Local enzymatic hydrolysis of an endogenously generated metabolite can enhance CPT-11 anticancer efficacy

Zeljko M. Prijovich, Kai-Chuan Chen, and Steve R. Roffler

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Abstract

Irinotecan (CPT-11) is a clinically important anticancer prodrug that requires enzymatic hydrolysis by carboxylesterase to generate the active metabolite SN-38. However, SN-38 is further metabolized to inactive SN-38 glucuronide (SN-38G), thus diminishing the levels of active SN-38. Although exogenously administered glucuronide drugs are being investigated for cancer therapy, it is unknown if endogenously generated camptothecin glucuronide metabolites can be used for tumor therapy. Here, we tested the hypothesis that tumor-located hydrolysis of endogenously generated SN-38G can enhance the antitumor efficacy of CPT-11 therapy. EJ human bladder carcinoma cells expressing membrane-tethered β-glucuronidase (EJ/βG cells) were used to selectively hydrolyze SN-38G to SN-38. Parental EJ and EJ/βG cells displayed similar in vitro and in vivo growth rates and sensitivities to CPT-11 and SN-38. By contrast, EJ/βG cells were more than 30 times more sensitive than EJ cells to SN-38G, showing that SN-38 could be generated from SN-38G in vivo. Systemic administration of CPT-11 resulted in tumor-located hydrolysis of SN-38G and accumulation of SN-38 in EJ/βG subcutaneous tumors. Importantly, systemic administration of CPT-11, which itself is not a substrate for β-glucuronidase, dramatically delayed the growth of EJ/βG xenografts without increased systemic toxicity. Thus, the anticancer activity of CPT-11 can be significantly enhanced by converting the relatively high levels of endogenously generated SN-38G to SN-38 in tumors. The high concentrations of SN-38G found in the serum of patients treated with CPT-11 suggest that clinical response to CPT-11 may be improved by elevating β-glucuronidase activity in tumors. [Mol Cancer Ther 2009;8(4):940–6]

Introduction

Camptothecin is an alkaloid anticancer drug isolated from the bark of the South Asian tree Camptotheca acuminate (1). Camptothecin selectively binds to and stabilizes topoisomerase I-DNA complexes to kill cells in an S-phase-specific manner (2). Although unsatisfactory results were reported in early clinical cancer trials (3), extensive efforts to improve the pharmacologic properties of camptothecin have resulted in the clinical use of irinotecan (Camptosar, CPT-11) and topotecan (Hycamtin) for more than a decade. CPT-11 is approved for the first-line therapy of colon cancer (4, 5) and has shown effectiveness in combination therapy and salvage therapy for other malignancies (6, 7). CPT-11, however, possesses little, if any, antitumor activity. Rather, CPT-11 acts as a prodrug that is metabolized in several enzyme-catalyzed reactions (Fig. 1A). Hydrolysis of CPT-11 by carboxylesterase releases SN-38 (8), believed to be largely responsible for CPT-11 antitumor activity (9). In humans, activation of CPT-11 to SN-38 occurs mostly in the liver. SN-38 is an excellent substrate for the detoxifying enzyme UDP-glucuronosyltransferase in the liver, which in turn converts SN-38 to SN-38 glucuronide (SN-38G; ref. 8). Like most glucuronides, SN-38G is a water-soluble, relatively nontoxic metabolite that is removed from the circulation by kidney filtration to urine and by biliary excretion to the upper intestine. Bacterial β-glucuronidase (βG) present in the intestinal tract can hydrolyze SN-38G to release SN-38, causing serious intestinal toxicity and diarrhea, which is one of the dose-limiting side effects of CPT-11 (8). On the other hand, it has been postulated that reabsorption of SN-38 from the intestinal tract may contribute to the prolonged pharmacokinetics of SN-38 and good antitumor activity of CPT-11 (8).

Although CPT-11 displays potent antitumor activity in patients, SN-38 accounts for only 2% to 5% of total drug in the circulation whereas the concentration of SN-38G in the circulation is commonly five or more times higher than SN-38 (10–13). We and others have shown that exogenously administered glucuronide prodrugs can display strong antitumor activity as monotherapeutic agents (14–16), indicating that elevated βG activity found in some tumors may promote the intratumoral activation of glucuronide prodrugs (16, 17). An endogenously generated glucuronide metabolite of aniline mustard also mediated potent antitumor activity against a rat tumor that displayed high βG activity (18). Targeted expression or antibody-mediated accumulation of βG in tumors can also enhance the antitumor activity of exogenously administered glucuronide prodrugs (19–22). Based on these studies, we hypothesized that significant
levels of SN-38G may be present in tumors during CPT-11 therapy and that intratumoral conversion of SN-38G to SN-38 may increase the antitumor efficacy of CPT-11 treatment. Here, we show that tumor-localized expression of membrane-tethered βG can indeed convert an endogenously generated CPT-11 metabolite to a potent anticancer agent, thereby enhancing the antitumor efficacy of CPT-11.

Materials and Methods

Chemicals and Cells

CPT-11, Nuclear Fast Red, H&E, and 5-bromo-4-chloro-3-indolyl β-D-glucuronide were from Sigma-Aldrich. SN-38 was from ScinoPharm. SN-38G was isolated and high-performance liquid chromatography purified from the urine of mice treated with CPT-11. Rat anti-hemagglutinin (anti-HA) monoclonal antibody (mAb) was from Roche. mAb 7G7 (rat anti-mouse βG) has been described (20). Goat anti-rat FITC was from Jackson ImmunoResearch. EJ human bladder cancer cells (23) were retrovirally infected with pLNCX-mβG-e-B7 as described (20) to express membrane-tethered mouse βG on their surface (EJ/mβG cells). pLNCX-mβG-e-B7 codes for an immunoglobulin κ chain signal sequence, a HA tag [nine-amino-acid peptide sequence (YPYDVPDYA) present in the human influenza virus HA protein], the mature mouse βG gene, the immunoglobulin-like C2-type, and immunoglobulin-hinge-like domains of the murine B7-1 antigen followed by the transmembrane domain and cytoplasmic tail of murine B7-1 (20). Cells were cultured in RPMI 1640 supplemented with 10% bovine calf serum in a humidified atmosphere of 5% CO₂ in air at 37°C.

Mice

We used 3- to 4-mo-old Beige-severe combined immunodeficient (SCID) female mice in all experiments. The mice were maintained under specific pathogen-free conditions and fed a standard laboratory diet with free access to food and water, under artificial circadian rhythm. All the experiments using animals were carried out according to United Kingdom Co-ordinating Committee on Cancer Research Guidelines for Welfare of Animals in Experimental Neoplasia (24) and under approval of our institutional animal committee.

Flow Cytometry

EJ or EJ/mβG cells (5 × 10⁵) were stained for 45 min with 0.1 μg rat anti-HA mAb in 50 μL RPMI 1640 or with 5 μg mAb 7G7 in 500 μL RPMI 1640. The cells were washed with RPMI 1640 thrice and incubated for 45 min with 1.5 μg goat anti-rat-FITC in 200 μL RPMI 1640. The cells were washed thrice with medium and 5 μg/mL propidium iodide were added before the fluorescence (excitation 488 nm, emission 530 nm) of 10,000 viable cells was measured on a FACSAdvantage SE (BD Biosciences).

Tissue Sections

Unfixed sections were stained with H&E or incubated for 10 min with 1 mg/mL 5-bromo-4-chloro-3-indolyl β-D-glucuronide in 0.1 mol/L acetate buffer (pH 4.6) containing 5 mmol/L K₃Fe(CN)₆ and 5 mmol/L K₂Fe(CN)₆. The slides were washed twice with PBS and counterstained for 5 min with Nuclear Fast Red. Slides mounted in GVA mount (Zymed) were examined under an optical microscope (Olympus BX-51).

Enzyme Activity

EJ and EJ/mβG cells or tumor homogenates were assayed for βG activity using p-nitrophenol β-D-glucuronide as substrate as described (25).

In vitro [3H]thymidine Incorporation Assay

The pH of EJ or EJ/mβG cell medium was adjusted to pH 6.6 or pH 7.4 by the addition of HCl or NaOH immediately before adding graded concentrations of drugs prepared from stock solutions of 1 mg/mL CPT-11, 1 mg/mL SN-38, or 0.1 mg/mL SN-38G in DMSO. [3H]thymidine (1 μC per well) was measured as described (20).

Intratumoral CPT-11 Metabolites

Beige-SCID mice bearing 150 to 250 mm³ subcutaneous EJ or EJ/mβG tumors (estimated by 0.5 × length × width × depth) were used in all experiments.

Figure 1. Tumor-located activation of SN-38G. A, important phases of CPT-11 metabolism. B, schematic of cancer cells expressing membrane-tethered mβG, generated as described in Materials and Methods. A HA tag (YPYDVPDYA) was introduced at the NH₂ terminus of mouse βG.

were i.v. injected with 10 mg/kg CPT-11. Blood and tumor samples were immediately dispersed in ice-cold acidic methanol (methanol/water/perchloric acid = 20:20:1) and homogenized for 60 s on an Ultraturax tissue homogenizer at 20,000 rpm. The samples were clarified by centrifugation at 15,000 × g for 5 min at 4°C. Supernatants were diluted with 0.1 mol/L KH$_2$PO$_4$ and then separated by solid-phase extraction/high-performance liquid chromatography on a μBondapack column with 25% acetonitrile in 0.1 mol/L potassium phosphate buffer (pH 2.9). We detected analytes on a JASCO 2020 fluorescence detector (Jasco) at 375-nm excitation and 430-nm emission for SN-38G and CPT-11 and at 540-nm emission for SN-38. Drugs were quantified by comparison with standard curves generated for drug concentrations ranging from 2.0 pg to 200 ng.

**Figure 2.** Characterization of EJ/mβG cells. A, flow cytometric analysis of mouse βG on EJ cells as determined by immunofluorescence staining with anti-HA mAb (left) or anti-mouse βG mAb (right). B, in vitro growth of EJ and EJ/mβG cells. C, βG activity of EJ and EJ/mβG cells and tumor homogenates. Bars, SD. Differences between βG activity of EJ and EJ/mβG groups were significant (P < 0.005). D, H&E staining and βG activity in frozen sections of EJ and EJ/mβG tumors.

### In vivo Antitumor Activity

Groups of Beige-SCID mice bearing ~125 mm$^3$ EJ or EJ/mβG subcutaneous tumors in their right flank were i.v. injected on 2 consecutive days with 10 mg/kg CPT-11 or PBS. We recorded tumor sizes and body weights for 2 wk.

**Statistical Significance**

Differences in mean values were analyzed by the independent Student’s $t$ test for unequal variances. $P$ values of <0.05 were considered statistically significant.

**Results**

**Characterization of EJ and EJ/mβG Cells**

We engineered EJ human bladder carcinoma cells to express mouse βG on their surface by attaching a linker, transmembrane domain, and cytoplasmic tail to the
COOH terminus of the enzyme (Fig. 1B; ref. 20). Because most glucuronides, such as SN-38G, do not readily cross the lipid bilayer to enter cells, we located βG on the surface of EJ cells to model elevated levels of βG in the interstitial tumor spacer. This models the clinically relevant situations in which interstitial βG activity is naturally high (17) or artificially elevated by antibody (26, 27), gene (20), or bacterial (28) delivery methods. Permanent EJ cells expressing membrane-tethered mouse βG (EJ/mβG) were generated by retroviral transduction of EJ cells. Immunofluorescence staining of live cells with anti-HA or anti-mouse βG antibodies followed by quantification on a flow cytometer confirmed localization of βG on the surface of EJ/mβG cells (Fig. 2A). EJ and EJ/mβG cells grew with similar rates and doubling times of ∼24 hours (Fig. 2B), indicating that surface βG did not adversely affect EJ cells.

Cultured EJ/mβG cells and tumor homogenates (Fig. 2C) displayed significantly more enzymatic activity than EJ cells or tumor homogenates, verifying that membrane-tethered βG was functionally active. Sections from EJ and EJ/mβG xenografts displayed similar morphologies (Fig. 2D), suggesting that drug penetration into these tumors should be similar. βG activity was also clearly evident on EJ/mβG but not EJ tumor sections as detected by enzyme histochemical staining, confirming that mβG was retained and active on tumors in vivo (Fig. 2D). Taken together, these results indicate that EJ/mβG is a suitable and defined model to investigate the effect of intratumoral hydrolysis of SN-38G on CPT-11 therapeutic outcome.

**In vitro Cytotoxicity**

EJ and EJ/mβG cells were exposed for 24 hours at pH 7.4 or pH 6.6 to graded concentrations of CPT-11, SN-38, or SN-38G. pH 6.6 was examined to investigate the effect of slightly acidic pH, as found in some tumors, on drug cytotoxicity. Cell viability was estimated by measuring [3H]thymidine incorporation into cellular DNA after the cells were cultured an additional 24 hours in fresh medium. As expected for a prodrug, CPT-11 displayed relatively low cytotoxicity to both EJ and EJ/mβG cells with IC50 values of ∼2,100 nmol/L (Fig. 3). SN-38, by contrast, exhibited potent cytotoxicity against EJ and EJ/mβG cells with IC50 values of 6 nmol/L at pH 7.4 (Fig. 3, top) and 2 nmol/L at pH 6.6 (Fig. 3, bottom). SN-38G was nontoxic to EJ cells at concentrations up to 500 nmol/L. However, EJ/mβG cells were more sensitive to SN-38G with IC50 values of 95 nmol/L at pH 7.4 and 16 nmol/L at pH 6.6. Thus, membrane-tethered βG increased the cytotoxic effect of SN-38G to EJ cancer cells.

**Intratumoral Distribution of CPT-11 Metabolites**

CPT-11 (10 mg/kg) was i.v. administered to Beige-SCID mice bearing established EJ or EJ/mβG xenografts. Tumors were collected and analyzed 2, 8, and 24 hours later. SN-38 levels were 65% to 130% higher whereas SN-38G concentrations were 40% to 50% lower in EJ/mβG tumors compared with EJ tumors (Table 1), demonstrating that membrane-tethered βG converted SN-38G to SN-38 in EJ/mβG tumors. Differences in intratumoral SN-38 and SN-38G drug concentrations in EJ and EJ/mβG xenografts in Beige-SCID mice after i.v. administration of 10 mg/kg CPT-11

<table>
<thead>
<tr>
<th>(Pro)drug</th>
<th>Time (h)</th>
<th>EJ (ng drug per g tumor)</th>
<th>EJ/mβG (ng drug per g tumor)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT-11</td>
<td>2</td>
<td>1,350 ± 200</td>
<td>1,500 ± 230</td>
<td>14.95</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>87 ± 17</td>
<td>77 ± 18</td>
<td>−10.92</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.58 ± 0.09</td>
<td>0.63 ± 0.11</td>
<td>−8.6</td>
</tr>
<tr>
<td>SN-38</td>
<td>2</td>
<td>43 ± 10.5</td>
<td>71 ± 13</td>
<td>65.63*</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.5 ± 0.93</td>
<td>17 ± 5.56</td>
<td>127.10*</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.07 ± 0.02</td>
<td>0.12 ± 0.01</td>
<td>71.43*</td>
</tr>
<tr>
<td>SN-38G</td>
<td>2</td>
<td>110 ± 21</td>
<td>62 ± 17</td>
<td>−43.92*</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>21 ± 5.0</td>
<td>13 ± 1.6</td>
<td>−38.97*</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.32 ± 0.05</td>
<td>0.17 ± 0.01</td>
<td>−46.87*</td>
</tr>
</tbody>
</table>

Table 1. CPT-11, SN-38, and SN-38G concentrations in EJ and EJ/mβG xenografts in Beige-SCID mice after i.v. administration of 10 mg/kg CPT-11

Note: Mean values ± SD of four measurements. Differences are calculated taking EJ values as 100%.

*Statistically significant difference of P < 0.05.
concentrations were unlikely due to variations in drug exposure because CPT-11 levels were similar in EJ and EJ/mβG tumors.

**In vivo Antitumor Activity**

Beige/SCID mice bearing established EJ or EJ/mβG xenografts in their right flank were i.v. injected with two daily doses of 10 mg/kg CPT-11. Mean tumor size (top) and body weights (bottom) are shown. Bars, SE. Error bars (<10%) are omitted from mean body weights for clarity. Significant differences in EJ/mβG tumor size between mice treated with CPT-11 and PBS. *, P ≤ 0.05; **, P ≤ 0.005. B, concentration of drugs in the serum of mice bearing EJ or EJ/mβG tumors 2 h after i.v. injection of 10 mg/kg CPT-11. Bars, SE.

**Discussion**

Although considered a successful drug with more than 10 years of clinical use, CPT-11 efficacy may be hindered by limited conversion of CPT-11 to the active metabolite SN-38 and by subsequent rapid glucuronidation of SN-38 to the inactive glucuronide metabolite SN-38G. Here, we tested the hypothesis that endogenously generated SN-38G is present in tumors at sufficient levels to contribute to the antitumor effects of CPT-11 therapy if it is reconverted to SN-38. As a model system, we used EJ human bladder cancer cells engineered to express membrane-tethered βG on their surface (EJ/mβG cells) to mimic the clinically relevant situations in which interstitial βG activity is naturally high (17) or artificially elevated by antibody, gene, or bacterial delivery methods (19, 20, 22, 26, 28). We found that after CPT-11 treatment, reconversion of endogenously produced SN38G to SN-38 in EJ/mβG bladder tumors significantly enhanced the anticancer efficacy of CPT-11.

The sensitivity of EJ and EJ/mβG cells to CPT-11, SN-38, and SN-38G was investigated at neutral pH (pH 7.4) or at the slightly acidic pH (pH 6.6) found in some tumors (29). Both the cell lines were equally sensitive to CPT-11 or SN-38 in vitro. CPT-11 was 400 to 800 times less toxic than SN-38 to both EJ and EJ/mβG cells, in good agreement with previous studies (9). SN-38 was three times more toxic to EJ cancer cells at pH 6.6, likely due to the presence of more active SN-38 lactone at lower pH values (30). The similar sensitivities of EJ and EJ/mβG cells to CPT-11 and SN-38 along with their similar in vitro and in vivo growth rates and tumor morphologies indicate that membrane-tethered βG did not alter the basic properties of EJ cancer cells.

SN-38G was nontoxic to EJ cells in vitro at the highest concentration investigated (500 nmol/L). Glucuronide metabolites are relatively nontoxic because the charged glucuronide moiety hinders drug diffusion across the plasma membrane, thereby preventing access to βG present in lysosomes. Thus, cellular sensitivity to glucuronide drugs correlates with extracellular rather than intracellular βG activity (21). Membrane-tethered βG is accessible to hydrolize SN-38G to SN-38, resulting in dramatically enhanced or produce increased levels of SN-38 in the circulation. Thus, tumor-located βG increased the antitumor activity of CPT-11 without obviously increasing systemic toxicity.

**Table 2. Published data of CPT-11 and metabolites in serum after CPT-11 administration in humans**

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Concentration (ng/mL)</th>
<th>Ratio</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPT-11</td>
<td>SN-38G</td>
<td>SN-38</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>60</td>
<td>20</td>
<td>3.0</td>
</tr>
<tr>
<td>24</td>
<td>140</td>
<td>120</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>
cytotoxicity of SN-38G to EJ/mβG cells with an IC_{50} value of 95 nmol/L at pH 7.4 and 16 nmol/L at pH 6.6. The greater toxicity of SN-38G to EJ/mβG cells at pH 6.6 is likely due to increased SN-38 lactone and greater βG enzymatic activity at acidic pH values (29, 30).

Treatment of mice bearing established tumors with i.v. CPT-11 produced remarkably greater antitumor activity against EJ/mβG tumors compared with EJ tumors. High-performance liquid chromatography measurement of intratumoral drug concentrations found identical levels of CPT-11 in the tumors, verifying similar drug distribution in EJ and EJ/mβG tumors. However, the concentration of SN-38 was 70% to 130% higher and SN-38G was 40% to 50% lower in EJ/mβG tumors than in EJ tumors, showing that specific hydrolysis of SN-38G to SN-38 took place in tumors expressing extracellular βG. This result also emphasizes that SN-38 rather than CPT-11 is responsible for anticancer activity. Although EJ/mβG tumors selectively generated SN-38, SN-38 levels in the circulation were not increased, probably due to the relatively small size of tumors (≈0.2 g) compared with the host (≈20 g). Thus, preferential intratumoral generation of SN-38 enhanced the antitumor activity of CPT-11 without producing additional systemic toxicity.

The level of serum carboxyesterase responsible for conversion of CPT-11 to SN-38 is higher in mice than in humans, resulting in more rapid systemic hydrolysis of CPT-11 in mice (31). However, in common with mice, SN-38G levels in humans exceed SN-38 levels. SN-38G levels in mice exceeded SN-38 levels by 2- to 4-fold in serum and 2.5- to 4.5-fold in tumors whereas SN-38G levels are 5 to 25 times higher than SN-38 levels in humans (Table 2). Thus, intratumoral hydrolysis of SN-38G to SN-38 may enhance CPT-11 antineoplastic activity even more in humans than in mice.

Our study shows that tumor-located βG may greatly enhance the anticancer activity of CPT-11. Interestingly, antitumor activity was substantially enhanced by increasing the concentration of SN-38 in tumors by only ~2-fold, suggesting that even modest prolongs increases in active drug concentrations can have a relatively large effect on therapeutic outcome. The modest increases in intratumoral SN-38 concentrations in our model case, where enzyme is uniformly expressed on most tumor cells, may indicate limitations of this approach in clinical applications. Potentially beneficial enzyme enrichment by antibody-directed enzyme prodrug therapy/gene-directed enzyme prodrug therapy is expected to be restricted just to a subset of tumor cells, which may limit expected benefits of SN-38G hydrolysis at the tumor site. Previous studies have shown that intratumoral hydrolysis of glucuronide prodrugs can occur in necrotic areas of tumors (17); however, our results indicate that, at least in EJ xenografts, elevation of extracellular βG activity increased SN-38G hydrolysis to SN-38. It should be emphasized that in contrast with therapies in which prodrug is administered to the patient, SN-38G is endogenously generated in patients treated with CPT-11.

Significant amounts of SN-38G remained in EJ/mβG tumors, likely due to the relatively low enzymatic activity of mammalian forms of βG at neutral pH values (20) and possibly due to glucuronidation of SN-38 by UDP-glucuronosyl transferases present in cancer cells (32). Our results suggest that further improvement of CPT-11 therapeutic efficacy can be achieved if additional SN-38G can be hydrolyzed to SN-38 in tumors. It will be important, however, to establish how much βG activity needs to be targeted to tumors to effectively hydrolyze SN-38G as well as to determine the effects of cancer cell UDP-glucuronosyl transferase activity on SN-38 metabolism in solid tumors.

Although methods for efficient enrichment of cancers by βG are still needed, several techniques are under development to preferentially accumulate βG in tumors, including antibody-directed enzyme prodrug therapy (22, 27), gene-directed enzyme prodrug therapy (19, 20), and targeted bacterial expression of Escherichia coli βG (28). In addition, mutant human βG enzymes that display enhanced enzymatic activity at neutral pH values are being developed for selective activation of glucuronide drugs in tumors (33). Our study also suggests that selective βG-mediated enhancement of drug activity may be applicable to other anticancer drugs that form glucuronide metabolites, such as epirubicin (34), teniposide (35), flavopiridol (36), and etoposide (37).

In conclusion, we found that during CPT-11 therapy, endogenously produced SN-38G reaches sufficient concentrations in tumors to be intratumorally converted to SN-38 and significantly improve CPT-11 antitumor activity in vivo without increasing adverse side effects. High concentrations of SN-38G are also present in patients treated with CPT-11, suggesting that tumor-located expression or targeting of β-glucuronidase is a rational method to improve the antitumor efficacy of CPT-11.

Disclosure of Potential Conflicts of Interest

The authors are potential parties to rewards from Academia Sinica for inventors of licensed technology.

References


Downloaded from mct.aacrjournals.org on April 9, 2017. © 2009 American Association for Cancer Research.
Tumor β-Glucuronidase Enhances CPT-11 Efficacy


Local enzymatic hydrolysis of an endogenously generated metabolite can enhance CPT-11 anticancer efficacy

Zeljko M. Prijovich, Kai-Chuan Chen and Steve R. Roffler

Mol Cancer Ther 2009;8:940-946.