A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity

Sophia Hu1, Masumi Ueda2, Lindsay Stetson1, James Ignatz-Hoover1, Stephen Moreton1, Amit Chakrabarti3, Zhiquiang Xia3, Goutam Karan3, Marcos de Lima2, Mukesh K. Agrawal3,4, and David N. Wald1,3,5

Abstract

Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML.

Mol Cancer Ther; 15(7); 1485–94. © 2016 AACR.
(13–15). LY2090314 and tideglibib are more specific small-molecule GSK3 inhibitors utilized in humans in clinical trials (16, 17). Other small-molecule GSK3 inhibitors have been described, such as SB415285 (SB), which inhibits GSK3 by competitive binding to the ATP-binding site (18). In general, the GSK3 inhibitors described to date also inhibit many other kinases such as CDK2-cyclin A (CDK2A; ref. 19).

Although GSK3 inhibition has been demonstrated to induce evidence of AML differentiation, existing GSK3 inhibitors lead to suboptimal levels of AML differentiation that would likely prohibit their use as clinically useful differentiation agents. Because of the promise of differentiation therapy for AML, we aimed to identify a novel GSK3 inhibitor that was optimized for AML differentiation activity. Here, we report the identification of a novel and highly specific GSK3 inhibitor, GS87, which induces extensive AML differentiation with selective growth inhibition of leukemic cells and exhibits promise as an AML differentiation therapeutic.

Materials and Methods

Reagents and cells

The 2,000 compound small-molecule library was custom designed based upon similarities to known chemical and structural features of previously reported GSK3 inhibitors by Enamine (Ukraine). Additional quantities of GS87 (T5729983) were obtained from Enamine. SB415286 (SB) was obtained from Tocris Biosciences. Lithium (Li) was obtained from Sigma. SB203580 (SB203), PD08959 (PD), and SP600125 (SP) were obtained from Selleck Chem. MITT reagent was obtained from the CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega). Phospho-SEr-GSK3β (5558), GAPDH (5174), phospho-p38 (4511), phospho-ERK (4370), and phospho-JNK (4668) was obtained from Cell Signaling Technology. β-Catenin, p21 (397), c-myc (40), c-MYB (7874), and MAFB (74521) antibodies were obtained from Santa Cruz Biotechnology. OCI-AML3 cells were obtained from DSMZ, and HL-60, NB4, THP-1, U937, and HeLa cells were obtained from ATCC. All cell lines were obtained from ATCC or DSMZ and cultured for fewer than 6 months after resuscitation. OCI-AML3 shβ-catenin cells were supplied previously (3). Primary AML and normal donor bone marrow cells were obtained from Case Western Reserve University (CWRU) Hematopoietic Stem Cell Core Facility (Cleveland, OH).

Cell culture

Cells were cultured in RPMI1640 media (Hyclone). All media were supplemented with 10% FBS and penicillin/streptomycin. Cells were cultured in a humidified atmosphere of 95% (v/v) air and 5% (v/v) CO2 at 37°C.

Differentiation

The nitrotetrazolium blue (NBT) reduction assay was performed as described previously (20). Immunphenotyping was performed by staining cells with CD11b-PE (Becton Dickinson) or CD14-PE (eBiosciences). Stained samples were run on a Beckman Coulter Cytomics FC 500 cytometer (Becton Coulter). For morphologic assessment, cells were adhered to a slide using cytospin and then stained with Wright–Giemsa. Images were taken using the built in EVOS XL core camera and acquisition software using a 100× oil objective. Pictures were changed to gray scale using Powerpoint.

Proliferation and colony assay

Equal numbers of THP-1, HL-60, NB4, U937, and OCI cells were plated and treated with Li, SB or GS87 for 72 hours. Cells were analyzed for proliferation using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega) as recommended by the manufacturer using a Molecular Q3 Devices Spectramax M2 plate reader. For the colony assay, after 72 hours, the cells were washed with PBS, an equal number of viable cells were suspended in 0.03% noble agar (Sigma), the cells were incubated for one week and number of colonies was counted.

Cell-cycle analysis

Cells were treated with Li, SB, or GS87 for 24 hours, fixed in 90% methanol and incubated overnight at −20°C. Cells were then washed with PBS, treated with RNase (0.5 μg/mL) and propidium iodide (50 μg/mL) in the dark for 60 to 90 minutes at room temperature and analyzed by flow cytometry.

Western blot analysis

Cells treated as indicated were washed with PBS, centrifuged, and lysed with a triton-containing lysis buffer for whole cell extracts. Protein lysates (50 μg/lane) were resolved on appropriate SDS–PAGE gel and transferred to polyvinylidene difluoride membrane (Millipore) using Bio-Rad transfer apparatus (Bio-Rad). The membranes were blocked, incubated with the indicated primary antibodies at 4°C overnight, and incubated with the appropriate horseradish peroxidase–conjugated secondary antibodies. Immunoreactive protein bands were detected by enhanced chemiluminescence (Pierce) using XAR-5 film.

RNA microarray

HL-60 cells were treated with Li, SB, or GS87 for 48 hours and total RNA was isolated using TRIzol (Invitrogen). The cRNA was prepared using the TargetAmp-Nano Kit (Epicercenter) and hybridized to the human HT-12 Expression BeadChip (Illumina). Microarray results were evaluated using Genomestudio (Illumina) and R (version 3.1.3) software. Differential expression was assessed using the lumi package for R. FDR was used to correct for multiple comparisons. Pathway analysis was performed using Ingenuity Pathway Analysis software (Qiagen) for genes with significantly dysregulated expression (FDR-adjusted P < 0.05) and an absolute log fold change greater than or equal to 1.5. Microarray data was submitted to Arrayexpress (accession number E-MTAB-3690).

Real-time quantitative reverse transcription PCR

Total RNA was isolated from cells treated with Li, SB, or GS87 for 48 hours using TRIzol reagent (Invitrogen). RNA was transcribed into cDNA using the Enhanced Avian RT First Strand Synthesis Kit (Sigma). Relative quantitative reverse transcription (RT)-PCR was performed in triplicate using the FastStart SYBR Green Master (Roche Diagnostics) on an Applied Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems). Primers used for confirmation of microarray data are listed in Supplementary Table S1 and were purchased from Sigma.

Kinase assays

Kinases assays were performed by Reaction Biology Corporation using their standard 32P-ATP–based protocol. For kinase profiling, GS87 (1 μmol/L) was utilized for radioactive in vitro
kinase assays on a panel of 183 kinases as shown in the Supplementary Data. All assays were carried out using 10 μmol/L ATP and staurosporine as a positive control. For the IC₅₀ determination, a 10-dose 3-fold serial dilution assay was performed starting at 100 μmol/L.

Mouse xenograft studies
Six-week-old female Nod Scid IL2γR⁻/⁻ (NSG) mice (The Jackson Laboratories) were injected intravenously with 5 × 10⁶ primary human AML cells or HL-60 cells (n = 5 mice per group). Drug treatment was started 3 days after cell injection. GS87 (50 mg/kg), cytarabine (50 mg/kg), or vehicle (20 μL of DMSO and 80 μL of water) were injected as indicated intraperitoneally twice a week for 3 weeks. The mice were either assessed for survival (primary patient sample group) or sacrificed when the vehicle mice became moribund or at the end of the study period and analyzed by flow cytometry for human leukemia cells in the bone marrow using human CD45 specific antibody (BD Biosciences) as well as CD11b in the HL-60 group. The CWRU Animal Research Committee approved the animal protocols used in this study.

Statistical analysis
Group means were compared using two-tailed ANOVA. P < 0.05 were considered significant. Error bars represent the root mean square error and experiments were performed in triplicate.

Results
Identification of GS87
GSK3 has been demonstrated to be an excellent target for AML as inhibiting this kinase can lead to the differentiation and irreversible growth arrest of AML cells yet exhibit little activity or even increase the growth of normal bone marrow cells (3, 21). Unfortunately, the existing GSK3 inhibitors demonstrate only moderate AML differentiation activity leading to suboptimal differentiation. To identify novel GSK3 inhibitors optimized for high AML differentiation activity, a focused library of approximately 2,000 novel small molecules was compiled (designed using structural and chemical similarities to existing GSK3 inhibitors). From screening this chemical library, we identified not only a novel and highly specific GSK3 inhibitor, but also an inhibitor capable of leading to dramatically higher rates of AML differentiation than previously tested GSK3 inhibitors. The screen involved treating OCI-AML3 cells with the small-molecule library and measuring differentiation using the NBT reduction assay. NBT reduction measures the respiratory burst activity of cells, a function specific to differentiated cells (22, 23). From this library, GS87 was as the only compound capable of inducing greater than 50% differentiation. The structure of GS87 which represents a novel scaffold for a GSK3 inhibitor is illustrated in Fig. 1A.

GS87 is a highly specific GSK3 inhibitor
As GS87 has a novel scaffold, we confirmed that it is truly a GSK3 inhibitor using radioactive in vitro kinase assays. GS87 was found to demonstrate significant inhibition of both GSK3α and GSK3β (IC₅₀ 415 and 521 nmol/L, respectively) as seen in Fig. 1B. As previously reported, GSK3 inhibitors also tend to inhibit other kinases such as CDK2A, we also performed kinase profiling to assess GS87’s specificity in inhibiting GSK3 (19). This screening demonstrated GS87 is among the most specific GSK3 inhibitors reported as it had little activity on a panel of 187 other kinases at 1 μmol/L using in vitro kinase assays including CDK2A (Supplementary Table S2).

GS87 induces AML cell differentiation
To confirm the high level of GS87-mediated differentiation, we compared its ability to induce AML differentiation in a variety of cell lines as compared with the widely used GSK3 inhibitors, SB415286 (SB), and Lithium (Li). Importantly, all agents were used at optimal doses for inducing differentiation without leading to significant cell death. Lithium was chosen as it is the only...
Hu et al.

currently FDA-approved GSK3 inhibitor. OCI-AML3 (OCI), HL-60, and NB4 cell lines showed a dramatically higher level of NBT reduction after treatment with GS87 (~80%) as compared with those treated with SB (~20%) or Li (~10%; Fig. 1C). These levels of differentiation in response to GSK3 inhibition as measured by NBT reduction are similar to previous studies describing these agents as well as to other GSK3 inhibitors such as TWS116, 6-bromoindirubin-3'-oxime, and CHIR99021 (3). Of note, the doses used for differentiation induction due not lead to any appreciable cell death effects on AML cells when assessed at 72 hours after treatment (Supplementary Fig. S1).

In addition to Li which is used clinically, tideglusib and LY-2090314 are two small-molecule GSK3 inhibitors which are in clinical trials and were also compared with GS87 (7, 24) Treatment with GS87 also induced significantly more differentiation as measured by NBT reduction than either tideglusib or LY-2090314 (Fig. 1D), identifying GS87 as a dramatically more effective AML differentiation agent.

In addition to NBT reduction, differentiation was measured by immunophenotyping for the cell surface markers CD11b and CD14, which are associated with general granulocytic and monocytic differentiation, respectively. Similarly to the NBT reduction studies, CD11b and CD14 were induced significantly more with GS87 as compared with other GSK3 inhibitors in a variety of AML cell lines. For example, CD11b was more strongly upregulated by GS87 (~75%) as compared with treatment with SB (~25%) and Li (~20%) in multiple AML cell lines (Fig. 2A and B and Supplementary Fig. S2). As HL-60 cells can differentiate into multiple lineages such as monocytes and neutrophils, we tested for CD14 induction, a specific marker of monocytic differentiation, in this cell line. CD14 expression in HL-60 cells was highest after GS87 treatment (81%) as compared with treatment with SB (25%) or Li (17%; Fig. 2C). In addition, morphologic assessment of cells after treatment with GS87 confirmed high level of monocytic differentiation as evidenced by condensation of the nucleus, change in nuclear shape and appearance of cytoplasmic vacuoles (Fig. 2D). Of note, while both cell lines treated with Li, SB, and GS87 all exhibited features of monocytic differentiation as expected, GS87-treated cells demonstrated noticeably more nuclear indentation.

We next studied the differentiation effects of GS87 on primary leukemic cells derived directly from non-APL leukemia patients. Compared with untreated samples, AML cells treated with SB, Li, and GS87 displayed increased differentiation characterized by CD11b expression on flow cytometry. As observed with AML cell

Figure 2.

GS87 promotes monocytic differentiation of AML cells. A–C, GS87 leads to extensive acute myeloid leukemia (AML) differentiation as measured by immunophenotyping. AML cell lines were treated with GS87 (30 μmol/L or as indicated), Li (10 mmol/L), or SB (20 μmol/L) for 72 hours and cell surface expression of CD11b and CD14 (HL-60 cells) were measured by flow cytometry. *, *P < 0.01. D, treatment with GS87 induces morphologic changes consistent with monocytic differentiation in HL-60 cells compared with untreated cells. Cells were stained using Wright–Giemsa stain. Images were taken using the built-in EVOS XL core camera and acquisition software using a 100× oil objective. The arrows indicate representative cells with marked nuclear condensation or vacuoles. The boxed cells are shown expanded to better illustrate the morphology. E, GS87 leads to AML differentiation in primary patient leukemic cells. Primary patient leukemia cells treated with GS87, Li, or SB showed the highest increase in the cell surface expression of CD11b after GS87 treatment.
lines, the greatest percentage of CD11b expression was observed after GS87 treatment as compared with the other GSK3 inhibitors tested (Fig. 2E). Of note, GS87 is able to exhibit potent AML differentiation in a wide range of diverse primary AML samples and cell lines in contrast to the clinically used differentiation agent ATRA that is specifically potent for APL cells (Figs. 1 and 2 and Supplementary Fig. S3).

GS87 inhibits AML proliferation and causes terminal differentiation

We next evaluated the effects of GS87 on leukemic cell growth. Using the MTT assay, we compared cell proliferation following treatment with SB, Li, and GS87 for 72 hours using doses leading to maximal differentiation without significant cytotoxic effects. GS87 treatment resulted in 35%–47% cell proliferation relative to untreated controls in THP-1, HL-60, NB4, and U937 cells, whereas SB and Li treatment showed 60%–70% and 68%–74% proliferation relative to vehicle control cells, respectively (Fig. 3A). Furthermore, cell-cycle analysis in HL-60 cells showed an increased accumulation of cells in the G0–G1 phase and a reduction in the S-phase 24 hours after treatment with GS87 consistent with the observed growth inhibition (Fig. 3B).

The purpose of differentiation therapy for AML is to induce terminal differentiation such that differentiated cells can no longer divide and propagate disease. Thus, we evaluated the irreversibility of AML cell growth arrest by limited treatments of GS87 using colony assays. After a 72-hour treatment of OCI, HL-60, and NB4 cells with GS87, the drug was washed away, an equal number of viable cells was plated in soft agar and subsequent colony formation was assessed. Consistent with extensive terminal differentiation, limited treatment with GS87 was found to lead to a near complete inhibition of colony formation with only 4% to 9% colony growth relative to the vehicle-treated control in all cell lines tested (Fig. 3C). Next, we tested the effects of GS87 on the colony formation of normal hematopoietic progenitor cells to investigate the potential for hematologic toxicity as this is an extremely common side effect of most AML therapeutics. Similar to previous reports of inhibiting GSK3 in normal bone marrow,
GS87 treatment did not significantly inhibit colony growth of cells taken from normal human bone marrow samples (Fig. 3C). In addition, mice treated with GS87 did not show any impact on normal hematopoiesis as measured by changes in white blood cell, red blood cell, or platelet counts (Supplementary Fig. S4).

GS87 modulates key GSK3 target proteins involved in cell proliferation and differentiation more effectively than lithium and SB

To explore mechanistic insights that may explain GS87’s enhanced differentiation activity over other GSK3 inhibitors, we investigated the impact of GS87 on known GSK3-dependent pathways that are important for AML differentiation and growth in leukemic cells including β-catenin, p21, c-myc, c-MYB, and MAFB. One of the major direct target proteins of GSK3 is β-catenin, which is phosphorylated by GSK3 and targeted for degradation. Therefore, we investigated the role of β-catenin in mediating the differentiation effects of GS87. GS87 treatment of OCI cells with stable knockdown of β-catenin showed similar differentiation compared with cells transfected with empty vector (Fig. 4A), demonstrating that the differentiation effect of GS87 is independent of β-catenin. Although β-catenin does not appear to be important for GS87-mediated differentiation, GS87 did lead to a more pronounced induction of this GSK3 target protein than the other GSK3 inhibitors tested (Fig. 4B).

p21 is a key regulator of the cell cycle and is induced during AML differentiation (25), whereas c-myc is a promoter of cell proliferation whose presence prevents terminal cell differentiation in cancer cells and is downregulated during AML differentiation (26). p21 is also known to be a direct GSK3 target protein that can be degraded in a GSK3-dependent fashion (27). As shown in Fig. 4B, GS87 treatment increased p21, whereas it reduced c-Myc protein levels more robustly than either Li or SB reinforcing the cell proliferation analysis. Importantly, the ability of GS87 to more effectively modulate GSK3-dependent pathways than SB and Li occurs at doses optimized for differentiation for all three agents. We also investigated levels of c-MYB and MAFB, proto-oncogenes overexpressed in immature hematopoietic cells and in some hematologic malignancies that are regulated by GSK3. c-MYB has previously been demonstrated to be a key target of GSK3 in mediating its cell growth effects in AML cells and MAFB is also regulated by GSK3 phosphorylation and plays a key role in myeloid differentiation (28–31). GSK3 inhibition has been shown to directly downregulate c-Myb and upregulate MAFB expression. GS87 more effectively modulated protein expression of both GSK3 target proteins c-MYB and MAFB than SB and Li further establishing the ability of GS87 to strongly impact GSK3-dependent pathways (Fig. 4C).

GS87-mediated differentiation is dependent upon MAPK signaling

To further explore the cellular pathways involved in mediating the differentiation effects of GS87 as compared with other GSK3 inhibitors, we performed RNA expression analysis using a gene microarray after treatment of OCI cells with GS87, Li, and SB. The cells were treated using a short treatment (48 hours) to enable the identification of mediators of differentiation instead of simply to appreciate the phenotype of the differentiated cells. After FDR correction, 1,322 genes were significantly (P < 0.05) differentially expressed with an absolute log2 fold change greater than or equal to 1.5 after GS87 treatment, 90 genes after treatment with SB, and 143 genes after treatment with Li (Supplementary Fig. S5; Supplementary Table S3). A total of 34 genes were only significantly dysregulated by SB treatment, 47 genes were only significantly dysregulated by Li treatment, and a total of 1,206 genes were only significantly dysregulated by treatment with GS87 (Supplementary Table S4; Fig. 5A).

Next, we performed pathway analysis on genes that were significantly modulated (FDR-adjusted P < 0.05, [log2 fold change] ≥ 1.5) in the GS87, Li, and SB treatment groups. This analysis identified key pathways known to be involved in AML differentiation and growth such as MAPK signaling as being more
significantly upregulated by GS87 treatment as compared with the other treatments (Table 1 and Supplementary Table S5; refs. 32–35).

To validate the results of the microarray, genes that exhibited significant changes that are also involved in myeloid differentiation and growth were tested by RT-PCR. For example, CEBPβ expression was upregulated after GS87 treatment, whereas IRF8 and cyclin D2 expression were downregulated with GS87 treatment (Fig. 5A). CEBPβ is a key regulator in myeloid differentiation (36, 37), whereas cyclin D2 has roles in leukemia proliferation (38–40). IRF8 is a regulator of myeloid differentiation and high expression has been linked to poor prognosis in AML (41).

Because of the known major role of MAPK signaling in AML differentiation, we investigated components of the MAPK signaling cascade in mediating GS87-induced differentiation. Consistent with our pathway analysis, we found that p38, ERK, and JNK were all activated more strongly by GS87 than Li and SB particularly at 2 hours after treatment (Fig. 5B). To investigate the importance of these pathways in GS87-mediated differentiation, we utilized chemical inhibitors. The ERK inhibitor (but not JNK and p38 inhibitors) significantly impaired the differentiation effects of GS87 (Fig. 5C and data not shown), establishing the role of the MEK/ERK branch of the MAPK signaling cascade as a key mediator of GS87-induced differentiation. This work also provided mechanistic insights into why GS87 may be a more effective differentiation agent.

GS87 demonstrates efficacy in an AML mouse model system

To explore the potential of GS87 as a therapeutic, we utilized two mouse models of circulating human AML. In the first model, primary AML cells derived from a patient with relapsed and treatment refractory disease (AML M2 subtype) were injected into immunodeficient mice. GS87 demonstrated significant efficacy as compared with mice treated with vehicle as well as the standard AML therapeutic, cytarabine. While the majority of the GS87 mice showed longer term survival, those treated with vehicle or cytarabine died because of leukemic cell infiltration of the bone marrow by approximately 45 days after cell injection (Fig. 6A). Examination of the bone marrow in mice sacrificed because of moribund state or at the study endpoint of 90 days (as in the case of GS87-treated mice) showed significantly higher percentage of blasts in the vehicle and cytarabine groups (93% ± 7.5% and
65% ± 8.2%) compared with the surviving mice from the GS87 group (0.32% ± 0.53%; Fig. 6B). In the second model, the ability of GS87 to induce the differentiation of the leukemic cells was assessed. In this model, GS87 was found not only to significantly reduce the burden of leukemic cells in the bone marrow at the end of the study period but also to lead to evidence of leukemic cell differentiation as measured by CD11b staining (Fig. 6C and D). Finally, to confirm that GS87 can inhibit GSK3 in vivo, peripheral blood cells were shown to induce the expression of β-catenin after drug treatment (Supplementary Fig. S6).

Discussion

Here we report the identification of a novel and highly specific inhibitor of GSK3 that induces superior AML cell differentiation and growth arrest compared with existing GSK3 inhibitors without affecting normal hematopoietic cell proliferation. The discovery of novel differentiation therapies for AML is important due to the poor efficacy and high toxicities of existing agents. Differentiation therapy has demonstrated remarkable clinical efficacy for a small subset of AML patients with APL, reinforcing its potential as an attractive therapeutic strategy for this disease (2).

Numerous groups have implicated GSK3 as a target for AML growth inhibition and differentiation (3–5, 9–12). In addition, it has been reported that GSK3 inhibition may also target leukemia initiating cells that are poorly targeted by standard AML chemotherapy (42). One of the major advantages of targeting GSK3 as compared with the vast majority of agents is the selective targeting of AML cells as compared with normal hematopoietic cells. Our studies with GS87 have further validated the selective effects on leukemic cells suggesting that this approach will not lead to myelotoxicity, a major side effect of most leukemia therapeutics.

GS87 exhibits dramatically more differentiation activity as compared with other reported GSK3 inhibitors. GS87 induces differentiation and growth inhibition of AML cell lines and primary patient samples and exhibits high efficacy using aggressive mouse models of human AML. Although GS87 exhibits extensive differentiation activity as compared with other GSK3 inhibitors, interestingly, it leads to GSK3 inhibition at similar levels as measured by in vitro kinase assays to SB and many other reported GSK3 inhibitors. Furthermore, despite these differences in AML differentiation activity, GS87 was found to be a highly specific kinase inhibitor through kinase profiling. GS87, however, leads to more dramatic effects on GSK3 target proteins as compared with other GSK3 inhibitors when used at optimal differentiation doses. For example, GS87 leads to larger changes in the expression of c-myb, MAFB, p21, and β-catenin in AML cells as compared with SB and Li. In addition, GS87 leads to a stronger activation of MAPK signaling which was found to be important for its differentiation activity.

The reasons for the enhanced activation of GSK3-dependent signaling with GS87 are not known. GSK3 activity is controlled in a relatively complex manner by multiple posttranslational modifications, cellular localization, and interactions with other proteins (6). In addition, GS87 can target substrates primed by phosphorylation from other kinases or nonprimed substrates in different manners. It is possible that GS87 impairs GSK3 activity in a distinct fashion as compared with other agents. In addition, despite the fact that GS87 is a specific kinase inhibitor, it is also likely that it regulates other proteins that mediate pathways that can synergize with GSK3-dependent differentiation. Several pathways such as retinoic acid signaling have been found to cooperate with GSK3-mediated differentiation (3).

Further preclinical optimization of GS87 is needed to determine pharmacokinetics, pharmacodynamics, and drug formulation prior to human testing. Whether clinically effective plasma

Figure 6. GS87 demonstrates efficacy in a circulating AML mouse model system. A, mice treated with GS87 showed longer survival compared with those treated with vehicle or the standard AML therapeutic cytarabine in a mouse model of human primary AML. B, bone marrow blast percentage in mice with primary human AML sacrificed because of moribund state or at study endpoint of 90 days showed significantly higher percentage in the vehicle and cytarabine groups compared with the GS87 group. Note: the GS87 mice tested were the surviving mice at the end of the study period. C and D, mouse model of circulating HL-60 cells showing a reduced disease burden in the bone marrow (C) and evidence of AML differentiation (D) in the GS87-treated mice.
However, given its high antileukemic efficacy with limited toxicity in our AML mouse model, GS87 has tremendous potential for drug development and first-in-human testing in persons with AML. Further testing will be necessary to determine whether GS87, like ATRA, requires coadministration of chemotherapy or other agents for optimal disease control (43, 44).

In conclusion, GS87 is a novel GSK3 inhibitor identified in efforts to discover a small-molecule GSK3 inhibitor optimized for AML differentiation activity. Because of its high efficacy in cell and animal models and its minimal apparent toxicity, GS87 is a promising new agent for clinical AML differentiation therapy.

Disclosure of Potential Conflicts of Interest
M.K. Agarwal has ownership interest (including patents) in Invenio-MiRx. D.N. Wald reports receiving a commercial research grant from Invenio Therapeutics and has ownership interest (including patents) in Invenio Therapeutics and GS87 intellectual property. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: M.K. Agarwal, D.N. Wald

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Hu, M. Ueda, J. Ignatz-Hoover, S. Moreton, M.K. Agrawal, D.N. Wald

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Hu, M. Ueda, L. Stetson, G. Karan, M. de Lima, M.K. Agrawal, D.N. Wald

Writing, review, and/or revision of the manuscript: S. Hu, M. Ueda, L. Stetson, D.N. Wald

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Hu, M. Ueda, S. Moreton, A. Chakrabarti, G. Karan, M.K. Agrawal, D.N. Wald

Study supervision: G. Karan, M.K. Agrawal, D.N. Wald

Grant Support
The work was supported by a contract from the NCI (NIH/NCI HHSN261201100093C, to D.N. Wald and M.K. Agrawal) and Core Facilities of the Case Comprehensive Cancer Center (P30 CA43703).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received July 10, 2015; revised March 24, 2016; accepted April 6, 2016, published OnlineFirst May 9, 2016.

References
Molecular Cancer Therapeutics

A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity

Sophia Hu, Masumi Ueda, Lindsay Stetson, et al.

Mol Cancer Ther 2016;15:1485-1494. Published OnlineFirst May 9, 2016.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-15-0566

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2016/05/07/1535-7163.MCT-15-0566.DC1

Cited articles
This article cites 43 articles, 15 of which you can access for free at:
http://mct.aacrjournals.org/content/15/7/1485.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/15/7/1485.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.