MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer

Tetsuya Oguri, Hiroaki Ozasa, Takehiro Uemura, Yuji Bessho, Minkori Miyazaki, Ken Maeno, Hiroyoshi Maeda, Shigeki Sato, and Ryuzu Ueda

Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

Abstract

We used the paclitaxel-resistant human small cell lung cancer subline PC-6/TAX1-1, selected from PC-6 cells by paclitaxel, to test whether MRP7/ABCC10 (ABCC10) confers paclitaxel resistance. We found that gene expression of both ABCB1/MDR1 (ABCB1) and ABCC10 was higher in PC-6/TAX1-1 cells than in PC-6 cells. The expression levels of ABCC10 showed a significant inverse correlation with paclitaxel sensitivity (r = 0.574; P < 0.05) in 17 non-small cell lung cancer (NSCLC) cells unlike the expression levels of ABCB1. Pretreatment with the ABC10 inhibitor sulfipyrazone altered the sensitivity to paclitaxel in ABCC10-expressing NSCLC cells, concomitant with increased intracellular paclitaxel accumulation. These findings suggest that expression of the ABCC10 gene is induced by paclitaxel and that ABCC10 confers paclitaxel resistance by enhancing the efflux for paclitaxel. To confirm this hypothesis, we tested the effect on paclitaxel cytotoxicity of decreasing the expression of ABCC10 by small interfering RNA and found that this enhanced paclitaxel cytotoxicity in NCI-H23 cells concomitant with increased intracellular paclitaxel accumulation. These data indicate that ABCC10 may be one of the biomarkers for paclitaxel resistance in NSCLC. [Mol Cancer Ther 2008;7(5):1150 – 5]

Introduction

Paclitaxel is the first of a new class of anticancer agents with a novel mechanism of action. Paclitaxel exerts its antitumor activity by binding tubulin and stabilizing nonfunctional microtubule bundles, thereby blocking normal mitotic spindle development and subsequent cell division. Clinical utility of paclitaxel spans many tumor types, including treatment of ovarian, breast, lung, head and neck, and unknown primary cancers (1). As is the case with most chemotherapy drugs, paclitaxel is administered empirically with little individualization of dose other than adjustment for body surface area. Studies are under way to identify the optimal dose and schedule of administration for paclitaxel, and effective combination regimens, and to exploit the drug’s radiosensitizing properties. Efforts to define pharmacodynamic relationships and clinical mechanisms of resistance and to assess potential mechanisms for the drug’s antitumor activity are also under way (2).

The ATP-binding cassette transporter superfamily contains several family members that confer drug resistance to drug-sensitive cells by effluxing anticancer or antiviral agents or their metabolites from cells when expressed at high levels (3–6). Recently, the MRP/ABCC (ABCC) family member MRP7/ABCC10 (ABCC10) was shown to mediate the ATP-dependent transport of several anticancer agents, including paclitaxel (7, 8). However, the role of ABCC10 in the mechanism of resistance to anticancer agents has not been fully examined. Because paclitaxel is one of the most powerful novel antitumor agents and has become an integral part of several commonly used chemotherapy regimens in non-small cell lung cancer (NSCLC) management over the past few years (9), it is important to clarify the determinants of sensitivity and/or resistance to paclitaxel in NSCLC. Therefore, we examined the gene expression levels of ABCC10 in relation to sensitivity and/or resistance to paclitaxel in NSCLC cells.

Materials and Methods

Cell Lines and Chemicals

The following human NSCLC cell lines were used in this study: 13 adenocarcinomas (A549, NCI-H23, PC-9, VMRC-LCD, VMRC-LCF, RERF-LC-AI, RERF-LC-MT, RERF-LC-OK, RERF-LC-MS, NCU-LC-201, ACC-LC-94, ACC-LC-176, and SK-LC-10), 2 squamous cell carcinomas (PC10 and QG56), and 2 large-cell carcinomas (NCI-H460 and SK-LC-6). Cells from a human small cell lung cancer cell line, PC-6, and those from the paclitaxel-resistant subline PC-6/TAX1-1, were kindly provided by Daiichi Pharmaceutical (10). The cisplatin-resistant subline PC-9/CDDP was provided as described previously (6). Cells from the gemcitabine-resistant subline H23/GEM-R and the 7-ethyl-10-hydroxycamptothecin-resistant subline were established as described previously (11, 12). Cells were cultured in RPMI 1640 (or, for A549, DMEM) supplemented with 10% heat-inactivated fetal bovine serum and 1% (v/w) penicillin/streptomycin in a humidified chamber (37°C, 5% CO2). Paclitaxel was provided by Bristol-Mayers Squibb. Sulfinpyrazone and verapamil were purchased from Wako Pure Chemical Industries.
Total RNA Extraction and Reverse Transcription-PCR

Total RNA was extracted with TRIzOL reagent (Invitrogen) according to the manufacturer’s instructions. Reverse transcription-PCR was done in a volume of 20 μL by SuperScript III Platinum One-Step qRT-PCR Kit (Invitrogen) according to the manufacturer’s instructions. The sequences of the ABCC10 and ABCB1/MDR1 (ABCB1) primers and the PCR conditions were as described previously (13, 14). Amplified products were separated by 2% agarose gel electrophoresis, and bands were visualized by staining with ethidium bromide. We also did real-time PCR with the LightCycler FastStart DNA SYBR Green kit (Roche Diagnostics). We used melting curve analysis to control for specificity of the amplification products. The number of transcripts was calculated from a standard curve obtained by plotting the known input of six different concentrations versus the PCR cycle number at which the detected fluorescence intensity reached a fixed value. The PCR program was 45 cycles of 94°C for 15 s and 60°C for 1 min. For each sample, the data were normalized to that of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Concentration of Paclitaxel for 50% Cell Survival (IC50)

Cells were cultured at 5,000 per well in 96-well tissue culture plates. To assess cell viability, stepwise 10-fold dilutions of the anticancer drug were added 2 h after plating, and the cultures were incubated at 37°C for 96 h. At the end of the culture period, 20 μL 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt solution (CellTiter 96 AQueous One Solution Cell Proliferation Assay) was added, and cells were incubated for a further 4 h; the absorbance was measured at 490 nm using an ELISA plate reader. Mean values were incubated for a further 4 h; the absorbance was measured at 490 nm using an ELISA plate reader. Mean values were calculated from three independent experiments carried out in quadruplicate. Chemosensitivity is expressed here as the drug concentration for IC50 determined from the concentration-effect relationship using GraphPad Prism version 4 (GraphPad Software).

Inhibition of ABCC10 Activity by Sulfinpyrazone

ABCC10-expressing NCI-H23 and RERF-LC-AL cells and ABCB1-expressing NCU-LC-201 cells (1 × 105) were plated in six-well tissue culture plates. We used the general organic anion transporter inhibitor sulfinpyrazone as an ABCC10 inhibitor as reported previously (7). After 24 h, the cells were exposed to sulfinpyrazone or verapamil, an inhibitor of P-glycoprotein (Pgp) encoded by ABCB1, for 30 min, and we added paclitaxel in the presence of sulfinpyrazone or verapamil. After a further 48 h, we counted the viable cells with trypan blue staining to evaluate the cytotoxicity of paclitaxel.

Intracellular Paclitaxel Concentration

We treated 2 × 105 NCI-H23 cells with paclitaxel (100 nmol/L) for 90 min. After washing three times with cold PBS, the cells were resuspended in RPMI 1640 (2 mL) and homogenized. After centrifugation, the supernatant was stored at -80°C until analysis. Paclitaxel concentrations were quantified by a high-performance liquid chromatography assay as described previously (15).

Transfection and Small Interfering RNA Experiments

Cells (2 × 105) were transfected with small interfering RNA (siRNA) oligonucleotide using Oligofectamine (Invitrogen) to produce a final RNA concentration of 50 nmol/L in serum-free Opti-MEM (Invitrogen) as described previously (5). At 24 h after transfection, we changed the medium to RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum. After an additional 24 h, total RNA was extracted, or the cells were treated with paclitaxel for 48 h, and then we counted viable cells with trypan blue staining to evaluate the cytotoxicity. The siRNA oligonucleotides for ABCC10 (predesigned siRNA, ID 117707) were purchased from Ambion. The negative control siRNA (Silencer Negative Control 1 siRNA), which does not induce nonspecific effects on gene expression, was also purchased from Ambion.

Statistical Analysis

Spearman’s test was used for correlation analysis between expression of ABCC10 gene and IC50 values for paclitaxel. The differences in the cell viability between samples were evaluated with Student’s unpaired t test. The level of significance was set at 5% using two-sided analysis.

Results

Expression of ATP-Binding Cassette Transporters

We used real-time reverse transcription-PCR to compare the expression levels of ABCB1 and ABCC10 genes in cells of the paclitaxel-resistant small cell lung cancer cell line PC-6/TAX1-1 with those in parent PC-6 cells. Expression levels of both the ABCB1 and the ABCC10 gene were increased in PC-6/TAX1-1 cells compared with parental PC-6 cells (Fig. 1A). We confirmed the gene expression levels by real-time PCR, indicating that expression of the ABCC10 gene was ~2.5-fold higher in PC-6/TAX1-1 cells than in PC-6 cells (Fig. 1A). We detected ABCB1 gene expression in PC-6/TAX1-1 cells but not in PC-6 cells.

We compared the expression levels of the ABCC10 gene in cisplatin-resistant, gemcitabine-resistant, and 7-ethyl-10-hydroxycamptothecin-resistant cell lines with those in the respective parent cell lines. In contrast to the above results, the expression levels did not differ in the pairs of resistant and parent cells (Fig. 1B). We confirmed the ABCC10 gene expression levels by real-time reverse transcription-PCR (data not shown). We did not detect ABCB1 in any of these cells.

Relationship between Cytotoxicity of Paclitaxel and Expression of ABCC10 Gene

Using quantitative real-time reverse transcription-PCR, the expression levels of ABCC10 and ABCB1 genes were determined in 17 NSCLC cell lines. We detected ABCB1 expression in only 4 of the 17 (A549, VMRC-LCD, NCU-LC-201, and NCI-H460), whereas ABCC10 was expressed in all NSCLC cell lines. IC50 values (mean ± SD) for paclitaxel in each cell line were as follows: A549, 13.55 ± 0.98 nmol/L; NCI-H23, 0.39 ± 0.01 nmol/L; PC-9, 5.48 ± 0.46 nmol/L; VMRC-LCD, 0.06 ± 0.01 nmol/L; VMRC-LCF, 12.03 ± 0.73 nmol/L; RERF-LC-AI, 27.46 ± 3.43 nmol/L.
RERF-LC-MT, 0.13 ± 0.05 nmol/L; RERF-LC-OK, 0.99 ± 0.07 nmol/L; RERF-LC-MS, 28.39 ± 5.59 nmol/L; NCU-LC-201, 6.18 ± 1.08 nmol/L; ACC-LC-94, 3.77 ± 0.57 nmol/L; ACC-LC-176, 3.72 ± 1.19 nmol/L; SK-LC-10, 0.15 ± 0.03 nmol/L; PC10, 16.72 ± 1.41 nmol/L; QG56, 0.95 ± 0.12 nmol/L; NCI-H460, 10.14 ± 2.19 nmol/L; and SK-LC-6, 1.01 ± 0.19 nmol/L. We found a clear inverse relationship between ABCC10 gene expression and paclitaxel sensitivity (IC50) in NSCLC cells (r = 0.574; P < 0.05; Fig. 1C). We also found a clear inverse relationship between ABCC10 gene expression and paclitaxel sensitivity (IC50) in 13 NSCLC cell lines that did not express ABCB1 (r = 0.720; P < 0.01).

Inhibition of Paclitaxel Cytotoxicity by Sulfinpyrazone

To elucidate whether ABCC10 actually affects paclitaxel sensitivity, we added the ABCC10 inhibitor sulfinpyrazone at a noncytotoxic concentration with paclitaxel to two ABCC10-expressing NSCLC cell lines (NCI-H23 and RERF-LC-AI) that do not express ABCB1 and to a NSCLC cell line (NCU-LC-201) that expresses ABCB1 and low levels of ABCC10. As shown in Fig. 2, the sensitivity of NCI-H23 and RERF-LC-AI cells to paclitaxel was significantly inhibited by sulfinpyrazone pretreatment (30 μmol/L, 30 min) but not by verapamil pretreatment (10 μmol/L, 30 min). In contrast, the sensitivity of NCU-LC-201 cells to paclitaxel was significantly inhibited by verapamil pretreatment (10 μmol/L, 30 min) but not by sulfinpyrazone pretreatment (30 μmol/L, 30 min).

ABCC10 has been shown to be an active transporter for paclitaxel (7, 8). To investigate mechanisms of paclitaxel, its intracellular accumulation was measured in NCI-H23 cells by high-performance liquid chromatography assay. Paclitaxel accumulation following exposure to paclitaxel (90 min, 100 nmol/L) was higher in NCI-H23 cells that had been pretreated with sulfinpyrazone than verapamil or vehicle NCI-H23 cells (Fig. 3).

ABCC10 Suppression and Enhanced Cytotoxicity to Paclitaxel by ABCC10 siRNA

To confirm the alteration in paclitaxel cytotoxicity by ABCC10, NCI-H23 and RERF-LC-AI cells were transfected with siRNA directed against ABCC10; cells transfected with control siRNA or not transfected were used as controls, because sulfinpyrazone acts as an inhibitor of general organic anion transporters. Cells were harvested 48 h after transfection, and extracts were prepared and analyzed by quantitative real-time reverse transcription-PCR. Expression of the ABCC10 gene was decreased at 48 h after siRNA transfection (Fig. 4A). Forty-eight hours after transfection with ABCC10 siRNA or negative control siRNA, or with no transfection, NCI-H23 and RERF-LC-AI cells were treated with 1 or 2 or 4 nmol/L paclitaxel for 48 h. The cytotoxicity to paclitaxel was significantly higher for cells in the presence of ABCC10 siRNA than for either control (Fig. 4B). Because negative control siRNA does not affect gene expression, these results indicate that decreasing the expression of ABCC10 altered the paclitaxel cytotoxicity.

We also examined the intracellular concentration of paclitaxel in NCI-H23 cells after transfection of siRNA directed against ABCC10. The intracellular concentration of
paclitaxel was markedly higher for cells exposed to paclitaxel in the presence of ABCC10 siRNA than for control cells (Fig. 4C).

Discussion

We have found increased gene expression of ABCC10 in paclitaxel-resistant small cell lung cancer cells. Further, we have analyzed the relationship between ABCC10 expression levels and sensitivity to paclitaxel in NSCLC cell lines, finding a significant correlation. These results indicate that ABCC10 is a biological marker for paclitaxel treatment in NSCLC.

Previously conclusive evidences in paclitaxel-related drug resistance are the multidrug resistance mediated by overexpression of Pgp, encoded by ABCB1 gene. Paclitaxel sensitivity has been shown previously, in 60 cancer cell lines, to have a strong negative correlation with ABCB1 expression (16). Further, and similar to our findings, overexpression of Pgp/ABCB1 has been detected in paclitaxel-resistant cells and inhibition of ABCB1 activity has been shown to restore paclitaxel resistance in paclitaxel-resistant cancer cells (17–19). However, it was reported previously that the expression levels of ABCB1 were low in clinical samples of NSCLC (20). We also found low expression levels of ABCB1 in 17 NSCLC cell lines. These results allow us to hypothesize that Pgp/ABCB1 does not mediate the major paclitaxel efflux and is not associated with paclitaxel sensitivity in NSCLC cells. Furthermore, acquisition of paclitaxel resistance via Pgp-mediated and non-Pgp-mediated mechanisms was shown in established paclitaxel-resistant ovarian carcinoma cells, in which the levels of α-tubulin and β-tubulin and binding of Taxol to microtubules were similar (18). These results support the existence of a non-Pgp-mediated paclitaxel efflux mechanism.

Multidrug resistance in cancer cells is often attributed to ABCC family members, which are involved in the efflux of anticancer drugs by cotransport with glutathione or glutathione-drug or glucuronide-drug conjugates. ABCC family members can be subdivided into two groups: (a) ABCC1-3, ABCC6, and ABCC10, which contain 17 transmembrane segments, and (b) ABCC4, ABCC5, ABCC11, and ABCC12, which lack one of the transmembrane regions and have only 12 transmembrane segments (3, 4). Recently, one of the ABCC family members, ABCC10, was shown to mediate the ATP-dependent transport of several anticancer agents, including paclitaxel (7, 8), although cancer cells transfected with ABCC10 had only low level of resistance to paclitaxel. We therefore examined the relationship between
the expression levels of ABCC10 and sensitivity to paclitaxel, finding a clear inverse relationship. In addition, inhibition of ABCC10 activity or expression altered the cytotoxicity of paclitaxel, concomitant with increasing intracellular paclitaxel concentration. Furthermore, we detected the gene expression of ABCC10 in all NSCLC cell lines tested by real-time PCR in contrast to ABCB1. Although our results did not fully explore the role of ABCC10 in drug resistance, our results suggested that ABCC10 is associated with efflux of paclitaxel and that ABCC10 expression may be one of the determinants of paclitaxel sensitivity in NSCLC.

We found increased expression of ABCC10 in paclitaxel-resistant cells, which provides the first example of paclitaxel treatment inducing ABCC10 expression. In paclitaxel-resistant cells, sulfinpyrazone pretreatment did not fully affect the paclitaxel cytotoxicity because of ABCB1 up-regulation (data not shown). We cannot determine whether the paclitaxel efflux activity of ABCC10 is similar to that of Pgp; our results indicate that induction of ABCB1 and ABCC10 expression together by exposure to paclitaxel resulted in acquired resistance to paclitaxel.

We also investigated whether other anticancer agents affect ABCC10 expression. Our comparison of the expression levels of the ABCC10 gene in cisplatin-resistant, gemcitabine-resistant, and 7-ethyl-10-hydroxycamptothecin-resistant cell lines with those in the respective parent cell lines revealed no induction of ABCC10 expression in any drug-resistant cells. These results suggest that the anticancer agents transported by ABCC10 are limited.

ABCC10 transcripts are expressed in a wide range of normal tissues, including colon, skin, and testis (13). Clarifying the substrate for ABCC10 should help in determining the physiologic function of this pump; its expression in diverse cancer cell lines suggests that it has a ubiquitous role in cancer cells. Although the ability of paclitaxel to disrupt microtubule dynamics is well documented, paclitaxel resistance is a major obstacle to the successful treatment of lung cancer in the clinic. Understanding the molecular mechanisms underlying the antitumor effect of paclitaxel, and paclitaxel resistance, may lead to the design of biologically and pharmacologically targeted therapeutic strategies for paclitaxel-resistant tumors and to the improvement of chemotherapy effect and survival of NSCLC patients. Additional clinical research will be needed to investigate whether ABCC10 could be used as a predictive marker of sensitivity and/or resistance to paclitaxel in NSCLC.
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Molecular Cancer Therapeutics

MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer

Tetsuya Oguri, Hiroaki Ozasa, Takehiro Uemura, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-07-2088

Cited articles
This article cites 20 articles, 8 of which you can access for free at:
http://mct.aacrjournals.org/content/7/5/1150.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/7/5/1150.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.