Inhibition of vimentin or β1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

Xueping Zhang,1 Marcia V. Fournier,4 Joy L. Ware,2 Mina J. Bissell,4 Adly Yacoub,3 and Zendra E. Zehner1

Departments of 1Biochemistry and Molecular Biology, 2Pathology, 3Radiation Oncology and Massey Cancer Center, Virginia Commonwealth University-Medical Campus, Richmond, Virginia and 4Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Abstract

Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of the intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, non-tumorigenic P69 line produced acini with clearly defined lumina. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of α6 and β1 integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and β1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499–508]

Introduction

The extracellular environment is essential for establishing and maintaining cell differentiation during glandular morphogenesis (1). In the developing prostate, budding urogenital epithelial cells attach to the extracellular matrix (ECM) through integrin receptors and migrate into the mesenchyme to form acini containing lumen and displaying polarity (2). Integrins play an important role in maintaining the bidirectional communication between prostate cells and the ECM. Moreover, their expression patterns are known to change during tumor progression; for example, β1 integrin levels increase, whereas β2 and β3 integrins remain unchanged (3). Differential expression of α6 and α3 integrins suggests a reorganization of adhesion complexes during prostate cancer progression (4). Because α6β1 integrin is one leading component of these complexes, it was proposed that inhibition of either α6 or β1 integrin might reverse the invasive phenotype (5). Tumor stromal interactions have also been found to influence prostate cancer progression (6). Abnormal stroma containing cancer-associated fibroblasts promoted carcinogenesis of non-tumorigenic, genetically abnormal epithelial cells but had no effect on normal epithelial cells. Growth of cells in three-dimensional environments, which better mimic the normal cellular microenvironment, offers unique approaches for elucidating signals that contribute to tumor progression in vivo (7).

Prostate tumors display a loss of the epithelial marker E-cadherin and a switch in intermediate filament protein (IFP) expression from keratins to vimentin, resulting in the loss of hemidesmosomes (5). This switch in expression may earmark cells that have undergone an epithelial to mesenchymal transition. In cancer, the epithelial to mesenchymal transition may be a step toward tumor invasion, although this hypothesis remains controversial (8–10). Nonetheless, a role for vimentin in motility has been well documented in several cell types and may be important in cancer where motility is one component required to establishing a
metastatic phenotype. Motility and migration of breast, head and neck, or colon cancer cells were markedly affected by vimentin RNA interference (11–14, 38, 39). Although extensive studies are lacking in prostate, the expression of vimentin may be an underappreciated component of prostate tumor growth and progression.

Normal methods for culturing cells on plastic tissue culture dishes, called two-dimensional, do not duplicate the natural milieu surrounding epithelial cells in vivo nor do they produce polarized acini surrounded by basement membrane, as found in normal prostate tissue (15). To alleviate this problem, epithelial cells have been cultured three-dimensionally in laminin-rich ECM (lrECM) gels (16). Because cells grown in lrECM gels closely duplicate glandular phenotypic characteristics, these cultures enable an investigation into the influence of ECM and stroma on cell growth and differentiation in vitro (5, 16, 17). In the case of prostate epithelial, a variety of different morphologic structures have been obtained depending on cell type and culture conditions. For example, RWPE-1, an immortalized, nontumorigenic prostate epithelial cell line, was able to migrate into, and form branches terminating in, acini when plated on top of lrECM gels (2). However, NMU-transformed RWPE-1 cells formed solid cell masses (18).

Cultures of RWPE-2, a Ki-ras-transformed subline of RWPE-1, resulted in single to small clumps of cells with no evidence of acinus organization. The unrelated human prostatic carcinoma cell lines DU-145, PC3, or PNTC-C2 formed amorphous balls called spheroids without organization or lumen (2, 19). These different results could be due to the comparison of genetically dissimilar cell lines or related sublines, which were plated on top of lrECM gels rather than embedded. Due to these inconsistent results, we initiated a more thorough analysis of the morphologic structures formed by a unique set of genetically related, malignant or nonmalignant prostate sublines grown embedded in lrECM gels.

P69 is an immortalized, nonmetastatic prostate epithelial cell line (20). A metastatic subline M12 was derived by in vivo selection (three passages) of P69 cells in male, athymic nude mice (21). Analysis of M12 chromosomal alterations detected a novel 16:19 unbalanced translocation (25). The down-regulation of vimentin gene expression in previously (21, 22, 24). M12 cells were stably transfected with a plasmid psiREN-RetroQ (BD Biosciences) expressing a human vimentin shRNA (M12-Vim) of sequence 5′-GATCCGGACGAGTTCAAGACACCTTTCAAGAGGAGATTCTGTTTTGAACTCGGTG-3′ (the human vimentin gene sequence is italicized) as described previously (14). M12 cells transfected with either empty psiREN-RetroQ vector (M12+sIREN) or vector containing a nontargeting control sequence (M12+NTC: 5′-GATCCGGACGAGTTCAAGACACCTTTCAAGAGGAGATTCTGTTTTGAACTCGGTG-3′) served as negative controls. A search of the human genome or Sanger microRNA database confirmed no significant match to the nontargeting control sequence. Cells were transfected using TransIT-LT1 transfection reagent (Mirus Bio) according to the manufacturer’s instructions. Puromycin-resistant cells were selected in 400 ng/mL puromycin and maintained in 100 ng/mL (Amersham Biosciences). The down-regulation of vimentin gene expression in stable transfectants designated as M12-Vim was confirmed by Western blot analysis. LNCaP cells were cultured in RPMI 1640 plus 10% fetal bovine serum and 1% penicillin/streptomycin (25). PC3 cells were retrieved from tumors grown in athymic mice and maintained in RPMI 1640 for five passages before embedding in lrECM as described previously (25).

Materials and Methods

Substrates and Antibodies

Commercially prepared EHS ECM extract, growth factor reduced, lrECM (Cultrex BME) was used for three-dimensional cultures (23). Antibodies used for Western blotting and immunostaining studies were as follows: androgen receptor (sc-7305; Santa Cruz Biotechnology), E-cadherin (U3254; Sigma), β-catenin (H-102; Santa Cruz Biotechnology), keratin 5/6 (DAKO), keratin 8 (ab9287; Abcam), β1 integrin (MAB1951Z; Chemicon), α6 integrin (MAB1378; Chemicon), Ki-67 (clone MIB; Jackson ImmunoResearch Laboratories), vimentin (V6630; Sigma), and β-actin (A5441; Sigma). FITC-conjugated anti-rat IgG was from Jackson ImmunoResearch Laboratories, whereas fluorescent Alexa 488/546-labeled anti-rabbit and mouse IgG were from Invitrogen. Blocking antibodies for β1 integrin (AIIB2), originally a gift from C. Damsky, was isolated and prepared from a hybridoma cell line (Sierra Biosources), whereas α6 integrin blocking antibody (GoH3) was from BD Pharmingen. Nonspecific rat and mouse IgG and horseradish peroxidase-conjugated secondary antibodies were from Santa Cruz Biotechnology. Goat F(ab′)2 anti-mouse IgG was from Invitrogen (MAB35000).

Cell Culture and Stable Transfectants

The establishment, maintenance, and characterization of the SV40 T antigen-immortalized human prostate epithelial cell sublines P69, M12, and F6 have been described previously (21, 22, 24). M12 cells were stably transduced with a plasmid psiREN-RetroQ (BD Biosciences) expressing a human vimentin shRNA (M12-Vim) of sequence 5′-GATCCGGACGAGTTCAAGACACCTTTCAAGAGGAGATTCTGTTTTGAACTCGGTG-3′ (the human vimentin gene sequence is italicized) as described previously (14). M12 cells transfected with either empty psiREN-RetroQ vector (M12+sIREN) or vector containing a nontargeting control sequence (M12+NTC: 5′-GATCCGGACGAGTTCAAGACACCTTTCAAGAGGAGATTCTGTTTTGAACTCGGTG-3′) served as negative controls. A search of the human genome or Sanger microRNA database confirmed no significant match to the nontargeting control sequence.

Cells were transfected using TransIT-LT1 transfection reagent (Mirus Bio) according to the manufacturer’s instructions. Puromycin-resistant cells were selected in 400 ng/mL puromycin and maintained in 100 ng/mL (Amersham Biosciences). The down-regulation of vimentin gene expression in stable transfectants designated as M12-Vim was confirmed by Western blot analysis. LNCaP cells were cultured in RPMI 1640 plus 10% fetal bovine serum and 1% penicillin/streptomycin (25). PC3 cells were retrieved from tumors grown in athymic mice and maintained in RPMI 1640 for five passages before embedding in lrECM as described previously (25).
Acinar Morphogenesis

Three-dimensional cultures were prepared by growing prostate cancer cells to 80% confluence of monolayer on plastic tissue culture dishes followed by trypsinization and collection by centrifugation. lrECM was prethawed on ice overnight. Cells (1 × 10^6) were mixed with 1 mL undiluted lrECM and added to each well of a 6-well dish. Following incubation for 1 h at 37°C, the lrECM had polymerized. Medium (3 mL) containing a specific drug, if needed as cited above, was added on top of the solidified lrECM-cell mix. The same batch of lrECM was used throughout this study. Medium was replaced every other day and cultures were grown for up to 16 days in lrECM, maintaining their organization for this entire period.

In vivo Tumorigenicity Assays

Tumorigenicity of M12 cells stably transformed with the vimentin shRNA expression plasmid (M12-Vim), vector alone (M12+siREn), or vector expressing the nontargeting RNA control (M12+NTC) was assessed by s.c. injection of 1 × 10^6 cells into male, athymic nude mice as described previously (21). A total of 15 mice were injected as follows: 6 mice with M12-Vim, 4 mice with M12+siREn, and 5 mice with M12+NTC for a total of 9 mice serving as negative controls. Tumor growth was monitored by caliper measurement for up to 42 days and approximate tumor volume was displayed and quantified as described previously (26). A total of 15 mice were injected as follows: 6 mice with M12-Vim, 4 mice with M12+siREn, and 5 mice with M12+NTC for a total of 9 mice serving as negative controls. Tumor growth was monitored by caliper measurement for up to 42 days and approximate tumor volume was displayed and quantified as described previously (26).

Western Immunoblotting

Harvested cells were washed by centrifugation and resuspended in 1× PBS (400 μL). The supernatants were loaded onto a 10% SDS-PAGE gel and electroblotted onto nitrocellulose membranes. Membranes were blocked with 5% nonfat milk in 0.1% PBS for 1 h sequentially. Slides were incubated with primary antibody overnight at 4°C followed by either FITC or Alexa-conjugated secondary antibody (1:200) for 45 min. The dilutions of antibodies used were as follows: α5 integrin (1:100), androgen receptor (1:50), β-catenin (1:100-1:200), β1 integrin (1:100), keratin 5/6 (1:200), keratin 8 (1:100), E-cadherin (1:200), vimentin (1:200), and Ki-67 (1:200). Nuclei were counterstained with 4,6-diamidino-2-phenylindole (Sigma) overnight at room temperature. Control slides were stained with secondary antibody only. Slides were visualized under a LZX5100 confocal microscope according to the manufacturer’s instructions. Representative pictures were shown from experiments repeated at least twice with 20 to 50 morphologic structures analyzed.

Indirect Immunofluorescence

A sample (±10 μL) of lrECM culture was spread on each well of a 4-well chamber slide, air dried, and fixed in 1:1 methanol/acetone at 20°C for 10 min. The slides were washed by 1× PBS briefly followed by 400 μL of 1× IF buffer (130 mmol/L NaCl, 7 mmol/L Na2HPO4, 3.5 mmol/L NaH2PO4, 7.7 mmol/L NaNO3, 0.1% bovine serum albumin, 0.2% Triton X-100, 0.05% Tween 20) with 10% goat serum and a secondary blocking in 200 μL of 1× IF buffer with 10% goat serum and 20 μg/mL goat anti-mouse F(ab’)2 fragment for 1 h sequentially. Slides were incubated with primary antibody overnight at 4°C followed directly by either FITC or Alexa-conjugated secondary antibody (1:200) for 45 min. The dilutions of antibodies used were as follows: α5 integrin (1:100), androgen receptor (1:50), β-catenin (1:100-1:200), β1 integrin (1:100), keratin 5/6 (1:200), keratin 8 (1:100), E-cadherin (1:200), vimentin (1:200), and Ki-67 (1:200). Nuclei were counterstained with 4,6-diamidino-2-phenylindole (Sigma) overnight at room temperature. Control slides were stained with secondary antibody only. Slides were visualized under a LZX5100 confocal microscope according to the manufacturer’s instructions. Representative pictures were shown from experiments repeated at least twice with 20 to 50 morphologic structures analyzed.

Results

Morphologic Properties of P69, M12, and F6 Sublines Grown Embedded in lrECM Gels

When grown on plastic tissue culture dishes (two-dimENSIONAL), the cellular morphology of the P69-derived prostate cell sublines is indistinguishable (Fig. 1A, top row). However, when grown embedded (three-dimensionally) in lrECM gels, these genetically similar sublines organize into distinct, different morphologic structures (Fig. 1A, bottom row, and Fig. 2). The nontumorigenic P69 epithelial cell line forms acini (Fig. 1A, lane 1). Although the highly metastatic M12 subline initially forms solid balls of cells called spheroids, within 48 h, the cells began to migrate out of these structures and ultimately penetrate throughout the lrECM gel (Fig. 1A, lane 2). The poorly tumorigenic F6 subline reverted back to forming acini (Fig. 1A, lane 3).

A proteomic analysis of these sublines revealed a notable difference in the expression of the mesenchymal IFP,
vimentin (24). Epithelial cells grown on plastic dishes often aberrantly express vimentin (Fig. 1B, top row) albeit at a low level compared with the usual epithelial keratins (27). When grown three-dimensionally, vimentin is not expressed in the P69 subline akin to expression patterns in vivo (Fig. 1B, bottom row). Similar to most, if not all, metastatic cancers, vimentin is highly expressed in the metastatic M12 subline grown either two-dimensionally or three-dimensionally (28). Conversely, the amount of vimentin protein is severely reduced in the F6 subline grown under either condition (24). Thus, in both cases, the M12 subline highly expresses vimentin, whereas the P69 and F6 sublines either do not or exhibit a marked decrease in vimentin expression when grown in IrECM gels.

Blocking Vimentin via shRNA Interference Causes a Dramatic Change in the In vitro Phenotype of M12 Cells

Previous studies of nonisogenic breast cancer cell lines suggested that vimentin expression is essential but not sufficient to cause tumor metastasis (29). In these prostate sublines, there is a tremendous difference in vimentin expression (24). To determine if vimentin content could have a direct effect on the morphology of the M12 subline, M12s were stably transformed with a vimentin shRNA-producing plasmid called M12-Vim. When grown either two-dimensionally or three-dimensionally, the level of vimentin protein was repressed 85% compared with the usual epithelial keratins (27). Epithelial cells grown on plastic dishes often aberrantly express vimentin (Fig. 1B, top row) but did contain β-catenin (Fig. 2B, h1), E-cadherin (Fig. 2B, c1), keratin 5/6 (Fig. 2B, d1), keratin 8 (Fig. 2B, e1), and α6β1 integrin (Fig. 2C, h1 and j1) akin to normal prostate epithelial cells. The overlay (Fig. 2C, k1) indicated that α6β1 integrin was colocalized and polarized on the outside edge of the acinus as seen in prostate tissue (5, 30). In contrast, by day 8, most of the metastatic M12 subline had grown out of spheroids (Fig. 2B, a2) and Fig. 2C, h2 and j2). β-Catenin staining of cell-cell junctions confirmed that these cellular masses were not organized into lumen-containing acini (Fig. 2B, b2). In addition, there was a loss of expression (≥99%) of the epithelial cell marker, E-cadherin (Fig. 2B, c2), coincident with the emergence of vimentin (Fig. 2B, a2) as seen in Fig. 1B. Moreover, the M12 cellular mass showed little organization and a loss of polarization as verified by diffuse staining with antibodies to α6 and β1 integrins (Fig. 2C, h2 and k2). In addition, expression of keratin 5/6 was barely detectable (Fig. 2B, d2), whereas keratin 8 (Fig. 2B, e2) remained consistent. In a time-course study, it was evident that the M12 subline did initially try to form spheroids (a remnant of one is seen in Fig. 2B, a2, white arrow), but by day 8 most cells had migrated out of spheroids into the surrounding matrix.

Interestingly, F6 cells with a restored second copy of chromosome 19 produced acini-like structures with a defined lumen (Fig. 2B and C). Expression of vimentin was greatly reduced (Fig. 2B, a3) and expression of the multicellular nature of these acini with a notable, clear lumen. The similarity of these structures to those formed by prostate glandular epithelium embedded in a matrix of stromal cells was readily apparent (2).

Immunostaining for a variety of relevant IFPs, nuclear, membrane, and cell-surface proteins was used to access protein organization within the morphologic structures formed by these sublines in IrECM gels (Fig. 2B and C). Staining for Ki-67 revealed that nuclei were actively dividing at day 8 for all sublines (Fig. 2B, a1-a4). P69 acini did not express vimentin (Fig. 2B, a4) but did contain β-catenin (Fig. 2B, h4), E-cadherin (Fig. 2B, c4), keratin 5/6 (Fig. 2B, d4), keratin 8 (Fig. 2B, e4), and α6β1 integrin (Fig. 2C, h4 and j4) akin to normal prostate epithelial cells. The overlay (Fig. 2C, k4) indicated that α6β1 integrin was colocalized and polarized on the outside edge of the acinus as seen in prostate tissue (5, 30). In contrast, by day 8, most of the metastatic M12 subline had grown out of spheroids (Fig. 2B, a5) and Fig. 2C, h5 and j5) β-Catenin staining of cell-cell junctions confirmed that these cellular masses were not organized into lumen-containing acini (Fig. 2B, b5). In addition, there was a loss of expression (≥99%) of the epithelial cell marker, E-cadherin (Fig. 2B, c5), coincident with the emergence of vimentin (Fig. 2B, a5) as seen in Fig. 1B. Moreover, the M12 cellular mass showed little organization and a loss of polarization as verified by diffuse staining with antibodies to α6 and β1 integrins (Fig. 2C, h5 and k5). In addition, expression of keratin 5/6 was barely detectable (Fig. 2B, d5), whereas keratin 8 (Fig. 2B, e5) remained consistent. In a time-course study, it was evident that the M12 subline did initially try to form spheroids (a remnant of one is seen in Fig. 2B, a5, white arrow), but by day 8 most cells had migrated out of spheroids into the surrounding matrix.

Interestingly, F6 cells with a restored second copy of chromosome 19 produced acini-like structures with a defined lumen (Fig. 2B and C). Expression of vimentin was greatly reduced (Fig. 2B, a5) and expression of...
E-cadherin returned (Fig. 2B, c3) as well as keratin 5/6 (Fig. 2B, d3) with the multicellular nature of these acini confirmed by h-catenin staining of cell junctions (Fig. 2B, b3). Keratin 8 (Fig. 2B, e3) expression continued. Moreover, F6 acini exhibit a6 and h1 integrin polarization with colocalization (note overlay) of a6h1 integrin dimers (Fig. 2C, h3-k3).

Reducing vimentin expression via shRNA also reverted M12 cells back to acini-like structures (Fig. 2B and C). Immunostaining with antibodies to vimentin and E-cadherin showed that the M12-Vim subline expressed E-cadherin and keratin 5/6 instead of vimentin (Fig. 2B, compare c4 and d4 with a4). Western blots confirmed that P69, F6, or M12-Vim acini grown in lrECM gels (three-dimensional) retained E-cadherin expression, whereas it was lost (99%) in the M12 subline (data not shown). Again, keratin 8 (Fig. 2B, e4) remained. M12-Vim cells exhibit polarization of α6 or β1 integrins and renewed colocalization of α6β1 integrin dimers (Fig. 2C, h4-k4), which is similar to that seen in the P69 or F6 acini (Fig. 2C, k1 and k3). Because staining for androgen receptor was negative, in both Western blots of two-dimensional cultures (31) and immunofluorescence staining of three-dimensional structures, pictures are not shown.

Growth of these genetically related sublines was compared with the more familiar prostate cell lines, LNCaP and PC3 (Fig. 2D). Only immunofluorescence staining for proteins relevant to morphologic organization is shown. Both cell lines formed multicellular spheroids with no evidence of a lumen on Z-stack analysis. The least tumorigenic LNCaP cell lines (androgen receptor positive) displayed colocalization and polarization of a6h1 integrins akin to the F6 subline (overlay m3). However, the highly metastatic PC3 cell line did not exhibit integrin polarization and staining was diffuse (overlay n3) as in the M12 subline (Fig. 2C, k2).
Measurement of P69, F6, and M12-Vim Acini Grown in lrECM

Next, we compared the growth properties of P69, F6, and M12-Vim structures overtime in three-dimensional culture to determine if acini reach a maximum cell number and size, become growth arrested, or maintain a lumen (Fig. 3). Counting the number of nuclei in 100 P69, F6, and M12-Vim acini indicated that these cells were still actively dividing by day 13 in culture (Fig. 3A). Growth arrest occurred around day 16 as confirmed by negative staining for Ki-67 at day 16 compared with day 13 (data not shown). The size of the acini (μm) also reached a maximal level by day 16, consistent with the cell number count per acinus (Fig. 3B). In contrast, M12 sublines still showed positive Ki-67 staining up to day 16. These cultures could not be analyzed past 16 days, as the ability of the lrECM gel to support growth became rate limiting. Because M12 cells form a nonorganized cellular mass rather than acini, it was not relevant to count nuclei. Data were analyzed by regression model with P values of 0.15 and 0.08 (both >0.05) for cell number (Fig. 3A) and acini size (Fig. 3B), which indicates that there is no significant difference among the three sublines.

Blocking Vimentin Expression in M12 Cells Affects Tumor Formation in Nude, Athymic Mice

Previously, the tumorigenicity of the M12 and F6 subline was determined by s.c. injection into male, athymic, nude mice (21). All mice (13 of 13) injected with M12 cells developed tumors after 9 to 15 days. Mice injected with F6 cells either failed to produce tumors (9 of 15) or produced only small tumors (6 of 15) after 120 days. When grown three-dimensionally, reducing the expression of vimentin reverted the M12 cells back to acini-like structures. Next, we asked if the dramatic morphologic difference observed in vitro would correlate to tumor growth in vivo. To answer this question, tumor formation was assessed by s.c. injection into male, athymic, nude mice of M12 cells stably transformed with vector only (M12+siREN), vector expressing a nontargeting, scrambled RNA sequence (M12+NTC), or M12-Vim (Fig. 4A). By 42 days, 6 of 6 mice injected with M12-Vim displayed tumors, which were >8-fold reduced in size compared with the average of the 9 mice injected with either M12+siREN- or M12+NTC-negative controls. Importantly, there was little difference in the proliferation rate of the M12-Vim subline compared with the negative control cells in two-dimensional culture (data not shown). Thus, the lack of vimentin is not influencing cell growth rate in vitro. Regression model analyses using the LSmeans Tukey’s honestly significant difference test indicated that there was a significant difference between M12+NTC or M12+siREN and M12-Vim with P values < 0.001. At the completion of the experiment, animals were euthanized, tumors were removed, and continued vimentin expression in the M12+siREN-negative control was verified by immunofluorescence staining (Fig. 4B, right). Little vimentin could be detected in the small tumors formed by the M12-Vim subline (Fig. 4B, left) in agreement with Western blots (Fig. 1).

A comparison of the morphologic properties of these cells in vitro and in vivo is compiled in Table 1. Tumorigenicity of the original M12 and F6 sublines was documented previously (22). Here, the reduction of vimentin expression in the M12-Vim cells reduced tumor growth compared with the M12 control cells. A reduction in expression of E-cadherin concomitant with activation of vimentin expression is indicative of cells that have progressed through the epithelial to mesenchymal transition (8). It would appear that this transition is occurring in these genetically related sublines when grown embedded in lrECM gels. Coexpression of keratin 5/6 and keratin 8 plus p63 (data not shown) suggests that parental P69 cells were derived from an intermediate cell, proposed to be the progenitor cell of prostate cancer (32) Moreover, the lack of keratin 5 expression in the highly tumorigenic, metastatic, M12 subline is consistent with loss of keratin 5 expression in human prostate cancer metastases (33–35). Overall, these comparisons support the conclusion that the growth of these uniquely related prostate sublines in...
Three-dimensional culture closely parallels their properties in vivo and those of glandular epithelium as cells progress to tumor formation and ultimately metastatic prostate carcinoma.

Inhibiting α_6 or β_1 Integrin Activity Can Cause a Phenotypic Reversion

The inclusion of blocking antibodies for β_1 integrin (AIIB2) or α_6 integrin (GoH3) reverted the M12 cells back to smooth acini-like structures, whereas IgG had little affect (Fig. 5A). Similar treatment of the F6 subline showed little difference, although there may be a slight reduction in acinus size. Immunostaining with the E-cadherin antibody showed that treatment with either AIIB2 or GoH3 restored some E-cadherin expression, resulting in some evidence of polarization akin to F6 acini structures (Fig. 5B, c_2 and c_4 compared with d_2 and d_4). Importantly, neither the AIIB2 nor the GoH3 antibody had an effect on F6 acini formation. Thus, this effect appears to be specific to M12 cells. Western blots showed that AIIB2 treatment did dramatically decrease α_1 integrin expression ($\geq85\%$) in both M12 and F6 sublines, whereas vimentin expression in the M12 subline or actin levels in either subline was not affected (Fig. 5C). These results differed from other studies, where acinar formation of normal prostate epithelium was practically obliterated by the addition of either α_6 or β_1 blocking antibodies (18) but does agree with the fact that α_6 integrin is more associated with the formation of focal adhesion complexes involved with motility than stable hemidesmosomal attachment sites used more for the anchoring of cells. To our knowledge, this is the first time that the effect of α_6 and β_1 integrin function-blocking antibodies has been tested against metastatic prostate cells rather than normal prostate epithelial three-dimensionally, a more relevant assay for determining how changes in protein expression contribute to tumor progression.

Discussion

The analysis of relevant marker proteins (E-cadherin, keratins, β-catenin, and α_6 and β_1 integrins) in these gen-

Table 1. Summary of the in vivo and in vitro properties of the prostate cancer sublines

<table>
<thead>
<tr>
<th></th>
<th>P69</th>
<th>M12</th>
<th>F6</th>
<th>M12-Vim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorigenic</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Acini formation in lECM</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>+++</td>
<td>–</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Vimentin expression</td>
<td>–</td>
<td>+++</td>
<td>–/+</td>
<td>–/+</td>
</tr>
<tr>
<td>Keratin 5/6</td>
<td>+++</td>
<td>–</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Keratin 8</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>β-Catenin</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>α_6 Integrin polarization</td>
<td>Basal polarity</td>
<td>Nonpolarized</td>
<td>Basal polarity</td>
<td>Basal polarity</td>
</tr>
<tr>
<td>β_1 Integrin polarization</td>
<td>Basal polarity</td>
<td>Nonpolarized</td>
<td>Basal polarity</td>
<td>Basal polarity</td>
</tr>
</tbody>
</table>
etically related, human prostate epithelial sublines grown in lrECM gels shows that the relative distribution and proportion of cell surface integrins controls the structural homeostasis of these cells. The parental P69 cell line produces structures that are morphologically similar to human glandular prostate epithelial cells (2). α6 and β1 Integrin expression is polarized in the P69, poorly tumorigenic F6, and M12-Vim acini, but polarization disappears in the disorganized mass of tumorigenic and metastatic M12 cells. The weakly tumorigenic LNCaP cell line displayed features of integrin polarization akin to P69, F6, or M12-Vim sublines, but the metastatic PC3 cell line formed solid spheroids of cells similar to initial M12 cultures. With time, the M12 subline grew out of such disorganized spheroids, which may reflect its highly metastatic phenotype (22).

Thus, a thorough analysis of these P69-derived sublines has revealed in vitro morphologic properties, which correlate with their tumorigenic/metastatic behavior in vivo and to the more common LNCaP and PC3 prostate cell lines (21, 22). Overall, our results agree with those studies where an inverse relationship was found between acinar formation and malignancy (2, 36).

Recently, a correlation between vimentin expression and the degree of metastasis was confirmed in another set of genetically related prostate cell lines (37). More importantly, we found vimentin expression to be a crucial component of the morphologic changes observed by cells grown three-dimensionally. Disorganized M12 cells con-
taining vimentin did not form acini in lrECM gels but moved out of spheroids and spread throughout the matrix with little evidence of any acini structure. On the other hand, the P69 and F6 sublines express little vimentin but did form acini-like structure in lrECM gels. Blocking vimentin gene expression via shRNA reverted M12 cells to producing acini-like structures. These results imply that the lack of vimentin protein is essential for formation of acini-like structures by these sublines in vitro. M12-Vim cells displayed a considerable reduction in tumor growth in vivo, consistent with those morphologic differences displayed in vitro. Although several studies document a requirement for vimentin in motility and invasion assays in vitro, this is the first indication of such a dramatic effect on prostate tumor growth in vivo dependent on the continued expression of vimentin, although a similar role has been noted in breast and head and neck cancer cell lines (11–14, 38, 39).

An increase in β1 integrin expression has been found in actual prostate tumor samples as well as in more dedifferentiated tumor cells (3, 30). Similar results have been reported for metastatic mammary gland epithelial cell lines, where reversion by an inhibitory α6 or β1 integrin antibody or its F(ab′)2 fragment led to the reestablishment of E-cadherin-β-catenin complexes (40). In our study, the interruption of α6 or β1 integrin expression reversed the morphologic phenotype of the metastatic M12 subline back to organized, polarized acini three-dimensionally as proposed but never proven experimentally (5). Although β1 integrin inhibitory antibodies were shown to block acini formation in a previous study, cells were plated on top of lrECM and had to first move into the gel to subsequently form acini, addressing a different experimental question than here (18). Our results suggest that α6 or β1 integrin blocking antibodies could represent a relevant therapy to combat prostate tumor progression as has been suggested for metastatic breast cancer (41).

It has been postulated that, in motile cells, vimentin is responsible for moving endocytosed β1 integrin from the rear of the cell to the leading edge under the control of protein kinase C-ε (42). On inhibition of protein kinase C-ε and loss of vimentin phosphorylation, integrins become trapped in endocytic vesicles and directional motility toward the ECM is severely attenuated. Other studies proposed that vimentin functions as a carrier to move cargo on microtubules using kinesin/dynein motors (43). Although vesicle movement on the IFP network itself has never been documented, inhibitors that collapse microtubules affect the IFP network, suggesting cross-talk (43). Because the IFP network is the only filament that completely traverses the cytosplasm, a role in signal transduction has been proposed (44). Until now, the nature of the cargo carried by vimentin in nonneuronal cells was unknown. Based on our results and the literature, we propose that vimentin may contribute to moving β1 integrin to the leading edge to support motility in prostate carcinoma. Because α6 integrin expression also correlates with a more metastatic phenotype and α6 blocking antibodies reversed the morphology of the M12 subline, α6 integrin may also play a role in prostate invasion (5, 30, 45, 46). Currently, we propose that vimentin-β1 integrin interaction is required for motility, an important precondition for establishing the metastatic property of M12 cells in vivo. Interrupting this movement by blocking α6 and β1 integrin antibodies or reducing the amount of vimentin protein via shRNA interference reverted cells to acini-like structures in vitro and severely reduced growth in nude mice. We propose that, by understanding the nature of the vimentin-integrin interaction, perhaps target molecule(s) could be generated to block this association. These molecules would be specific for the poorly differentiated, highly metastatic cell, because it is only this cell type that is motile and highly expresses both α6 and β1 integrin and vimentin (19, 47). Such molecules may also present a relevant therapy for other poorly differentiated metastatic tumors such as breast, which also coexpress β1 integrin and vimentin at high levels (28).

In summary, growth of the P69, M12, and F6 sublines in lrECM gels presents a biologically relevant model system for determining what controls morphologic differences in vitro that contribute to promote tumor progression in vivo. It is anticipated that growth of these unique prostate sublines three-dimensionally will lead to the detection of relevant markers/targets that could be useful in the diagnosis, prevention, and ultimate treatment of prostate tumor progression. In addition, these sublines and the three-dimensional technology could be easily adapted to high-throughput screening for drugs, which could modify high-throughput morphologic behavior in vitro and identify a useful future therapy to counteract high tumor growth rates and/or metastasis in vivo.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank Frances K. White and the confocal imaging facility from the Massey Cancer Center (supported in part by NIH grant P30CA16058) and Dr. Davis Massey (Department of Pathology, Virginia Commonwealth University School of Medicine) for photography of immunofluorescence-stained tissue.

References
Three-Dimensional Cultures of Prostate Sublines

34. Abrahams NA, Bostwick DG, Ormsby AH, Qian J, Brainard JA. Distinguishing atrophy and high-grade prostatic intraepithelial neoplasia from prostatic adenocarcinoma with and without previous adjuvant hormone therapy with the aid of cytokeratin 5/6. Am J Clin Pathol 2003;120:368 – 76.

Molecular Cancer Therapeutics

Inhibition of vimentin or β1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

Xueping Zhang, Marcia V. Fournier, Joy L. Ware, et al.

Mol Cancer Ther 2009;8:499-508. Published OnlineFirst March 10, 2009.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-08-0544

Cited articles
This article cites 47 articles, 16 of which you can access for free at:
http://mct.aacrjournals.org/content/8/3/499.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/8/3/499.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.