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Abstract
Neoadjuvant treatment offers an opportunity to correlate
molecular variables to treatment response and to explore
mechanisms of drug resistance in vivo. Here, we present a
statistical analysis of large-scale gene expression patterns
and their relationship to response following neoadjuvant
chemotherapy in locally advanced breast cancers. We
analyzed cDNA expression data from 81 tumors from two
patient series, one treated with doxorubicin alone (51) and
the other treated with 5-fluorouracil and mitomycin (30),
and both were previously studied for correlations between
TP53 status and response to therapy. We observed a low
frequency of progressive disease within the luminal A
subtype from both series (2 of 36 versus 13 of 45 patients;
P = 0.0089) and a high frequency of progressive disease

among patients with luminal B type tumors treated with
doxorubicin (5 of 8 patients; P = 0.0078); however, aside
from these two observations, no other consistent associ-
ations between response to chemotherapy and tumor
subtype were observed. These specific associations could
possibly be explained by covariance with TP53 mutation
status, which also correlated with tumor subtype. Using
supervised analysis, we could not uncover a gene profile
that could reliably (>70%accuracy and specificity) predict
response to either treatment regimen. [Mol Cancer Ther
2006;5(11):2914–8]

Introduction
Resistance to cytotoxic compounds is a main reason for
therapy failure in most malignancies, including breast
cancer. In vitro experiments as well as studies in animal
models have shown that mutations in the TP53 gene are
associated with chemoresistance (1). Molecular studies of
tumors from patients treated with neoadjuvant chemother-
apy using either doxorubicin monotherapy or 5-fluoroura-
cil and mitomycin (FUMI) in concert revealed that TP53
mutations affecting the DNA-binding domain of the
protein correlate with drug resistance (2–4). However,
neither in these tumors nor in the studies reported by
others (5) did mutations in TP53 unequivocally predict
drug resistance, suggesting that other interactions and
genes must be involved (6).
By subjecting the same tumors characterized for TP53

mutations in relation to chemotherapy response to DNA
microarray analysis, we were able to classify tumors into
five distinct subtypes based on their gene expression
patterns (7). This classification showed prognostic effect
with respect to relapse-free as well as overall survival in our
cohort (8) and also in series of patients examined by other
investigators (9). The prognostic significance of gene ex-
pression profiles has been well documented with respect to
breast cancer (10–13) as well as other malignancies (14–17).
Although these findings confirm the biological relevance
of such genomic analyses, a prognostic factor provides no
specific information about responsiveness to specific treat-
ments and should be distinguished from a ‘‘predictive
factor’’ (18, 19). Knowledge about the value of genome-wide
expression analyses in predicting treatment response in
breast cancer has resulted in at least to two studies corre-
lating gene expression profiles with sensitivity to taxane
monotherapy (20, 21) and three studies (22–24) reporting
sensitivity to anthracycline combination regimens con-
taining either cyclophosphamide or a taxane. However, the
predictive powers achieved in any of these studies do not
allow clinical implementation without further evaluations.
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The aim of this study was to examine the potential of
gene expression profiles as predictive factors of drug
sensitivity in two uniformly treated breast cancer cohorts
previously characterized for the predictive value of TP53
mutations and for the prognostic importance of gene
expression profiles. Similar to findings by others, we found
gene expression profiles defined by response-guided
supervised analysis to be limited with respect to predicting
therapy response.

Materials andMethods
Patient andTreatment Information
The patients included in this study were part of two

prospective studies evaluating predictive factors for
response to chemotherapy in locally advanced breast
cancer (T3/T4 and/or N2). From one (doxorubicin series),
we analyzed tumor samples from a subgroup consisting
of 51 patients who were treated with doxorubicin
monotherapy weekly in the neoadjuvant setting, sched-
uled for 16 weeks with 4 weekly assessments of clinical
response (3). From the second similar study (FUMI series),
we analyzed tumors from 30 patients who were treated
with FUMI at 3-week intervals (4). Because these protocols
were applied before implementation of the ‘‘Response
Evaluation Criteria in Solid Tumors’’ criteria (25), for both
studies, the response rates were classified according to the
International Union Against Cancer criteria (26). Thus,
responses were classified as partial response (reduction
>50% in the sum of all tumor lesions, calculated for each
as the product of the largest diameter and the one
perpendicular to it), progressive disease (increase in the
diameter product of any individual tumor lesion by
>25%), or stable disease (anything between partial
response and progressive disease). Therapy was terminat-
ed immediately in case progressive disease was revealed.
An overview of patient characteristics is shown in Table 1,
and a complete listing of all tumors and experiments is
available in Supplementary Table S1.8

MicroarrayAnalysis
Gene expression data were collected using cDNA

arrays produced at the Stanford Functional Genomics
Facility.9 The procedures used, including RNA extraction,
hybridization, and data processing, have been described
previously (7, 8) and are available at the Stanford
Genomics Breast Cancer Consortium Portal Web site.10

The common set of genes used for the doxorubicin series
totaled f8,000, whereas for the FUMI series this number
was f30,000 due to more recent production lots of cDNA
microarrays. Specifically, for these analyses, the back-

ground-subtracted, lowess-normalized (27) log2 ratio
(Cy5/Cy3) intensity values were first filtered to select
genes that had a signal intensity of at least 30 units above
background in both channels. Only genes that met these
criteria in at least 70% of the total data set were included
for subsequent analysis, which totaled 4,424 probes for
the entire data set. Next, missing values were imputed
using the k-nearest neighbor imputation algorithm (28).
Gene annotation from each data set was translated to
UniGene Cluster IDs using the SOURCE database (29).
Multiple occurrences of a UniGene Cluster IDs were
collapsed by the median value for that ID within an
experiment set.

Statistical Analysis
Relationships between gene expression profiles and

response to chemotherapy were analyzed using ‘‘nearest
shrunken centroid classifier’’ [prediction analysis for
microarrays (PAM); ref. 30]. In addition, several other
supervised prediction methods were used: recursive
sample classification and gene selection with SVM
for microarray data (r-SVM; ref. 31), Random Forest by
Salford Systems (32), a k-nearest neighbor classifier with
either Euclidean distance or one-minus-Spearman correla-
tion as the distance function, and a class nearest centroid
metric with either Euclidean distance or one-minus-
Spearman correlation as the distance function (See Supple-
mentary data for a more detailed description of the various
methods; ref. 33).8 As discussed elsewhere (19), the terms
partial response and stable disease are pragmatic terms
that describe a status of tumor ‘‘growth arrest’’ with or
without a certain degree of macroscopic reduction in tumor
size; the discrimination between the two may often be
arbitrary. However, progressive disease tumors are dis-
tinctive and easily discriminated from the other groups;
therefore, our primary statistical analyses aimed at
comparing progressive disease tumors versus the others.
Finally, because these experiments were done across many
different production lots of microarrays, we attempted to
correct for systematic array batch bias by using ‘‘distance-
weighed discrimination’’ (34).

Table 1. Clinical characteristics of patients included in this study

Doxorubicin (51) FUMI (30)

Response
PD 8 7
SD 22 13
PR 21 10

Histology
Ductal 46 26
Other 5 4

TP53 mutations 24 16
Median age 62 (32–85) 64 (37–82)
Median OS (mo) 33 (7–92) 24 (3–54)
No. relapses 26 17

Abbreviations: PD, progressive disease; SD, stable disease; PR, partial
response; OS, overall survival.

8 Supplementary material for this article is available at Molecular Cancer
Therapeutics Online (http://mct.aacrjournals.org/).
9 http://www.microarray.org/sfgf/jsp/home.jsp
10 http://genome-www.stanford.edu/breast_cancer/
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Results and Discussion
Prognostic versus Predictive Factors
Several gene expression-based classification schemes for

various cancer types have emerged from DNA microarray
studies over the last years. The biological importance of
these classifications is highlighted by two significant
observations: first, the possibility that, for each cancer
type, including breast (9, 12, 35, 36), lung (15), lymphoma
(14, 17), and head and neck (33), it is possible to classify
individual tumors into groups characterized by distinct
gene profiles, and second, the fact that these classifications
provide prognostic information. These analyses, however,
have thus far been of limited value for predicting
therapeutic response in individual patients. A prognostic
factor is traditionally associated with disease-free or overall
survival (in the absence of systemic adjuvant therapy),
whereas a predictive factor predicts response, or lack of, to
a particular treatment (19). Although numerous prognostic
factors have been identified in breast cancer, no predictive
factors have been generally accepted thus far, with the
exception of estrogen receptor-a and progesterone receptor

for endocrine therapy and HER2 for trastuzumab. In
previous studies (3, 4), we found mutations in the TP53
gene affecting the L2/L3 domains of the protein to be
associated with nonresponse to treatment with doxorubicin
or FUMI. However, such mutations were only predictive
for nonresponse in 60% of the progressive disease tumors.
Although our findings strongly advocate a role of the p53
pathway in response to these therapies in breast cancer,
they also suggest that other genes must also be involved (6).

Response to Therapy across Different Molecular
Subtypes
In this study, we conducted statistical analyses of gene

expression data from altogether 81 tumors, which repre-
sents one of the largest studies to explore the predictive
value of gene expression profiles in breast cancer (23, 37).
Response to therapy in tumors across the different,
previously defined tumor subgroups is depicted in Fig. 1.
One of 25 tumors belonging to the luminal A subgroup
versus 7 of 26 tumors in all other groups were non-
responding (progressive disease) to doxorubicin (P =
0.0496, two-sided Fisher’s exact test); for the patients

Figure 1. Distribution of progressive disease (PD ), stable disease (SD ), and partial response (PR ) tumors and TP53 mutation frequencies across the
breast tumor intrinsic subtypes for two different neoadjuvant treatment regimens: doxorubicin monotherapy (Doxo ) and FUMI. Tumors are ordered
according to the subtypes as presented in Fig. 1 in Sorlie et al. (9). Orange, tumor samples included in this study. TP53 mutation status is shown as
percentage of tumors from both series combined (the normal breast-like subtype is excluded). Note that one progressive disease tumor from the FUMI
series (Norway FU07-BE) and one stable disease tumor from the doxorubicin series (Norway 80-BE) were unclassified (uc). Source: PNAS, July 8, 2003,
vol. 100, no. 14, 8418-8423. Copyright (2003) National Academy of Sciences, U.S.A.

Prediction of Response in Breast Cancer2916

Mol Cancer Ther 2006;5(11). November 2006

on June 26, 2017. © 2006 American Association for Cancer Research. mct.aacrjournals.org Downloaded from 

http://mct.aacrjournals.org/


treated with FUMI, 1 of 11 of the luminal A tumors versus
6 of 19 tumors from the other groups experienced
progressive disease (P = 0.2146; both data sets combined:
P = 0.0089). Interestingly, both of the luminal A type
tumors expressing chemoresistance were wild-type for
TP53 . Although a luminal B profile was associated with
resistance to doxorubicin (five of eight progressive disease;
P = 0.0078), a similar finding was not identified among the
tumors treated with 5-fluorouracil/mitomycin. A differen-
tial variation in response across subtypes has also been
shown in a recently published study on breast cancer
treated with preoperative chemotherapy (35, 37). Our
finding that progressive disease was a rare event among
tumors expressing the luminal A gene profile is interesting;
however, these tumors rarely harbor mutations in the TP53
gene (6 of 36 versus 32 of 44 among the other tumors;
P < 0.0001), so this may simply reflect TP53 status among
these tumors. Nevertheless, this points to the importance of
considering the molecular heterogeneity of tumors when
assessing predictive as well as prognostic markers.

Prediction of Therapeutic Response Classes Using
Supervised Analyses
To search the gene expression data for patterns associ-

ated with response (progressive disease, stable disease, or
partial response; no complete response was recorded in
these two series) and to explore the feasibility of using such
patterns as predictors, PAM was used on all tumor samples
obtained before therapy for each of three treatment groups:
doxorubicin and FUMI separately and combined.
Doxorubicin. Training a predictor for progressive

disease versus partial response (for which significant
differences in gene expression might be expected) resulted
in overall accuracy of 70% but with only three of eight
progressive disease tumors correctly classified. When
combining the response groups partial response and stable
disease into one class, training of a predictor resulted in a
similar accuracy (73%), now with five of eight progressive
disease tumors correctly classified.
5-Fluorouracil and Mitomycin. Prediction of progressive

disease versus partial response showed an accuracy of 78%
with five of seven progressive disease tumors correctly
classified. Next, training a predictor for progressive disease
versus the combined groups partial response/stable
disease resulted in an accuracy of 63% with only two of
the progressive disease tumors correctly classified by cross-
validation.
Doxorubicin and FUMI Combined. Similar PAM anal-

yses for the two series combined (81 patients of whom 15
experienced progressive disease) showed similar accuracy
rates; 62% for progressive disease versus partial response
(6 of 15 progressive disease correctly classified) and 62% for
progressive disease versus the partial response/stable
disease combined group, with 7 progressive disease tumors
correctly classified.
In addition to PAM, several additional statistical methods

were used to determine if the less than optimal prediction
accuracies were due to a particular analysis method (i.e.,
PAM). In particular, Random Forest, which is a multitree

method for classification, and predictive modeling using a
support vector machine method, termed r-SVM, which
implements recursive gene ranking and selection steps,
were both tested. All methods gave similar results, and
thus, these results cannot be attributed to the statistical
method used. A complete listing of the different methods
and the prediction accuracies, sensitivities, and specificities
resulting from the altogether seven prediction methods is
presented in Supplementary Table S2.8 The values varied
to some degree in magnitude, depending on the analysis
method used and the sorting of the response groups. In
particular, all predictors tended to do poorly in identifying
the progressive disease tumors and often classified non-
progressive disease samples correctly. This finding is a
critical feature for the objective assessment of predictive
profiles because, when a minor class is compared with a
major class, a given ‘‘accurate’’ predictor could be
developed that simply predicts most of the samples to be
the major class.
The expression data used in this study were generated

using several different production batches of cDNA arrays,
and inconsistencies in such data that arose from process
errors have been detected (38). Thus, we analyzed
separately data from patients with progressive disease
versus those with partial response using samples that had
been hybridized on microarrays from the same batch only.
Although this improved prediction accuracy up to 80 %,
only half of the progressive disease tumors were correctly
classified (Supplementary Table S2).8 This finding of an
inability to accurately identify most progressive disease
tumors was true for all the predictors developed using the
seven different methods, suggesting that this is inherent in
the data and not due to the analysis method.

Conclusions
The aim of this study was to explore whether an analysis of
gene expression data in a breast cancer cohort previously
shown to yield prognostic gene profiles could identify gene
signatures associated with response or resistance to
chemotherapy. If so, this could add to the predictive value
of TP53 mutations previously reported in the same tumors.
However, we could not identify a gene profile using
multiple diverse supervised analysis methods, which was
highly accurate at identifying either drug-sensitive or drug-
resistant tumors. Molecular tumor subtype was modestly
correlated with response with luminal A tumors showing a
low rate of progressive disease and luminal B tumors
treated with doxorubicin showing a high rate of progres-
sive disease. In conclusion, we were not able to show that
gene expression profiles can be used to accurately predict
chemotherapy response in this data set. Similar to other
studies (20–22, 24, 39), these results indicate that super-
vised analyses of relatively small sample sizes and with
incomplete validation may not reveal a gene profile of
sufficient predictive power to be of clinical use and suggest
that genomic analyses using microarrays may need a
different approach that incorporates functional hypotheses
(40) to predict therapy sensitivity.
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