 Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides

Cornelia de Wolf,1 Robert Jansen,2 Hiroaki Yamaguchi,1 Marcel de Haas,1 Koen van de Wetering,1 Jan Wijnholds,3 Jos Beijnen,2 and Piet Borst1

1Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute; 2Department of Pharmacy and Pharmacology, Slotervaart Hospital; 3Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands

Abstract

We have studied the potential contribution of ABCG2 (breast cancer resistance protein) to resistance to nucleoside analogues. In cells transfected with DNA constructs resulting in overexpression of human or mouse ABCG2, we found resistance against cladribine, clofarabine, fludarabine, 6-mercaptopurine, and 6-mercaptopurine riboside in both MDCKII and HEK293 cells and against gemcitabine only in HEK293 cells. With Transwell studies in MDCK cells and transport experiments with vesicles from Sf9 and HEK293 cells, we show that ABCG2 is able to transport not only the nucleotide CdATP, like several other ATP-binding cassette transporters of the ABCC (multidrug resistance protein) family, but also the nucleoside cladribine itself. Expression of ABCG2 in cells results in a substantial decrease of intracellular CdATP, explaining the resistance against cladribine. The high transport rate of cladribine and clofarabine by ABCG2 deduced from Transwell experiments raises the possibility that this transporter could affect the disposition of nucleoside analogues in patients or cause resistance in tumors. [Mol Cancer Ther 2008;7(9):3092–102]

Introduction

Nucleoside, nucleotide, and nucleobase analogue drugs are commonly used in the treatment of various types of cancer as well as in anti(retro)viral (HIV) therapy. Uptake and efflux of these drugs is mediated by equilibrative (uptake and efflux) transporters (SLC29 family) and concentrative (uptake) nucleoside transporters (SLC28 family) located in the plasma membrane (1, 2). Their cytotoxic action requires conversion into nucleotides and often incorporation into DNA. Whereas resistance of retroviruses against these analogues is usually due to modification of the substrate specificity of the viral reverse transcriptase, resistance of cancer cells is mainly due to interference with nucleoside uptake (1) or decreased conversion of nucleoside into monophosphate by nucleoside kinases (3, 4).

A new potential mechanism for nucleoside analogue resistance was discovered by Schuetz et al. (5), who showed that a lymphoid cell line selected for zidovudine resistance highly overexpressed the gene for multidrug resistance protein 4 (ABCC4). Experiments with transfected cells overexpressing transporter gene constructs subsequently showed that both ABCC4 and ABCC5 (multidrug resistance protein 5) can cause resistance to a range of nucleoside analogues and to the thiopurines 6-mercaptopurine (6-MP) and thioguanine (5–15). Irresistably, resistance was due to the ability of ABCC4 and ABCC5 to extrude the nucleoside monophosphates from the resistant cells rather than the nucleoside or nucleobase analogues themselves or the corresponding nucleoside diphosphates and triphosphates. Whether ABCC4 and ABCC5 contribute to resistance in human patients remains to be seen. The low affinity of these transporters for nucleoside monophosphate analogues makes this doubtful (10, 11), but more studies are required for a definitive conclusion (12).

ABCC4 and ABCC5 belong to the C subfamily of the ATP-binding cassette (ABC) transporters. One other member of this large subfamily of organic anion transporters, ABC11, is also able to mediate resistance to some nucleobase and nucleoside analogues (16). In addition, several groups recently reported that an ABC transporter from the G family, the ABCG2 (breast cancer resistance protein), is able to cause cellular resistance to various nucleoside analogues, such as the antiretroviral compounds zidovudine, lamivudine (17, 18), and PMEA (19) and the antileukemic purine analogue [8-3H]2-chloro-2'-deoxyadenosine (cladribine, 2-CdA; ref. 19). ABCG2 transports a wide range of xenotoxins (reviewed in refs. 20–22) and endogenous metabolites, such as riboflavin (23). It is present in the apical membrane of many tissues, such as...
the bile canicular membrane of hepatocytes in the liver, the syncytiotrophoblasts in the placenta, the microvessel endothelium at the blood brain barrier, and the villi in the intestine (20–23). This location makes ABCG2 an important determinant of the pharmacodynamics and thus efficacy of administered drugs that are a substrate of ABCG2 (20–23).

In the work of Wang et al. (17, 18), resistance to zidovudine caused by ABCG2 was shown to be due to reduced drug accumulation in the cells, but the nature of the metabolite exported was not defined. As we have shown that ABCG2, like ABCC4 and ABCC5 (6, 24–27), is able to transport cyclic GMP (28), this raised the possibility that ABCG2 is also able to export nucleotide analogues, like ABCC4 and ABCC5 do. To characterize the transport specificity of ABCG2 for nucleoside and nucleobase analogue drugs, we determined ABCG2-mediated resistance to a panel of clinically relevant drugs. In two independent cell lines, we found that ABCG2 mediated high-level resistance against cladribine, clofarabine, and mercaptopurine (6-MP) among several other drugs that were tested. Of these drugs, we chose cladribine as a model substrate for further analysis of the transported substrate(s). We show here that ABCG2 transports the intact nucleoside, cladribine, as well as the monophosphate metabolite.

Materials and Methods

Materials

2-CdA, [8,14C]-6-MP were purchased from Moravek Biochemicals. [14C]I[nulin and [3',5',7,3H]methotrexate were purchased from GE Healthcare. 2-Chloro-2-deoxy-2-fluoro-β-D-adenosine (clofarabine) and [8,14C]clofarabine were a gift from Genzyme. Ko143 was a gift from Dr. A. Schinkel (The Netherlands Cancer Institute). Rat anti-mouse ABCG2 antibody, BXP-53, was a gift from Dr. G.L. Scheffer (Free University Amsterdam). Rabbit anti-rat IgG horseradish peroxidase was obtained from DAKO. All culture reagents were obtained from Invitrogen. All other chemicals and reagents were purchased from Sigma-Aldrich.

Synthesis of 2-CdAMP

2-CdAMP was synthesized using a previously described phosphorylation method with modifications (29, 30). In brief, 0.1 mmol dried 2-CdA (Sequioa Research Products) was dissolved in 2.5 mL trimethylphosphate together with 0.15 mmol 1,8-bis(dimethylamino) naphthalene (Proton Sponge). The reaction was carried out on ice water. Phosphorous oxychloride (0.4 mmol) was added dropwise to the stirred solution. After 2 h, the reaction mixture was poured into 20 mL of 1 mol/L triethylammonium bicarbonate solution (pH 8.5). The reaction yield was 69%. The solvents were evaporated under reduced pressure and the remaining semisolid was washed twice with diethylether. After reconstitution in water, 100 μL volumes of the product were injected onto a Biosep DEAE-PEI column (75 × 7.8 mm, 7 μm; Phenomenex) and chro-

matographed using an ammonium bicarbonate gradient (0-360 mmol/L) at 0.5 mL/min. The UV absorption of the eluate was monitored at 264 nm and the fractions containing 2-CdAMP were collected and lyophilized twice. High-performance liquid chromatography (HPLC)-mass spectrometry analysis of the product on a weak anion exchange column coupled to a Quantum Ultra mass spectrometer (Thermo Fisher Scientific) operated in the positive ion mode (31) confirmed the identity of the product [m/z 366 (M + H)+]. The purity of the product was 96% as determined by HPLC-UV (31). Solutions of the final product in water were quantitated using HPLC-UV (31) and stored at −70°C.

Cell Culture and Transduction

Wild-type (WT) Madin-Darby canine kidney (MDCKII) cells and MDCKII cells stably transduced with human ABCG2 (32) or mouse Abcg2 (33) were described before and were kindly provided by Dr. A. Schinkel. Additionally, human embryonic kidney (HEK293) cells were stably transduced with the retroviral LZRS-ires-GFP expression vector (34) containing the cDNA for either human ABCG2 or mouse Abcg2 as described previously (32). After expansion, clones were screened for expression of (functional) ABCG2/Abcg2 by determination of increased resistance to mitoxantrone in a cytotoxicity assay and by immunoblot analysis. Membrane localization was determined by immunocytochemistry. All cell lines were cultured in DMEM, which contained 10% FCS and was supplemented with 100 units/mL penicillin/streptomycin.

Immunoblot Analysis

Membrane vesicles (20 μg protein) were fractionated on a denaturing 7.5% polyacrylamide slab gel and transferred onto a nitrocellulose membrane. After blocking for 1 h in PBS containing 1% nonfat dry milk, 1% bovine serum albumin, and 0.05% Tween 20, the membrane was incubated for 1 h at room temperature with the specific antibody. ABCG2 and Abcg2 were detected with the monoclonal antibody BXP-53 (1:400; ref. 35). As secondary antibody, horseradish peroxidase-conjugated rabbit antirat IgG was used at a dilution of 1:1,000. Enhanced chemiluminescence was used for detection by incubating the membrane for 1 min with freshly mixed 1.25 mmol/L 3-aminophthalhydrazide, 0.2 mmol/L p-coumaric acid, and 0.01% (v/v) H2O2 in 0.1 mol/L Tris (pH 8.5).

Semiquantitative PCR

Total RNA was isolated from cell cultures using Trizol reagent (Invitrogen) according to the manufacturer's recommendations. Total RNA (2 μg) was reverse transcribed using SuperScript II reverse transcriptase and random hexamers (Invitrogen). One-sixtieth of the cDNA was used in the PCR analysis. ABCG2/Abcg2 transcript levels were determined by densitometric measurement of PCR product using Syngene densitometric software tools and normalized to the internal standard, β-actin. Degenerate ABCG2/Abcg2 primers, 5'-CTTACAGTITCTCAGCAGCTC-3' and 5'-ATGGAAAAGATGTGTTGGCTG-3', were used to generate a PCR product of 309 bp spanning exons 4 to 7. For canine β-actin (MDCKII cells), the
following primers were used, 5′-CGGCACCCAGGCCGT-GATG-3′ and 5′-GCCTGATGGCCACATACATGG-3′, to generate a PCR product of 299 bp. For human β-actin (HEK293 cells), the following primers were used, 5′-AG-GCACCAGGCCGTGATG-3′ and 5′-GCCCTGATAGCA-ACGTACATGG-3′, to generate a PCR product of 299 bp.

Cytotoxicity Assay

A colorimetric assay using a sulforhodamine B reaction was adapted for a quantitative measurement of cell growth and viability following the technique described by Skehan et al. (36). First, the density at which cells displayed a linear growth rate over a period of 4 days was determined for each cell line. Cells were seeded in 96-well microtiter plates, at 3,000 per well in aliquots of 100 μL, and were allowed to attach to the plate surface by growing them in a drug-free medium for 18 h. Afterward, dilution series of drugs were added to the cells in aliquots of 100 μL (dissolved in medium). After 4 days of exposure, the cytotoxicity was measured by the sulforhodamine B methodology for all drugs, except for CPT11 and mitoxantrone. Briefly, cells were fixed by adding 25 μL cold 50% (w/v) trichloroacetic acid and incubating for 60 min at 4°C. Plates were washed with tap water and dried. Sulforhodamine B solution [50 μL; 0.4% (w/v) in 1% acetic acid] was added to each microtiter well and incubated for 10 min at room temperature. Unbound sulforhodamine B was removed by washing with 1% acetic acid. Plates were air-dried, and viability following the technique described by Skehan et al. (36) was adapted for a quantitative measurement of cell growth and viability. For CPT11 and mitoxantrone, cytotoxicity was quantified by cell counting and viability following the technique described by Skehan et al. (36).

Transepithelial Transport Assay

Transepithelial transport assays were done as described previously (37). Radiolabeled drug was added to the medium at either the basolateral or apical compartment after which extrusion of radiolabel in the opposite compartment was measured through time over a period of 4 h. The amount of label in the medium was quantified by liquid scintillation counting. Parallel assays with unlabeled cladribine were done from which total medium and cell lysate were harvested after 4 h and analyzed for cladribine and metabolite contents by HPLC-UV and HPLC-tandem mass spectrometry, respectively. Cell lysates were prepared in 70% methanol.

HPLC-UV and HPLC-Tandem Mass Spectrometry

A reverse-phase ion pairing HPLC-UV method was developed to analyze cladribine and its anabolites (31). Although cladribine and its anabolites were separated using the method, the monophosphate, diphosphate, and triphosphate could not be determined due to the low levels present and interference of growth medium. This method was therefore used only to determine cladribine levels. Briefly, samples (10 μL) were injected onto a Gemini C18 column (150 × 4.6 mm, 3 μm; Phenomenex) thermostated at 45°C. The sample was eluted using a 0.2 mL/min isocratic flow of a triethylamine phosphate [pH 6.75; prepared by mixing 0.1 mol/L triethylamine and 0.09 mol/L phosphoric acid (pH 6.75)] containing 10% methanol. UV absorption was measured at 265 nm. The lower limit of quantitation was 20 nmol/L for cladribine.

For the determination of cladribine monophosphate, diphosphate, and triphosphate, a more sensitive and specific weak anion exchange HPLC method coupled to tandem mass spectrometry was developed and validated (31). Samples were spiked with a mixture of internal standards and a volume of 25 μL was injected onto a BioBasic AX column (30 × 2.1 mm, 5 μm; Thermo Fisher Scientific). A 0.25 mL/min binary gradient of 10 mmol/L ammonium acetate in water/acetonitrile (70:30, v/v; pH 6.0; solvent A) and 1 mmol/L ammonium acetate in water/acetonitrile (70:30, v/v; pH 10.5; solvent B) was used to separate the nucleotides. The following gradient was used: 0 to 0.5 min 10% solvent B, 0.51 to 1.75 min 50% solvent B, 1.76 to 6.5 100% solvent B, 6.5 to 6.6 min linear to 10% solvent B, and 6.6 to 10 min 10% solvent B. A Quantum Ultra mass spectrometer (Thermo Fisher Scientific) operated in the positive ion mode was used to monitor specific mass transitions of each analyte (2-CdATP m/z 525.9→170, 2-CdADP m/z 445.9→170, and 2-CdAMP m/z 365.9→170). The validated range was 1.11 to 27.7, 0.550 to 55.0, and 1.31 to 52.3 nmol/L for 2-CdAMP, 2-CdADP, and 2-CdATP, respectively.

Vesicular Uptake Assay

Inside-out membrane vesicles were prepared from Spodoptera frugiperda insect cells (Sf9) and HEK293 cells overproducing human ABCG2 and mouse Abcg2 as described previously (38) with the following modification. The final homogenization and vesicular storage buffer for HEK293 cells was 10 mmol/L Tris-HCl (pH 7.4) instead of 50 mmol/L Tris-HCl/250 mmol/L sucrose. For incubations with Sf9 vesicles consisted of 50 mmol/L Tris-HCl/250 mmol/L sucrose (pH 7.4). ATP-dependent transport of radiolabeled compounds into inside-out membrane vesicles was measured using the rapid filtration technique as described previously (38) with the following modifications. Vesicular uptake buffer for incubations with Sf9 vesicles consisted of 50 mmol/L Tris-HCl (pH 7.4)/250 mmol/L sucrose (pH 7.4). The validated range was 1.11 to 27.7, 0.550 to 55.0, and 1.31 to 52.3 nmol/L for 2-CdAMP, 2-CdADP, and 2-CdATP, respectively.

Statistical Analysis

A two-sided Student’s t test was used to determine the statistical significance between experimental groups.
Results

ABCG2/Abcg2 RNA and Protein Levels in Transfected MDCKII and HEK293 Cells

In addition to the available MDCKII cells overexpressing human ABCG2 (32) and mouse Abcg2 (33), we constructed HEK293 cells overexpressing these transporter genes to extend the range of cells available for resistance studies. The continued expression of ABCG2/Abcg2 was routinely checked by Western protein blot analysis and was stable over at least 20 cell culture passages. ABCG2/Abcg2 was located at the apical membrane in a monolayer of polarized MDCKII-cells and at the membrane of HEK293 cells as determined by immunohistochemistry (results not shown).

As shown in Supplementary Fig. S1A,4 cells making mouse Abcg2 produced a more prominent band on Western blots than cells making human ABCG2 and the mouse band also migrated more slowly through polyacrylamide gels. The difference in migration is due to a difference in N-linked glycosylation: after deglycosylation with endoglycosidase F, the two proteins comigrated as expected based on their estimated open reading frames, 656 (ABCG2; ref. 39) and 657 (Abcg2; ref. 40) amino acids, respectively (results not shown). The difference in the intensity of the ABCG2 and Abcg2 band could be due to a higher affinity of the antibody for the mouse protein, as this was used to raise the BXP-53 antibody (35).

To check expression levels, transcript levels were analyzed by semiquantitative PCR with degenerate ABCG2/Abcg2 primers (Supplementary Fig. S1B). Approximately 2-fold more Abcg2 transcripts were calculated to be present in cDNA prepared from both a confluent and a log-phase cell culture from the MDCKII-mAbcg2 clone than in the MDCKII-hABCG2 clone, whereas similar transcript amounts were calculated for HEK293-mAbcg2 and HEK293-hABCG2.

Table 1.

| (A) Growth inhibition of MDCKII, MDCKII-hABCG2, and MDCKII-mAbcg2 cells by nucleoside, nucleotide, and nucleobase analogues |
|---|---|---|---|
| Drug | WT IC50 (SE) | hABCG2 IC50 (SE) | RF |
| Mitoxantrone | 0.02 (0.01) | 0.20 (0.06) | 12.1* |
| CPT11 | 0.02 (0.00) | 0.02 (0.00) | 0.9 |
| Cldarabine | 0.51 (0.03) | 2.02 (0.32) | 4† |
| Fludarabine | 139.9 (18.1) | 491.6 (142.2) | 3.5* |
| Gemcitabine | 0.19 (0.02) | 0.16 (0.02) | 0.8 |
| 6-MP riboside | 13.9 (0.8) | 139.2 (0.9) | 10† |
| Thioguanine riboside | 10.0 (0.7) | 21.4 (0.7) | 2.1* |
| 6-MP | 29.5 (1.6) | 2938.7 (415.3) | 99.5† |
| Thioguanine | 25.4 (1.1) | 37.0 (3.7) | 1.5* |
| 5-Fluorouracil | 1.75 (0.38) | 1.75 (0.06) | 1 |
| Bis-POM-PMEA | 13.40 (1.49) | 36.80 (5.01) | 2.8† |

| (B) Growth inhibition of HEK293, HEK293-hABC2G2, and HEK293-mAbcg2 cells by nucleoside, nucleotide, and nucleobase analogues |
|---|---|---|---|
| Drug | WT IC50 (SE) | hABC2G2 IC50 (SE) | RF |
| Mitoxantrone | 0.06 (0.01) | 0.11 (0.01) | 1.8* |
| CPT11 | 0.01 (0.00) | 0.02 (0.00) | 1.8† |
| Cldarabine | 0.64 (0.21) | 2.62 (0.46) | 4.1† |
| Fludarabine | 54.85 (11.6) | 90.71 (2.7) | 1.7* |
| Gemcitabine | 0.02 (0.01) | 0.06 (0.01) | 3.7* |
| 6-MP riboside | 0.74 (0.11) | 2.86 (0.29) | 3.9† |
| Thioguanine riboside | 0.42 (0.6) | 0.83 (0.16) | 2.0* |
| 6-MP | 1.66 (0.19) | 7.01 (1.87) | 4.2* |
| Thioguanine | 1.03 (0.04) | 2.23 (0.37) | 2.0* |
| 5-Fluorouracil | 4.97 (1.48) | 4.66 (0.51) | 0.9 |
| Bis-POM-PMEA | 0.81 (0.15) | 1.85 (0.05) | 2.3† |

NOTE: IC50 values are mean ± SE (µmol/L) drug of three to six experiments in triplicate. Cellular protein was stained and quantified by the sulforhodamine B colorimetric assay as described in Materials and Methods, except for mitoxantrone and CPT11. Cytotoxicity of these drugs was quantified by cell counting and trypan blue exclusion. Statistical significance was calculated with an unpaired two-tailed Student’s t test.

*P < 0.05.
†P < 0.01.
‡P < 0.001.

4 Supplementary material for this article is available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).
cells. Hence, the apparent difference in protein levels in Supplementary Fig. S1A is not reflected in transcript levels in Supplementary Fig. S1B.

Resistanceto Nucleoside and Nucleobase Analogues Mediated by Human and Mouse ABCG2/Abcg2

Table 1 summarizes our results of the effects of ABCG2 and Abcg2 on cellular resistance to nucleoside and nucleobase analogues used in treatment of cancer. For comparison, resistance to the classic ABCG2 substrates mitoxantrone and CPT11 and to the antiviral nucleotide analogue bis-POM-PMEA was determined. In general, resistance levels found were higher for Abcg2-transfected cells than for ABCG2-transfected cells and for MDCKII cells than for HEK293 cells. Notable exceptions were found, however. Whereas we did not find any resistance to gemcitabine in MDCKII cells, substantial resistance to this drug was found in the transfected HEK293 cells.

High resistance was found against the purine analogues cladribine, clofarabine, and 6-MP. Resistance against 6-MP was especially high in MDCKII cells, with 100-fold (ABCG2) and 180-fold (Abcg2) resistance ($P < 0.001$), respectively. Resistance was much less in the transfected

Figure 1. Transport of cladribine and clofarabine by human ABCG2 and mouse Abcg2. **A,** monolayers of MDCKII-parental, MDCKII-Abcg2, and MDCKII-hABCG2 were incubated with 1 μmol/L cladribine or clofarabine for 4 h. At $t = 0$, drug was added to the apical or basal compartment and the percentage transport was calculated from the amount of radioactive label appearing in the opposite compartment. Mean ± SE of two experiments in duplicate. **B,** cell cultures were preincubated for 2 h with 1 μmol/L Ko143 in both compartments before addition of 1 μmol/L drug at $t = 0$ to either apical or basal side. Mean of a representative experiment in duplicate. Samples were taken at $t = 1, 2, 3,$ and 4 h. \uparrow, basal to apical transport; \downarrow, apical to basal transport.
HEK293 cells, 4.2-fold \((P < 0.05)\) and 3.6-fold \((P < 0.01)\), respectively (Table 1B). In both cell lines, increased resistance mediated by ABCG2/Abcg2 was also found for 6-MP riboside.

Transport of Cladribine and Clofarabine by ABCG2/Abcg2 through MDCKIIMonolayers

Figure 1A shows the effect of the presence of human or mouse ABCG2 on the transport of radioactive cladribine and clofarabine through monolayers of MDCKII cells. Nearly 30% of the radioactivity associated with \([3H]\) cladribine goes through the monolayer in WT cells and the rate of transport is the same in both directions. Uptake of both cladribine and clofarabine into cells is known to be mediated mainly by the equilibrative nucleoside transporter ENT1 and the concentrative nucleoside transporter CNT3 and to a lesser extent also by ENT2 and CNT2 (41, 42). Diffusion through the membrane is probably minimal, as transport of \([3H]\) cladribine through the monolayer was inhibited >90% by excess cold clofarabine (results not shown). The presence of ABCG2/Abcg2 in the apical membrane increased transport in the apical direction and decreased transport in the basal direction. These effects were completely blocked by addition of 1 \(\mu\)mol/L of the specific ABCG2 inhibitor Ko143 (43) to the cell culture medium (Fig. 1B). We have shown previously that resistance to nucleoside or nucleobase analogues caused by the ABC transporters ABCC4 and ABCC5 is due to transport of the corresponding nucleoside monophosphates formed in the cell (10). To determine which form of cladribine is transported by ABCG/Abcg2, we used a recently developed HPLC-tandem mass spectrometry method that can separate cladribine and cladribine monophosphate, diphosphate, and triphosphate (31).

We analyzed the medium and cell lysates from 4 h Transwell transport assays in which 10 \(\mu\)mol/L cladribine was added to either the medium at the basolateral or the apical side of the MDCKII monolayer. The results of these experiments are summarized in Fig. 2 and Table 2.

The striking result is that more than 99% of the transported compounds were identified as cladribine under all conditions. Whereas parental cells effluxed similar amounts of cladribine apically and basolaterally, the presence of ABCG2 or Abcg2 in the cells increased efflux at the apical side and reduced basolateral efflux to minimal values. Only low levels of 2-CdAMP were formed intracellularly, even in parental MDCKII cells, suggesting that deoxycytidine kinase levels are low in these cells. Nevertheless, the increased appearance of 2-CdAMP in the apical medium from ABCG2/Abcg2-overexpressing cells compared with WT MDCKII cells (Table 2A) indicated that 2-CdAMP is a substrate of...
Table 2. Levels of cladribine and metabolites in medium and cell lysates of MDCKII, MDCKII-ABCG2, and MDCKII-Abcg2 cells after a 4 h transepithelial transport assay

<table>
<thead>
<tr>
<th></th>
<th>MDCKII WT</th>
<th>ABCG2</th>
<th>Abcg2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apical medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladribine</td>
<td>1,348.4 ± 108.7</td>
<td>2,794.7 ± 108.8</td>
<td>4,480.2 ± 753.8</td>
</tr>
<tr>
<td>CdAMP</td>
<td>3.4 ± 1.1</td>
<td>22.4 ± 6.6</td>
<td>12.1 ± 3.3</td>
</tr>
<tr>
<td></td>
<td>Basolateral medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladribine</td>
<td>5,963.2 ± 166.9</td>
<td>4,484.6 ± 167.1</td>
<td>3,533.1 ± 655.8</td>
</tr>
<tr>
<td>CdAMP</td>
<td>19.7 ± 6.3</td>
<td>23.5 ± 6.9</td>
<td>3.4 ± 0.4</td>
</tr>
<tr>
<td>Lysate</td>
<td>6.6 ± 0.7</td>
<td>2.6 ± 1.0</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>CdAMP</td>
<td>1.5 ± 0.2</td>
<td>0.5 ± 0.2</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>CdATP</td>
<td>4.2 ± 0.5</td>
<td>1.3 ± 0.5</td>
<td>0.2 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>Apical medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladribine</td>
<td>1,270.2 ± 37.4</td>
<td>357.9 ± 78.8</td>
<td>56.1 ± 11.0</td>
</tr>
<tr>
<td>CdAMP</td>
<td>11.1 ± 2.8</td>
<td>8.8 ± 3.4</td>
<td>0.7 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>Basolateral medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladribine</td>
<td>5,966.4 ± 60.5</td>
<td>6,874.3 ± 237.7</td>
<td>7,269.6 ± 176.8</td>
</tr>
<tr>
<td>CdAMP</td>
<td>7.2 ± 2.2</td>
<td>21.6 ± 10.2</td>
<td>9.3 ± 1.4</td>
</tr>
<tr>
<td>Lysate</td>
<td>5.6 ± 0.4</td>
<td>1.6 ± 0.5</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>CdAMP</td>
<td>1.1 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>CdATP</td>
<td>3.4 ± 0.3</td>
<td>0.8 ± 0.3</td>
<td>0.1 ± 0.1</td>
</tr>
</tbody>
</table>

NOTE: (A) Cladribine (750 μM, 10 μmol/L) was added to the basolateral compartment at t = 0. (B) Cladribine was added to the apical compartment at t = 0. Cladribine and metabolites were measured and quantified as described in Materials and Methods. Values are mean ± SE (in pmol) of three independent experiments in duplicate.
2-CdATP concentrations in the ABCG2/Abcg2-transfected cells are much lower than in the WT cells explaining the substantial resistance to cladribine observed in these cells (Fig. 2C and D; Table 1).

Because over 99% of total transported substrate was cladribine, we determined the apparent affinity (K_m) of ABCG2 for cladribine from net transport curves with radiolabeled substrate (Fig. 4): transport in MDCKII-ABCG2/Abcg2 monolayers minus that in MDCKII parental monolayers. This affinity is only very approximate, as the cladribine concentration in the medium is only distantly related to the intracellular cladribine concentration seen by the transporter. ABCG2 had a higher affinity for cladribine than the murine orthologue (80 ± 7 versus 248 ± 26 μmol/L). On the other hand, the velocity of cladribine transport by Abcg2 was much higher than that of ABCG2 with V_max values of 121 ± 4 versus 17 ± 0.5 nmol (monolayer) 4 h⁻¹. We think that the possible difference in the amount of ABCG2/Abcg2 in the cell membrane (Supplementary Fig. S1) is not enough to explain this difference in velocity and that the Abcg2 present may be more active.

To test whether other ABC transporters can transport cladribine as well, additional Transwell assays were conducted with MDCKII monolayers overexpressing the genes for ABCC transporters 1 to 5 as well as ABCB1. We did not find an increased efflux of [3H]cladribine to the apical (ABC1, ABC2) or basolateral (ABCC1, ABCC3, ABCC4, and ABCC5) medium in any of these cell lines (result not shown). From these experiments, we infer that none of these ABC-transporters transport cladribine.

Vesicular Transport of Cladribine and 2-CdAMP by ABCG2/Abcg2

To determine kinetic variables for the transport of cladribine and 2-CdAMP by ABCG2/Abcg2, we tested both substrates in vesicular transport by vesicles from S9 or HEK293 cells overexpressing ABCG2 or Abcg2. No transport was observed with [3H]cladribine. Presumably, cladribine is transported into the vesicles but leaks out through equilibrative nucleoside transporters or by passive diffusion. We therefore tested cladribine transport in an indirect fashion by determining its ability to competitively inhibit uptake of [3H]methotrexate into S9 vesicles. The experiments were done at pH 7.4 rather than at pH 5.5, where transport rates are higher (45), to make the results obtained comparable with those of the Transwell experiments done at pH 7.4. The affinity of Abcg2 for methotrexate, not determined previously, proved to be similar to that of ABCG2 at about 2 mmol/L, in line with published data (45–47). Similar values were obtained with S9 (Fig. 4A) and HEK293 (Fig. 4B) vesicles. Cladribine inhibited methotrexate transport in a competitive fashion, inhibition being higher at 0.5 than at 4 mmol/L methotrexate. Human ABCG2 was much more inhibited than the murine Abcg2, the apparent inhibitory constants K_i being about 50 and 300 to 400 μmol/L (Fig. 4). This is in agreement with the

Transwell experiments in which the apparent K_m of ABCG2 for cladribine was much lower than of Abcg2 (Fig. 3).

Obtaining kinetic variables for CdAMP uptake was unexpectedly complicated. At low CdAMP concentrations, vesicles from WT S9 cells bound significant amounts of [3H]CdAMP and this apparent accumulation was not prevented by addition of nonhydrolyzable ATP analogues (not shown). The nature of this association of [3H]CdAMP with the vesicles is not known. To assess transport by ABCG2, we corrected all values for CdAMP accumulation by ABCG2-S9 and Abcg2-S9 vesicles with the values obtained with WT vesicles. With these corrections, CdAMP uptake by ABCG2/Abcg2 was linear for about 10 min (not shown) and transport was saturable as shown in Supplementary Fig. S2. At the high CdAMP concentrations required for saturation, the values are inaccurate because of the relatively low specific radioactivity of the [3H]CdAMP available. Hence, only approximate values for the kinetic variables can be deduced. For ABCG2, we find in S9 cells in three experiments a K_m of about 148 μmol/L (range, 126-165) and a V_max of about 775 pmol/mg protein/min (range, 578-984). For the Abcg2, data are even less accurate, and in two experiments, we find...
an average K_m of about 0.5 mmol/L and a V_{max} of 0.4 nmol/mg protein/min. Compared with other ABCG2 substrates, these rates of transport are substantial, but the affinity for this substrate is relatively low.

Transport of 6-MP by Human and Mouse ABCG2/Abcg2

ABCG2/Abcg2 conferred increased resistance in cytotoxicity assays to both 6-MP and 6-MP riboside in both cell lines tested, MDCKII and HEK293 (Table 1). Also, the directional transport of $[^{14}C]6$-MP in epithelial transport assays with monolayers of MDCKII cells was higher in the basal to apical direction in ABCG2/Abcg2-overexpressing cells than in WT cells and this increased rate was reduced to WT levels on addition of the ABCG2-specific inhibitor Ko143 (results not shown). Preliminary HPLC data indicate that 6-MP riboside as well as the monophosphate metabolite, tIMP, is transported by ABCG2/Abcg2.

Discussion

We have found that ABCG2 can cause resistance to several nucleobase and nucleoside analogues used in cancer chemotherapy in addition to its effect on the antiretroviral nucleosides zidovudine and lamivudine (17, 18). Remarkably, ABCG2 transports not only the nucleoside monophosphate metabolite of cladribine—in analogy with other ABC transporters that can cause resistance to nucleobase and nucleoside analogues (6, 11, 12, 14)—but also cladribine itself. Presumably, this holds also for (some of) the other nucleoside analogues affected by ABCG2, such as clofarabine, fludarabine, and 6-MP riboside. Our preliminary results for 6-MP confirm this assumption. Moreover, while our work was being finished, Pan et al. (48) reported evidence that the antiretroviral nucleosides zidovudine and abacavir are transported as nucleosides as well by Abcg2.

In the cell clones used here, transport of cladribine by Abcg2 was more effective than by ABCG2. Presumably, this is due to a higher catalytic activity of Abcg2 than ABCG2, as the affinity of Abcg2 for cladribine seems to be lower rather than higher than that of ABCG2 (Figs. 3 and 4). The results in Table 2 indicate that, at high transport rates of ABCG2/Abcg2, the effects on nucleoside transport contribute more to resistance than the effects on transport of 2-CdAMP: in the Abcg2 transfectant, intracellular 2-CdAMP is reduced 16-fold relative to WT cells. This cannot be due to increased 2-CdAMP transport, because both

5 Unpublished data.

![Figure 4](https://example.com/figure4.png)
oral availability of clofarabine. Mol Cancer Ther 2008;7(9). September 2008

Munch-Petersen B, Piskur J. Deoxynucleoside kinases and their

Staub M, Eriksson S. The role of deoxycytidine kinase in DNA

Podgorska M, Kocbuch K, Pawelczyk T. Recent advances in studies on

Disclosure of Potential Conflicts of Interest

The authors reported no potential conflicts of interest.

References

10. Wielinga PR, Reid G, Challa EE, et al. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and
Transport of anti-cancer nucleosides by ABCG2

47. Volk EL, Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res 2003;63:5538–43.

Molecular Cancer Therapeutics

Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides

Cornelia de Wolf, Robert Jansen, Hiroaki Yamaguchi, et al.

Mol Cancer Ther 2008;7:3092-3102. Published OnlineFirst September 2, 2008.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-08-0427

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2008/09/05/1535-7163.MCT-08-0427.DC1

Cited articles
This article cites 46 articles, 27 of which you can access for free at:
http://mct.aacrjournals.org/content/7/9/3092.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/7/9/3092.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.