCMV vaccine showed a primary tumor rejection in 50% of mice (Fig. 6B and C). This finding was in contrast to control mice suffering from systemic metastases before day 87 (data not shown), including one mouse that failed to develop a primary tumor but died on day 68 due to severe organ metastasis (Fig. 6B).

The three surviving mice were rechallenged with a lethal dose of NXS2 cells, resulting in a reduction of primary tumor growth rate and weight in contrast to naive controls or mice receiving the empty vector (Fig. 6D). In summary, these data show the therapeutic efficacy of the xenogeneic hTH DNA vaccination translating into long-lasting anti-NB immunity.

Discussion

The application of DNA vaccines encoding for tumor-associated antigens is a promising approach for cancer immunotherapy. However, many preclinically successful DNA vaccines lead to disappointing results after application in human trials (21, 33). This can partly be explained by the differences in the expression pattern of toll-like receptor 9, which is responsible for the recognition of CpG motifs included in bacterial plasmid DNA backbone (34). In humans, toll-like receptor 9 expression is limited to B cells and plasmacytoid dendritic cells, in contrast to mice in which most of the preclinical studies are done. In this species, B cells, monocytes, and probably all subsets of dendritic cells express toll-like receptor 9 (35, 36). Consequently, antitumor effects in mice induced by DNA vaccines are not necessarily transferable to humans. However, DNA vaccination effects can be further
enhanced by using xenogeneic DNA, encoding for highly homologous proteins that are foreign to the species to be vaccinated (37, 38).

TH is the first-step enzyme of catecholamine biosynthesis and, consequently, limited in its expression in nonneuronal tissue. We could show by microarray analysis that TH is highly and stably expressed independent of disease stage in 67 human NBs. This result, together with the fact that syngeneic vaccination with murine TH DNA vaccines induces efficient anti-NB immune responses in mice without provoking autoimmunity (20), strongly supports our hypothesis that TH is a suitable target antigen for anti-NB immunotherapy.

Here we tested the anti-NB activity of xenogeneic vaccination with the use of an hTH cDNA vaccine in a syngeneic NB mouse model and determined whether it is possible to further enhance the antitumor immune response by adding the sequence of a costimulatory cytokine to the vector design. Additionally, we planned to verify our previous data by developing a rationally designed hTH-derived minigene encoding for three MHC class I epitopes that were chosen from the MHC class I epitope prediction database SYFPEITHI. In both prophylactic and therapeutic vaccination settings, the xenogeneic hTH vaccines effectively induced an anti-NB immune response. This immune response was mediated by CTLs as shown by in vitro assays and by depletion of CD8+ T cells in vivo (Figs. 4 and 5). We also found an increased CD4+ T cell infiltrate in tumors of hTH-vaccinated mice in contrast to controls (Fig. 5). This result, together with the fact that tumor-surviving mice developed immunity after...
a lethal rechallenge with tumor cells (Fig. 6), not only confirms our previous data with the use of syngeneic murine TH DNA vaccination (20) but further indicates a role for CD4+ T-cell help in inducing and maintaining immunologic memory (39).

Additionally, the hTH3 minigene was equally effective as the hTH cDNA vaccine, supporting the concept of rationally designing suitable DNA vaccines by epitope prediction in a species-independent manner. However, full-length vaccines have the advantage of providing for the whole range of possible MHC class I epitopes for all haplotypes in humans. Nevertheless, customized DNA vaccine design for patients remains particularly interesting and applicable when the tumor-associated antigen of choice is potentially hazardous (40).

In a variety of preclinical xenogeneic DNA vaccination experiments, the encoded foreign antigen induced autoantibodies (41, 42), which contributed to the antitumor immune responses. Therefore, we tested mouse sera taken at different time points after vaccination for the presence of anti-TH antibodies, which were not detectable by ELISA (data not shown), indicating that in our system a humoral response plays a subordinate role.

IL-12 plays a key role in the differentiation and homeostasis of effector and memory CD8+ T cells (43). Furthermore, this cytokine supports antitumor immunity because it is able to augment CD8+ T-cell avidity toward tumor targets (44) and also is essential for shifting CD4+ T cells into a Th1 phenotype (45). Because the TH DNA vaccines are delivered by attenuated S. typhimurium, processing occurs inside of professional antigen-presenting cells in the Peyer’s patches (46). Therefore, we hypothesized that the simultaneous expression of the proinflammatory cytokine IL-12 and TH in this location would enhance the activation and stimulation of antigen-specific CD8+ T cells. However, in contrast to others, we were not able to enhance the antitumor efficacy of our DNA vaccine by adding the sequence of IL-12 into the DNA plasmid design. This might be attributed to the different application method of IL-12. In fact, many other studies showed the positive effects of intratumoral IL-12 injection (47) or of using genetically engineered IL-12-producing tumor cells as a vaccine (30). Importantly, the results obtained in our in vivo studies led us to the conclusion that our DNA vaccine design, including a mutated ubiquitin tag (pCMVF3Ub; vaccines A and B; Fig. 2), provides for an equally efficient immune response. The crucial importance of mutated ubiquitin in this respect has already been shown in the past and is probably the reason for the induction of a very effective MHC class I antigen epitope presentation after proteasomal degradation in the antigen-presenting cells after oral vaccination with vaccine-carrying attenuated S. typhimurium (20). Besides, it could be shown by others that hypomethylated CpG motives, which are included in our bacterial plasmid DNA, effectively induce IL-12 secretion by dendritic cells (48), thereby providing comparable costimulatory conditions. However, the costimulatory effects of additional cytokine sequences to provoke a Th1-directed immune response should not be underestimated or ignored for the application of DNA vaccines in humans (49).

In summary, after evaluation of syngeneic DNA vaccination with the NB-associated antigen TH, we could prove the efficacy of xenogeneic DNA vaccination with TH-derived DNA against NB in vivo. The immune response induced is mediated by NB-specific CTLs and provides antitumor immunity protecting mice from a lethal rechallenge with NB. In other in vivo studies in our laboratory, we found that the combination of tagging the tumor-associated antigen with Ubi-Ala76 and attenuated bacteria as vaccine vehicles is much more effective against NB than delivery by gene gun.5 We conclude from our experience over the past years that a combination of attenuated bacteria as vaccine vehicles with stable monoubiquitination of the tumor-associated antigen mediated by the vaccine vector provides the most promising and practicable possibility to induce effective antitumor immune responses in NB.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank Ralph A. Reisfeld for critical review and discussion of the manuscript.

References

5 S. Fest, unpublished data.

Molecular Cancer Therapeutics

Xenogeneic immunization with human tyrosine hydroxylase DNA vaccines suppresses growth of established neuroblastoma

Nicole Huebener, Stefan Fest, Kerstin Hilt, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-09-0107

Cited articles
This article cites 49 articles, 19 of which you can access for free at:
http://mct.aacrjournals.org/content/8/8/2392.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.