Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung

Jun Qian,1 Yong Zou,1 Jamshedur S.M. Rahman,1 Bo Lu,2 and Pierre P. Massion1

1Division of Allergy, Pulmonary, and Critical Care Medicine and 2Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville VA Medical Center, Nashville, Tennessee

Abstract

Adenocarcinomas of the lung commonly show an increase in the activity of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, yet many are resistant to apoptosis induced by the inhibition of PI3K. We hypothesized that Bcl-xL would have a synergistic effect on the apoptotic response induced by inhibition of the PI3K/Akt pathway in lung adenocarcinoma. To test this, we examined the effect of the PI3K inhibitor (LY294002) on lung adenocarcinoma cell lines expressing varying levels of Bcl-xL. We found that cells that overexpress Bcl-xL are resistant to LY294002-induced apoptosis, whereas cells that express little Bcl-xL readily are not. Restoring Bcl-xL expression in cells that express low level of Bcl-xL conferred resistance to apoptosis in response to LY294002. The simultaneous inhibition of the PI3K/Akt pathway by LY294002 or Akt1 small interfering RNA and Bcl-xL function by ABT-737 or Bcl-xL small interfering RNA greatly enhanced the apoptotic response. Moreover, this response was associated with the induction of proapoptotic BH3-only Bcl-2 family member Bim. Our data suggest that PI3K/Akt and Bcl-xL pathways control cell death in lung adenocarcinoma cells in a synergistic manner. Modulation of Bcl-xL expression may represent one important strategy to optimize the efficacy of therapeutic agents targeting the PI3K/Akt pathway in adenocarcinoma of the lung. [Mol Cancer Ther 2009;8(1):101–9]

Introduction

Lung cancer is the number one cause of cancer-related deaths worldwide with ~1.5 million cases each year (1). Non-small cell lung cancer (NSCLC) accounts for ~80% of lung cancers, among which adenocarcinomas are the most common (40%). Adenocarcinomas of the lung have a high mortality rate, with a 5-year overall survival that is generally <15% (2). A major limitation to the curative potential of current therapy is resistance to chemotherapy (3). Anticancer drugs exert at least part of their cytotoxic effect by triggering apoptosis. Better understanding of the molecular mechanisms controlling apoptosis is therefore crucial to defining new targets for therapeutic intervention in lung cancer.

Molecular genetic studies have led to the discovery of several potential targets for therapeutic design, such as PI3K and Akt. The PI3K signal transduction pathway was found to regulate cell proliferation and survival and to be closely associated with the development and progression of various tumors (4). We and others have suggested that the PI3K signaling pathway is involved in the early stage of lung cancer progression; increases in gene copy number of the PI3K catalytic subunit and increases in Akt activity, as detected by phosphorylation status, have been observed in premalignant and malignant human bronchial epithelial cells and in NSCLC cells (5–7). Downstream from PI3K, phospho-Akt is a powerful promoter of cell survival as it antagonizes and inactivates various components of the apoptotic cascade such as proapoptotic Bad, caspase-9, and forkhead transcription factor family members (8). Various drugs targeted against molecular changes in these pathways have been developed and some are being tested for clinical use in lung cancer (9, 10). The apoptotic response resulting from the inhibition of PI3K/Akt pathways have been observed to varying degrees in several types of cancer (11–14), including NSCLC cells (15–18). Therefore, it is important to identify mechanisms of sensitivity and resistance to these agents.

Proteins of the Bcl-2 family are key regulators of apoptosis. Overexpression of antiapoptotic proteins such as Bcl-2 and Bcl-xL can provide tumor cells with resistance to a variety of cellular insults including chemotherapeutic drugs in cell culture and in animal models (19, 20). There is evidence for a link between this survival mechanism and the PI3K pathway. The PI3K pathway targets members of the Bcl-2 family through phosphorylation and functional regulation (21). The PI3K pathway also regulates the expression of these proteins, as PI3K/Akt stimulates the expression of antiapoptotic Bcl-2 proteins, such as Bcl-xL and Mcl-1, through the activation of nuclear factor-kB (22). However whether Bcl-2 or Bcl-xL contributes to the resistance of lung adenocarcinoma cells to apoptosis induced by the inhibition of the PI3K/Akt pathway is not established.

Received 10/31/07; revised 10/13/08; accepted 10/14/08.

Grant support: RO1 CA102353 (P.P. Massion).

Requests for reprints: Pierre P. Massion, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville VA Medical Center, Nashville, Tennessee 37232-2595; E-mail: pierre.massion@vanderbilt.edu.

Copyright © 2009 American Association for Cancer Research. mct.aacrjournals.org Downloaded from mct.aacrjournals.org on June 22, 2017. © 2009 American Association for Cancer Research.
The current study was therefore designed to investigate the synergistic effect of PI3K/Akt pathway and Bcl-xL in controlling apoptosis in adenocarcinoma cells of the lung. We show that Bcl-xL plays a critical role in mediating resistance of lung adenocarcinoma cells to cell death induced by the inhibition of the PI3K/Akt pathway. Combined inhibition of Bcl-xL and PI3K/Akt pathway may represent a useful strategy for the treatment of lung adenocarcinoma.

Materials and Methods

Cell Lines and Culture Conditions

Five human lung adenocarcinoma cell lines (A549, H23, H1793, H549, and H441) were purchased from the American Type Culture Collection. The PI3K/Akt inhibitor LY294002 was purchased from Cell Signaling; Bcl-2/Bcl-xL inhibitor ABT-737 or enantiomer of ABT-737 was obtained from Abbott Laboratories. The concentrations of these inhibitors used are as follows: LY294002 (25-50 μmol/L) and ABT-737 or enantiomer of ABT-737 (1-8 μmol/L). In some experiments, the inhibitors were titrated to determine the lowest concentration that resulted in specific kinase inhibition and induction of apoptosis. The cells were plated 24 h before adding the inhibitor in the presence of 10% serum for 24, 48, or 72 h and were then subjected to the analysis of Akt activation, cell apoptosis, and cell cycle progression. All inhibitors were resuspended in DMSO as a vehicle. Apoptotic and cell cycle assays were repeated at least three times.

Antibodies and Immunoblot Analysis

A mouse monoclonal antibody to phospho-Akt (Ser^473) and phospho-p70 S6K, rabbit polyclonal antibodies to Akt, rabbit polyclonal antibodies to Bcl-xL, Bad, Bax, Bim, and Bid, and rabbit polyclonal antibodies to poly(ADP-ribose) polymerase (PARP), caspase-3, and cleaved caspase-3 were obtained from Cell Signaling. Goat anti-β-actin was purchased from Santa Cruz Biotechnology. Western blotting was done using standard procedures as described in our previous study (23), with detection using the enhanced chemiluminescence system (Pierce Biotechnology). Antibody dilutions for immunoblotting were 1:1,000. Enhanced chemiluminescence was purchased from Santa Cruz Biotechnology. Western blotting was done using standard procedures as described in our previous study (23), with detection using the enhanced chemiluminescence system (Pierce Biotechnology). Antibody dilutions for immunoblotting were 1:1,000.

Silencing of Bcl-xL or Akt1 Gene Expression

Oligofectamine, Opti-MEM I, and Stealth RNAi Negative Control Med GC were purchased from Invitrogen. Three double-stranded Bcl-xL small interfering RNAs (siRNA; HSS141361 sense 5'-GACGUGGCUAUUUGAAGGAGGUU-3' and antisense 5'-AACCCUCUUCACAUAAGCCACGUC-3', HSS100347 sense 5'-AUUCUUAGGAGAAGCUUGGC-3' and antisense 5'-GCCACGCUACUCCUCUCAAGAUAU-3', and HSS100345 sense 5'-AUACCGGCAAAGAAGCAGGA-3' and antisense 5'-UGACGAUGCUUCUCUUUGCCGUAU-3') were synthesized by Invitrogen and suspended in water at a concentration of 20 μmol/L. The transfections were done according to the manufacturer's instructions. Briefly, 1 × 10^5 or 5 × 10^5 cells were seeded into 6-well plates with medium overnight. For each well, 5 or 10 μL of each siRNA duplex sequence were mixed together with 185 μL. Opti-MEM I and then combined with another mixture prepared using 3 μL Oligofectamine and 15 μL Opti-MEM I. The final concentration of the siRNA was 100 or 200 nmol/L. For the combination of LY294002 and Bcl-xL siRNA treatment, cells were incubated with 25 μmol/L LY294002 in 10% fetal bovine serum for additional 24 or 48 h.

Flow Cytometry

For analysis of DNA content and cell cycle by flow cytometry, cells were pelleted, washed once with PBS, and fixed with ethanol. At the time for flow cytometry analysis, cells were washed once in PBS and then stained for DNA content by use of 0.5 mL of 50 μg/mL propidium iodide (PI; Sigma-Aldrich) and 100 μg/mL RNase A (Qiagen) in PBS and 38 mmol/L sodium citrate (pH 7.4). A total of 10,000 to 20,000 stained nuclei were subjected to flow cytometry analysis. Data were collected on a Becton Dickinson FACSCalibur flow cytometer using CellQuest Pro software (BD Biosciences). Cell cycle analysis was done using the ModFit LT software (Verity Software House). The percentage of cells in sub-G_1 was considered apoptotic.

Apoptosis was evaluated by assessment of Annexin V and PI double staining (Invitrogen). Briefly, 1 × 10^6 treated cells were pelleted, washed with PBS, resuspended in 100 μL binding buffer, and incubated at room temperature for 15 min in the presence of Alexa Fluor 488-conjugated Annexin V (0.2 μmol/L) and 1 μL PI (10 μg/mL) solution. After staining, 400 μL binding buffer was added and Annexin V staining was then quantified by fluorescence-activated cell sorting analysis. Cells of positive Annexin V and negative PI were considered apoptotic. Data acquisition and analysis were done by the CellQuest Pro program (BD Biosciences).

Stable Transfection of Bcl-xL in H23 Cells

Retroviral plasmid pBabe vector and pBabe-Bcl-xL are generous gifts of Elizabeth Yang at Vanderbilt University (24). Plasmid DNA (4 μg) was transfected into Phoenix-eco packaging cells by using PolyFect Transfection kit (Qiagen) according to the instructions of the manufacturer. After 48 h, virus-containing medium was collected and used to immediately infect H23 cells in the presence of 4 μg/mL polybrene (Millipore). After 24 h of incubation, medium was changed. Puromycin was added 48 h post-transfection at a final concentration of 4 μg/mL to obtain stable clones overexpressing Bcl-xL.
Statistical Analyses
All determinations were done in duplicate or triplicate for each group and each experiment was repeated at least three times. Values are mean ± SD. Representative results from Western blot and flow cytometry analysis from a single experiment are presented. Statistical analyses were done by paired t test. Differences were considered to be statistically significant at P < 0.05. Two-tailed P values < 0.05 were regarded as significant.

Results
Lung Adenocarcinoma Cells Are Resistant to Apoptosis Induced by Inhibition of the PI3K/Akt but Undergo Cell Cycle Arrest
The apoptotic and cell cycle response to the PI3K/Akt inhibitor LY294002 were tested in a panel of five lung adenocarcinoma cell lines, A549, H549, H23, H1793, and H441, grown under normal growth conditions in the presence of 10% fetal bovine serum. Akt activation was assessed by immunoblotting with phosphospecific antibodies to phospho-Akt (Ser473). Apoptosis was assessed by Annexin V binding assay and sub-G1 population by PI nuclear staining. Treatment of these cells with 25 μmol/L LY294002 for 48 h showed a negligible apoptotic response (<2%) in 4 of 5 cell lines tested (Fig. 1A). Extending the treatment for up to 72 h did not induce significant cell death in these cells (Fig. 1B). In contrast, LY294002 induced apoptosis in >14% to 23% in H23 cells (Fig. 1A and B). Although 4 of 5 lung adenocarcinoma cell lines examined subjected to LY294002 failed to undergo apoptosis, this treatment was sufficient to inhibit cell growth and led to cell cycle arrest in G0-G1 in all 5 cell lines (Fig. 1A). The ability of LY294002 to suppress the activation of Akt in these experiments was confirmed by Western blotting with antibodies against phospho-Akt (Ser473) as shown in Fig. 1C. These data indicate that lung adenocarcinoma cells are commonly resistant to apoptosis induced by PI3K/Akt inhibition.

Bcl-xL Is Highly Expressed in Most Lung Adenocarcinoma Cell Lines Examined and Its Expression Is Independent of PI3K/Akt Signaling Pathway
To explore the potential role of Bcl-2/Bcl-xL in the mechanism of the differential sensitivity to LY294002-induced apoptosis in lung adenocarcinoma cells, we first evaluated the expression level of both Bcl-2 and Bcl-xL in a subset of lung adenocarcinoma cell lines. Bcl-2 is barely detectable in all cell lines, which is consistent with the literature (25). This is not due to an inability of the antibody to detect Bcl-2 as the protein was readily detected in H69, a SCLC cell line included as a control (Fig. 2A). In contrast, all cell lines, with the exception of H23, displayed high expression of Bcl-xL (Fig. 2A). Interestingly, H23 is the cell line sensitive to LY294002-induced apoptosis (Fig. 1). Recent publications implicate the role of Akt activation in Bcl-xL expression levels in some type of cells (26, 27). Therefore, we asked whether PI3K/Akt pathway activation regulates the expression of Bcl-xL in these lung adenocarcinoma cell lines. Tumor cell lines were treated with 25 μmol/L LY294002 for up to 48 h before analysis. As shown in Fig. 2B and C, Bcl-xL expression in A549 and H549 cells was independent of serum culture conditions (Fig. 2B) or LY294002 treatment (Fig. 2C), whereas phosphorylation of Akt was clearly modulated by these conditions.

Combined Inhibition of Bcl-xL and PI3K/Akt Works in Synergy to Promote Apoptosis of Lung Adenocarcinoma Cells
Based on the data presented in Figs. 1 and 2, we hypothesized that Bcl-xL expression may provide an important mechanism for resistance to apoptosis induced by PI3K/Akt inhibition in lung adenocarcinoma cells. To test this hypothesis, we developed two strategies to inhibit the function of Bcl-xL. First, we silenced Bcl-xL expression using siRNA technology; second, we tested a potent novel small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737 (28). After Bcl-xL function was inhibited, we determined the effect this had on the ability of lung adenocarcinoma cell lines to undergo apoptosis in response to LY294002 treatment or Akt1 gene silencing. In these experiments, we used A549 and H549 cells, as these cells are resistant to LY294002-induced apoptosis and express a high level of Bcl-xL. Treatment of these cells with various concentrations of Bcl-xL siRNA showed a dose-dependent reduction in Bcl-xL protein level after 48 h (Fig. 3A). In contrast, scrambled siRNA had no significant effect on Bcl-xL expression. The addition of 25 μmol/L LY294002 dramatically increased apoptosis of A549 and H549 cells subjected to Bcl-xL siRNA treatment up to 26% and 23%, respectively, after 48 h of treatment (Fig. 3B). Similar results were obtained with ABT-737. A549 and H549 cells were treated with DMSO, LY294002, ABT-737, and ABT-737 enantiomer as control or combined compounds for 48 h. As shown in Fig. 3E, combined LY294002 and ABT-737 treatments increased cell apoptosis significantly compared with the effect induced by LY294002 or ABT-737 alone (P < 0.05). Thus, Bcl-xL inhibition renders lung adenocarcinoma cells sensitive to apoptosis induced by the inhibition of the PI3K/Akt pathway.

Because LY294002 specificity for PI3K inhibition is not perfect, we tested the effect of Akt1 gene silencing on the apoptotic response observed in these cells with Bcl-xL inhibition. Immunoblot analysis of A549 and H549 cell lysates after transfection with a control siRNA or with Akt1 siRNA for 48 h showed a clear reduction in both phospho-Akt and total Akt protein levels (Fig. 3C). Consistent with the effect of LY294002 alone observed on apoptosis (Fig. 3B), Akt down-regulation by siRNA alone is not enough to induce significant apoptosis in A549 or H549 cells. In contrast, the combination of Akt11 and Bcl-xL gene silencing led to apoptosis in 22% to 34% of the cells (Fig. 3D). The apoptotic effect induced by combined treatment of Bcl-xL and Akt1 siRNA for 48 h was also confirmed by the cleavage of PARP (Fig. 3B). Taken together, these results support the conclusion that PI3K/Akt and Bcl-xL closely cooperate
to the survival of lung adenocarcinoma. There is true
synergy between the two molecular pathways, as com-
bined effect is favored over the sum of individual
component effect on apoptosis (Fig. 3B, D, and E).

Ectopic Expression of Bcl-xL Protects H23 Cells from
LY294002-Induced Apoptosis

Because our results suggest a protective role for Bcl-xL in
LY294002-induced apoptosis, we tested whether over-
expression of Bcl-xL in H23 cells, which express a low
level of Bcl-xL at baseline, may induce resistance to
LY294002. To test this, we established H23 cell lines stably
transfected with a Bcl-xL or control expression vector, and
apoptosis was assessed following treatment with LY294002.
Transfection with the Bcl-xL plasmid resulted in enhanced
expression of Bcl-xL by >70% when compared with vector
alone (Fig. 4A). In H23 cells that had Bcl-xL expression

Figure 1. Effects of PI3K inhibition on lung adenocarcinoma cell survival. A, LY294002 induced G₁ cell cycle arrest in five human lung adenocarcinoma
cells but only induced apoptosis in H23 cells. Cells were incubated for 48 h with 25 µmol/L LY294002. Apoptotic fraction was recognized as sub-G₁
population of the cell cycle measured by flow cytometry with nuclear PI staining. Representative of three experiments with similar results. Gray peak to the
left, diploid cells in G₁; gray peak to the right, diploid cells in G₂; area marked by the hatched gray line, diploid cells in the S phase. B, cells were incubated
for 72 h with 25 mmol/L LY294002 and followed by Annexin V and PI staining. White columns, percentage of Annexin V-stained/PI-negative cells for
DMSO-treated control group; black columns, 25 µmol/L LY294002-treated cells. Mean ± SD. *, P < 0.05, statistically significant differences between
controls and the inhibitor-treated group. C, immunoblot analysis of phospho-Akt on lung adenocarcinoma cell lines after 48 h treatment with LY294002
(25 µmol/L). Total cell lysates were extracted and immunoblotted with anti-phospho-Akt (Ser473) and then stripped and blotted with β-actin.
restored, LY294002 induced cell death in <2% of cells compared with the 14% that was seen in the control cells after 48 h treatment (Fig. 4B). H23-Bcl-xL cells failed to undergo apoptosis even when treated with high concentrations of LY294002 (50 and 75 μmol/L; Fig. 4B; data not shown). These apoptosis rates are comparable with those of lung adenocarcinoma cancer cell lines resistant to LY294002-induced cell death (Fig. 1A). This suggests that Bcl-xL is an important mediator of this resistance to apoptosis. Moreover, the overexpression of Bcl-xL increased the resistance of H23 cells to apoptotic effect induced by the combination of ABT-737 and LY294002. As shown in Fig. 4C, combined 25 μmol/L LY294002 and 1 μmol/L ABT-737 is sufficient to induce apoptosis in 19% of H23, a response comparable with 18% induced by LY294002 at 50 μmol/L alone (Fig. 4B). Similarly, ABT-737 has to be increased up to 8 μmol/L to induce comparable rate of apoptosis (15%) when combined with LY294002 in H23 cells transfected with Bcl-xL (Fig. 4C). These results were confirmed by the cleavage of PARP and caspase-3 in H23 and H23-Bcl-xL cells treated combined ABT-737 and LY294002 in Fig. 4D. Together, these results further show that Bcl-xL confers protection against PI3K inhibition-induced apoptosis in H23 cells.

PI3K Inhibition Induced Bim Expression in Sensitive H23 Cells

To provide further insights as to how other Bcl-2 family members may be involved in the PI3K inhibition-induced apoptosis in H23 cells, the expression of proapoptosis- and antiapoptosis-related Bcl-2 family members including Bad, Bax, Bim, and Bid was tested in H23 and H23-pBabe-Bcl-xL cells. Figure 5A illustrates a significant induction of the proapoptotic BH3-only protein Bim isoform long and the shortest form in H23 cells treated with LY294002 for 48 h. In contrast, Bim was not activated in resistant H23-pBabe-Bcl-xL cells. There were no significant differences in the protein level of Bad, Bax, or Bid. In resistant A549 and H549 cells, only combined high concentration of ABT-737 (>4 μmol/L) and LY294002 (25 μmol/L) induced Bim activation as well as apoptosis indicated by cleaved PARP and caspase-3 (Fig. 5B).

Discussion

Regulation of cell survival pathways not only is pivotal in cancer progression but has also become increasingly important in understanding mechanisms that underlie resistance to therapy. Our study defined one potential mechanism by which lung adenocarcinoma cell lines...
could be resistant to apoptosis induced by the inhibition of such survival pathways. One pathway of particular clinical interest is the PI3K/Akt pathway. This pathway is disrupted in many cancer types, and resistance to inhibitors of PI3K has been reported in cancers, including lung cancer. Therefore, it is important to understand the mechanisms by which these tumors develop resistance to these drugs to improve the therapeutic efficacy. Our results implicate another important survival protein, Bcl-xL, as one potential mechanism for resistance. First, our data show that, by inhibiting the expression of Bcl-xL, the apoptotic response is restored in lung adenocarcinoma cells otherwise resistant to the cell death induced by the PI3K inhibitor LY294002. Furthermore, Bcl-xL and PI3K inhibition in combination had a synergistic effect on apoptosis. In a set of converse experiments, where Bcl-xL expression was restored in cells that lack Bcl-xL, cells did not undergo apoptosis in response to PI3K inhibition. These data taken together suggest that a combination therapy that inhibits two critical survival pathways may have a role in the treatment of adenocarcinomas of the lung and that Bcl-xL expression may be a predictor of a tumor's resistance to chemotherapy involving inhibition of PI3K.

Figure 3. Apoptotic response induced by the inhibition of PI3K/Akt and Bcl-xL in A549 and H549 cells. **A**, dose-dependent Bcl-xL down-regulation in response to Bcl-xL siRNA for 48 h; expression levels were determined by immunoblot analysis. Representative of one of three experiments with similar results. **B**, Bcl-xL gene silencing restores the sensitivity of A549 and H549 cells to PI3K inhibition-induced apoptosis. Percentage of apoptotic cells (sub-G1 population) detected by fluorescence-activated cell sorting analysis is represented after cells were transfected with 100 nmol/L Bcl-xL siRNA or scramble siRNA control for 48 h followed by 25 μmol/L LY294002 treatment for another 48 h in the presence of 10% fetal bovine serum. Knockdown of Bcl-xL alone induces a significant percentage of cells to undergo apoptosis. The combination of Bcl-xL knockdown and LY294002 treatment increased the apoptotic response in a synergistic manner. **C**, effects of combinational treatment of Akt1 and Bcl-xL siRNA on phospho-Akt (Ser473), total Akt, Bcl-xL, and PARP in A549 and H549 cells. Cells were transfected with double-stranded Akt1 siRNA and/or Bcl-xL siRNA. After an initial transfection (5 h), cells were left untreated for an additional 48 h, and protein lysates were obtained for Western blotting to measure the expression of Akt phosphorylation at Ser473, total Akt, Bcl-xL, and cleaved PARP. **D**, representative histogram of cell cycle distributions and increase of cells in sub-G1 phase (percentage of sub-G1 fraction is shown in percentage) induced by combined Bcl-xL and Akt1 siRNA treatment for 48 h in H549 and A549 cells. **E**, apoptosis induced by combined treatment with ABT-737 (8 μmol/L) for 48 h or with the enantiomer as negative control (ABT-ctl) and LY294002 (25 μmol/L) in A549 and H549 cells.
Molecular studies have led to the discovery of several potential targets for cancer therapeutic design, such as vascular endothelial growth factor, epidermal growth factor receptor, PI3K/Akt/mammalian target of rapamycin, MEK, and Bcl-2/Bcl-xL (9, 28). Various drugs targeted against these molecular changes have been developed and some are being tested for clinical use in lung cancer therapy (9, 10). However, recent work suggests that mammalian cells have developed several different survival pathways that become activated in a cell type-dependent and stimulus-dependent fashion, leaving the prospect of inhibiting these pathways alone may not be sufficient to induce cell death (29, 30). The inherited or acquired resistance to small-molecule inhibitors such as PI3K/Akt inhibitor (LY294002 or wortmannin; refs. 15, 16, 18), mammalian target of rapamycin inhibitor (rapamycin; ref. 17), epidermal growth factor receptor inhibitor (gefitinib), and Bcl-2/ Bcl-xL (ABT-737) inhibitor (28) is indeed observed frequently in various types of cancers including NSCLC. Our study shows that, to overcome the cellular mechanisms of drug resistance to PI3K inhibition in adenocarcinoma of the lung, Bcl-xL expression needs to be down-regulated and that the process is associated with induction of proapoptotic BH3-only protein Bim. Proteins in the Bcl-2 family are central regulators of programmed cell death and contribute to chemotherapy resistance of cancer cells via growth factor-dependent or growth factor-independent mechanism. For example, the high level of the antiapoptotic

Figure 4. Overexpression of Bcl-xL increases H23 resistance to LY294002-induced apoptosis. A, immunoblot analysis of H23 cells stably overexpressing Bcl-xL. Four independent clones (1-4) are shown. V, cells that have been stably transfected with the vector alone (pBabe); NT, parental cell line that has not been transfected. B, representative fluorescence-activated cell sorting analysis of H23v (pBabe vector control) and H23-Bcl-xL (clone 1) cells cultured in 10% fetal bovine serum for 48 h in the presence or absence of 25 and 50 μmol/L LY294002. Percentages refer to the sub-G1 population, which corresponds to the apoptotic population. C, apoptosis induced by combined ABT-737 at indicated concentration ± LY294002 (25 μmol/L) on H23v and H23-Bcl-xL cells. Representative fluorescence-activated cell sorting result post-48 h treatment. D, cleaved PARP and caspase-3 induced by combined ABT-737 at indicated concentration and LY294002 (25 μmol/L) on H23v and H23-Bcl-xL cells.
Mcl-1 protein is the major factor that causes resistance to ABT-737 in SCLC and acute myeloid leukemia (31, 32). Proapoptotic BH3-only Bcl-2 family member Bim is essential for tyrosine kinase inhibitor-induced apoptosis in insensitive epidermal growth factor receptor-mutant cells of lung cancer (33–35). Our results implicate Bcl-xL as another important survival protein in causing resistance to the PI3K inhibition in NSCLC cell lines that do not harbor epidermal growth factor receptor mutations. Moreover, we show that Bim appears to be implicated in the apoptotic response to PI3K inhibition in lung adenocarcinoma cells expressing low levels of Bcl-xL, although the exact mechanism by which Bcl-xL down-regulation may promote Bim activation after PI3K inhibition remains to be determined. Our data warrant further investigation of the role of Bim induction in the apoptosis induced by LY294002 in lung adenocarcinoma cells.

Functional cooperation between PI3K/Akt and Bcl-2 family member proteins has emerged as an important mechanism for preventing cells from apoptosis and promoting tumorigenesis (36–38). Although Bcl-xL has been implicated in cell survival independent of the PI3K/Akt pathway in the prostate cancer cells (39), the data we report here suggest a cross-talk between the mitochondrial and the cytoplasmic cell survival machinery. Although our data indicate that Bcl-xL expression is independent of PI3K/Akt or mammalian target of rapamycin pathway activation, we clearly show that Bcl-xL plays a role in the apoptotic response of lung cancer cell lines to LY294002. In fact, we report a synergistic effect when combining Bcl-xL inhibition with PI3K inhibition, suggesting a coordination of function between these two pathways (Fig. 3). In addition to the cooperation between Akt and Bcl-2 pathway, interactions between the PI3K/Akt and the Raf/MEK/ERK pathways are also important for the regulation of cell cycle progression and apoptosis in several types of cancers including SCLC cells (40, 41). However, these interactions remain controversial. Future studies into these types of biomolecular interactions are therefore warranted.

In summary, we have shown that the resistance of adenocarcinoma of the lung to PI3K inhibitor-induced apoptosis can be overcome by down-regulation of Bcl-xL. PI3K/Akt pathway and Bcl-xL expression cooperate to promote cell survival and the level of Bcl-xL expression is a key mechanism controlling the resistance to cell death induced by PI3K/Akt inhibition. These results may have important implications and suggest that an approach directed to both molecular targets PI3K/Akt and Bcl-xL may offer greater therapeutic response to adenocarcinoma of the lung.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung

Jun Qian, Yong Zou, Jamshedur S.M. Rahman, et al.

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/8/1/101

Cited articles
This article cites 40 articles, 15 of which you can access for free at:
http://mct.aacrjournals.org/content/8/1/101.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/8/1/101.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.