ML264, A Novel Small-Molecule Compound That Potently Inhibits Growth of Colorectal Cancer

Ainara Ruiz de Sabando1, Chao Wang2, Yuanjun He2, Mónica García-Barros3, Julie Kim1, Kenneth R. Shroyer4, Thomas D. Bannister2, Vincent W. Yang1,5, and Agnieszka B. Bialkowska1

Abstract

Colorectal cancer is one of the leading causes of cancer mortality in Western civilization. Studies have shown that colorectal cancer arises as a consequence of the modification of genes that regulate important cellular functions. Deregulation of the WNT and RAS/MAPK/PI3K signaling pathways has been shown to be important in the early stages of colorectal cancer development and progression. Krüppel-like factor 5 (KLF5) is a transcription factor that is highly expressed in the proliferating intestinal crypt epithelial cells. Previously, we showed that KLF5 is a mediator of RAS/MAPK and WNT signaling pathways under homeostatic conditions and that it promotes their tumorigenic functions during the development and progression of intestinal adenomas. Recently, using an ultrahigh-throughput screening approach we identified a number of novel small molecules that have the potential to provide therapeutic benefits for colorectal cancer by targeting KLF5 expression. In the current study, we show that an improved analogue of one of these screening hits, ML264, potently inhibits proliferation of colorectal cancer cells in vitro through modifications of the cell-cycle profile. Moreover, in an established xenograft mouse model of colon cancer, we demonstrate that ML264 efficiently inhibits growth of the tumor within 5 days of treatment. We show that this effect is caused by a significant reduction in proliferation and that ML264 potently inhibits the expression of KLF5 and EGR1, a transcriptional activator of KLF5. These findings demonstrate that ML264, or an analogue, may hold a promise as a novel therapeutic agent to curb the development and progression of colorectal cancer. Mol Cancer Ther; 15(1): 72–83. ©2015 AACR.

Introduction

Colorectal cancer is the third most prevalent cancer in the United States with approximately 140,000 new cases and 50,000 deaths each year (1). The progression from normal intestinal epithelial tissue to metastatic neoplasm results from the disruption of multiple regulatory mechanisms involving critical signaling pathways that normally regulate proliferation, differentiation, migration, and apoptosis (2, 3). Previous research has coalesced around a model of colorectal cancer development whereby dysregulation of WNT and RAS/MAPK/PI3K signaling pathways is necessary for early development and progression (4). That the sequential impairment of each of these pathways is a requirement for developing intestinal neoplasia has been recently confirmed in an organoid system by Drost and colleagues (5). Despite this knowledge, few therapeutic strategies have been developed to specifically target components of these particular pathways and none have gained FDA approval. Our group has identified Krüppel-like factor 5 (KLF5), a WNT- and RAS/MAPK/PI3K-responsive molecule, as an important regulator of intestinal epithelial cell proliferation that is frequently overexpressed during intestinal tumorigenesis.

KLF5 is a zinc-finger transcription factor highly expressed in the intestinal epithelium crypts (6). We previously demonstrated that transit-amplifying (TA) cells of the intestinal epithelium express high levels of KLF5 that co-localize with the proliferation marker, Ki-67 (6, 7). More recently, we demonstrated that KLF5 is also expressed in the crypt base columnar (CBC) cells of the intestinal crypts (8). CBC cells, which express the leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) gene, proved to be the dividing and long-lived intestinal stem cells (ISC) that give rise to all lineages of the intestinal epithelium (9–12). Importantly, we recently showed that KLF5 is essential for the proliferation and survival of LGR5-expressing ISCs (8). Mechanistically, we and others have shown that KLF5 expression is regulated by both the RAS/MAPK/PI3K and WNT signaling pathways, but via distinct mechanisms. Although the RAS/MAPK/PI3K pathway exerts its action directly through early growth factor 1 (EGR1), a potent transcriptional activator of KLF5 (13, 14), the WNT pathway regulates the rate of the KLF5 protein degradation through GSK3β phosphorylation and a subsequent FBW7ε-dependent degradation (15–17). Additionally, we have demonstrated that KLF5 is itself a positive regulator of both the RAS/MAPK and WNT signaling pathways. The RAS/MAPK pathway is affected by...
KLF5-mediated EGFR activation, whereas WNT signaling is stimulated by the ability of KLF5 to enhance β-catenin stability, nuclear localization, and transcriptional activity (18, 19). Taken together, these observations illustrate the important role that KLF5 plays in the maintenance of homeostasis of intestinal epithelium by governing the activity of stem and TA cells.

Furthermore, we have shown that elevated levels of oncogenic KRAS, which is associated with hyperactive MAPK and PI3K signaling, result in the upregulation of KLF5 expression in both primary human colorectal cancers and transgenic mouse models (14, 20). KLF5 overexpression in turn potentiates the transforming activity of KRAS by increasing the proliferation rate of cells (20). Our group has also demonstrated that reduced KLF5 expression leads to reduced intestinal tumor formation in mice harboring a germline mutation in the tumor suppressor Apc, a crucial component of the WNT pathway, alone or in combination with activating KRAS mutations (18, 20, 21). In addition, it has been recently demonstrated that KLF5 expressed in CBCs facilitates the oncogenic activity of mutated β-catenin promoting development of intestinal adenomas, while KLF5 deletion abrogates this process (22). Moreover, we have evidence that KLF5 expression levels are highest in cancer cells of colorectal cancer origin among the NCI60 panel of cancer cells (23). These lines of evidence suggest that small molecule compounds that decrease KLF5 expression could prove to be an effective therapeutic option for colorectal cancer.

We generated colorectal cancer cell lines stably expressing the luciferase reporter from the human KLF5 promoter and utilized these cells in an ultrahigh-throughput screening (uHTS) approach to identify compounds that modulated KLF5 expression (23, 24). Previously, we demonstrated that this screening method allows for specific identification of compounds that decrease KLF5 expression levels and that inhibit proliferation of colorectal cancer cell lines in vitro systems (23, 24). Here, we show that ML264, a third-generation small molecule compound that arose from the first-generation of uHTS hits, potently inhibits KLF5 expression, decreases proliferation of colorectal cancer cell lines, and inhibits the growth of xenografts in a mouse model of primary tumor development.

Materials and Methods

Cell lines and reagents

DLD-1 and HCT116 colorectal cancer cell lines were purchased from the ATCC. DLD-1 cells were maintained in RPMI1640 medium supplemented with 10% FBS and 1% penicillin/streptomycin, and HCT116 cells were maintained in McCoy’s medium supplemented with 10% FBS and 1% penicillin/streptomycin. We routinely carry out morphology studies as the growth of xenografts in a mouse model of primary tumor development.

For cell proliferation experiments, DLD-1 and HCT116 cells were treated with 10 µmol/L ML264 or with vehicle (DMSO). Live cells were collected at 24, 48, and 72 hours after treatment and their numbers were determined by counting using a Coulter counter (Beckman Coulter). Each experiment was done in triplicate. In MTS assay, DLD-1 and HCT116 cells were treated with 10 µmol/L ML264 or with vehicle (DMSO). After 24, 48, and 72 hours of incubations, 20 µL of MTS solution (Promega, Cat. #G3582) was added to each well and an analysis was performed according to the manufacturer’s protocol. The measurement of the control (cells with medium and DMSO) was defined as 100% and the results from other measurements were calculated accordingly. Each experiment was done in sextuplicate. A cell-cycle progression assay was performed as described previously (23). Each experiment was done in triplicate. The apoptosis rate was determined using the Alexa Fluor 488 Annexin V/Dead Cell Apoptosis Kit (Life Technologies, Cat. #V13241) according to the manufacturer’s instructions with analysis by flow cytometry. Each experiment was done in triplicate.

RNA analysis

Total RNA from DLD-1 and HCT116 cells was used for quantitative PCR. RNA was extracted using TRIzol Reagent (Life Technologies, Cat. #15596) according to the manufacturer’s instructions. Primers against human KLF5, EGR-1, CTNNB1, CCND1, CCNE1, CCNA2, CCNB1, and GAPDH were purchased from Qiagen. Their respective catalogue numbers are QT00074676, QT00218505, QT00077882, QT000495285, QT00014986, QT00014798, QT00006615, and QT00079247. Quantitative PCR was performed using the QuantiTect SYBR Green RT-PCR Kit (Qiagen, Cat. #204243) as per standard protocols. Observed CT values were then used to calculate fold change using the 2−ΔΔCT method of relative quantification (26). Human GAPDH was used as the housekeeping gene.

Immunofluorescence and IHC

Tumors dissected from mice were first fixed in Bouin’s fixative (50% ethanol + 5% acetic acid in water) for 1 hour, then fixed overnight in 10% buffered formalin (Fisher Scientific). The tissues were then paraffin-embedded using an automated processor, sectioned at 5 µm, collected onto charged slides, and baked in a 65°C oven overnight, and were subsequently deparaffinized in xylene. Sections were incubated in a 2% hydrogen peroxide in methanol bath to block endogenous tissue peroxidases and were then rehydrated by incubation in a decreasing ethanol bath series (100%, 95%, and 70%) followed by antigen retrieval in citrate buffer solution (10 mmol/L sodium citrate, 0.05% Tween-20, and pH 6.0) at 120°C for 10 minutes using a decloaking chamber (Biocare Medical). Tissue sections were first incubated with blocking buffer (5% BSA in TBS-Tween) for 30 minutes at 37°C and then with primary antibody at 4°C overnight in a humidified chamber with gentle shaking. The list of primary antibodies used is shown in Supplementary Table S1. Sections were washed and incubated with secondary antibodies (horseradish peroxidase–conjugated or fluorescent-tagged) at wwww.aacrjournals.org Mol Cancer Ther; 15(1) January 2016 73
the appropriate concentration for 30 minutes at 37°C. Betazoid DAB (Biocare Medical) was used to reveal IHC staining in tissues. For fluorescent sections, slides were washed after secondary antibody treatment and then stained with Hoechst (AnaSpec Inc.) and mounted with Prolong gold antifade (Life Technologies). Slides were analyzed under a Nikon Eclipse 90i microscope (Nikon) and representative photomicrographs were taken.

Hematoxylin and eosin staining
Histology of sections was observed upon staining 5 µm sections that were fixed, paraffin-embedded, deparaffinized, and rehydrated as mentioned before. Then they were stained with Hematoxylin Stain Solution, Gill 3 (Rica Chemical Company), and Eosin Y (Sigma-Aldrich). Sections were dehydrated in an increasing series of ethanol bath (70%, 95%, and 100%), cleared in xylene, and mounted with Cytoseal XYL xylene-based mounting media (Thermo Scientific, Cat. #8312-4).

Mitotic figures quantification
In *in vitro* studies, DLD-1 cells were seeded onto slides with medium containing DMSO or 10 µmol/L ML264, fixed and stained with Hoechst (DNA labeling) after 24, 48, and 72 hours of treatment. To quantify the number of mitotic figures five fields, each with 100 cells were counted. For *in vivo* studies mitotic figures were counted in 15 images of three vehicle- and ML264-treated animals using slides with hematoxylin and eosin (H&E) staining.

Ki-67 quantification
Ki-67 was quantified using images from three animals treated with vehicle and with ML264. We analyzed three images per animal per treatment using the ImageJ software (27).

** Xenografts**
All mice studies were approved by the Stony Brook University Institutional Animal Care and Use Committee. Nude mice were purchased from Jackson Laboratories (Bar Harbor). Animals were housed under specific pathogen-free conditions in ventilated and filtered cages under positive pressure. Xenograft tumors were generated by injecting subcutaneously 5 × 10^6 DLD-1 human colorectal cells into the right flank of 6- to 7-week-old male nude mice. Tumor volume was determined by caliper measurement (70%, 95%, and 100%), cleared in xylene, and mounted with Prolong gold antifade (Life Technologies). Slides were analyzed under a Nikon Eclipse 90i microscope (Nikon) and representative photomicrographs were taken.

Statistical analysis
The analysis of *in vitro* experiments was performed with Student t test. A value of P < 0.05 was considered statistically significant. This analysis was performed using the GraphPad Prism version 5.00 for Windows (GraphPad Software). A comparison of tumor progression between the different treatment regimens and the control group was performed at 5 and 10 days after treatment by constructing linear mixed models for longitudinal data arising from every experiment. Autoregressive with order 1 structure was used to model the dependence among time points—the best structure compared with compound symmetric and unstructured. Prespecified comparisons between treatment and vehicle group were made. A P value less than 0.05 was considered statistically significant and analysis was performed using SAS 9.3 (SAS Institute Inc.).

Results and Discussion

ML264 inhibits the growth of colorectal cancer cell lines *in vitro*
ML264 is a third-generation small molecule compound that has been developed with the goal of inhibiting the growth of colorectal cancer cells by reducing the activity of the oncop gene KLF5 (25). We designed a series of experiments to test the efficacy of ML264 using DLD-1 and HCT116 colorectal cancer cell lines due to the relatively high levels of expression of KLF5 in these cells. We tested the effects of ML264 on the rate of cell proliferation of colon cancer cells lines DLD-1 (Fig. 1A) and HCT116 (Fig. 1B) over 72 hours. ML264 efficiently inhibited the rate of proliferation of both cell lines. A significant decrease in proliferation was evident within 24 hours of treatment (Fig. 1A and B) and by 72 hours the live cell numbers of ML264- and vehicle-treated cells differed by 15- to 30-fold. Additionally, we performed an MTS assay that allows the quantification of metabolically active cells. As shown in Fig. 1C (DLD-1) and D (HCT116), both cell lines demonstrated a reduced level of viability that is in concordance with the results presented in Fig. 1A and B.

To determine the mechanism by which ML264 inhibits cancer cell proliferation, we first investigated the effect of ML264 on the number of mitotic figures in DLD-1 cells, cultured in the presence of ML264 or vehicle, over a 3-day period. As seen in Fig. 1E and F, ML264 treatment significantly reduced the number of cells undergoing mitosis in DLD-1 cells at 24, 48, and 72 hours. This result suggests that ML264 either prevents cells from entering into or progressing through mitosis. Next, we treated DLD-1 and HCT116 cells with ML264 or with vehicle for up to 72 hours and assessed the cell-cycle profile or rate of apoptosis by staining with propidium iodide (PI) alone (Fig. 2A and B) or in combination with Annexin V (Supplementary Fig. S1A and S1B), respectively. ML264 treatment led to a significant decrease in the population of cells in G2-M phase at 48 and 72 hours for both cell lines (Fig. 2A and B). In ML264-treated DLD-1 cells, there was a significant increase in the S-phase population at 24 hours, which persisted until 72 hours (Fig. 2A, middle). In ML264-treated HCT116 cells, an increase in S-phase cells was seen at 48 hours that persisted through 72 hours (Fig. 2B, middle). Additionally, we noted changes in the number of ML264-treated cells in the G2-M phase. In DLD-1 cells, an initial decrease in G2-M cells was seen at 24 hours and this was followed by an increase in this population at 48 and 72 hours (Fig. 2A, bottom). In contrast, ML264-treated HCT116 cells showed a decrease in G2-M population at 24 and 48 hours (Fig. 2B, bottom). Furthermore, Annexin V/PI staining of these cells demonstrated only a modest, though significant, increase in apoptotic cells following ML264 treatment (Supplementary Fig. S1A and S1B, Annexin V and PI double-positive fraction). Early apoptotic cells (Annexin V single-positive) increased in ML264-treated DLD-1 cells at 48 hours and in HCT116 cells at 48 and 72 hours. In both DLD-1 and HCT116 cells, late apoptotic cells (Annexin V and PI double-positive fraction) increased. In DLD-1 cells the increase was noted at 48 hours and in HCT116 at 48 to 72 hours after treatment with...
Figure 1.
ML264 inhibits proliferation of colorectal cancer cell lines. DLD-1 (A) and HCT116 (B) cells were seeded in 6-well plate format with medium containing DMSO or 10 μmol/L ML264. Twenty-four, 48, and 72 hours after treatment, cells were counted using a cell counter. The solid lines represent control and the dotted lines treatment with ML264. Data represent mean ± SD (n = 3), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. DLD-1 (C) and HCT116 (D) cells were seeded in 96-well plate format with medium containing DMSO or 10 μmol/L ML264. Twenty-four, 48, and 72 hours after treatment, cells were analyzed using MTS assay. The measurement of the control (cells with medium and DMSO) was defined as 100% and the results from other measurements were calculated accordingly. Data represent mean ± SD (n = 6), **P < 0.01; ****P < 0.0001. DLD-1 cells were seeded onto slides with medium containing DMSO or 10 μmol/L ML264, fixed and stained with Hoechst (DNA labeling) after 24, 48, and 72 hours of treatment. White arrows, cells undergoing mitosis. F, quantitative representation of C. Five fields, each with 100 cells were counted. Data represent mean ± SD (n = 5). **P < 0.01; ***P < 0.001.
ML264. It is unlikely that these modest changes in apoptotic cells explain the dramatic difference in cell number that was initially observed. Our data indicate that inability of DLD-1 and HCT116 cells to enter mitosis could be a consequence of S-phase arrest upon ML264 treatment. Thus, these results suggest that ML264 inhibits cell proliferation mainly by modifying cell-cycle progression, though the induction of apoptosis may also contribute to this phenotype.

The impact of ML264 on signaling of the RAS/MAPK/PI3K and WNT pathways
ML264 and related analogues emerged from a screen that was designed to identify small molecule that inhibit the expression of oncogenic KLF5 and that therefore would inhibit the growth of colorectal cancer cells (23). We investigated how ML264 affects the expression levels of proteins involved in several of the signaling pathways (MAPK, WNT, and PI3K) that regulate either KLF5 expression and activity or the progression through the cell cycle (14, 24, 29, 30). We collected protein and RNA samples over a period of 3 days from DLD-1 and HCT116 colorectal cancer cells that had been treated with vehicle or with ML264 and analyzed them by Western blot analysis and by qRT-PCR. As seen in Fig. 3A and B, the protein levels of p-EGFR and EGFR are differentially modulated by ML264 in a cell line–dependent manner. In DLD-1 cells, the basal levels of EGFR protein are not significantly changed, yet there is an increase in the phosphorylation status of EGFR at 48 and 72 hours after treatment with ML264 as compared with control (Fig. 3A). On the other hand, we observed a slight decrease in the basal levels of EGFR in HCT116 cells treated with ML264 over the 3-day period and a decrease of its phosphorylation status at 48 and 72 hours (Fig. 3B). The basal levels of ERK decreased and this decline was accompanied by an upregulation
of its phosphorylated form, in both DLD-1 and HCT116 cells. However, both ML264-treated cell lines showed a decrease in the protein levels of KL5 that parallels a reduction in the levels of the transcription factor early growth response 1 (EGR1), a direct activator of KL5 expression (Fig. 3A and B; ref. 13).

Previously, we and others have shown that KL5 plays an important role in regulating the activity of β-catenin, although KL5 in turn is regulated by the WNT and PI3K signaling pathways (18, 22, 24). Our Western blot analyses show a downregulation of the basal levels of AKT and GSK3β in both cell lines following ML264 treatment, a decrease that was accompanied by a similar decline in pAKT and pGSK3β levels (Fig. 3C and D). We also observed a decrease in the levels of the active, nuclear form of β-catenin, which is phosphorylated at serine 552. This reduction in β-catenin phosphorylated at serine 552 is likely the result of the decrease in AKT levels, as this kinase is known to regulate the phosphorylation status of serine 552 (31, 32). Additionally, we have noticed that in DLD-1 cells treated with DMSO β-catenin phosphorylated at serine 552 predominantly localizes to the cells that are undergoing mitosis and that it is absent in the DLD-1 cells treated with ML264 for the 3-day period (data not shown). Furthermore, we have analyzed the levels of β-catenin that is phosphorylated at threonine 41/serine 45, which is a pool of β-catenin destined for degradation as well as the levels of total β-catenin (33). No significant difference in total β-catenin and β-catenin phosphorylated at threonine 41/serine 45 were observed in ML264-treated DLD-1 cells. That observation, combined with the fact that levels of GSK3β were reduced, suggests that the degradation pathway of β-catenin is not upregulated upon ML264 treatment in DLD-1 cells. In contrast to DLD-1, HCT116 cells show reduced levels of both total β-catenin and the levels of β-catenin phosphorylated at threonine 41/serine 45 following ML264 treatment.

Based on our results, ML264 affects the RAS/MAPK signaling pathway primarily by decreasing the levels of EGR1 and KL5. A preliminary qPCR analysis showed that there is a decrease in the mRNA levels of both genes already after 8 hours of treatment with ML264 relative to control (data not shown). This implies that ML264 may directly impact the transcription of EGR1 and KL5 by targeting a common regulator or alternatively that ML264 may inhibit the expression of EGR1, which in turns diminishes the expression level of KL5. As shown, ML264 modifies cycle-cell progression by inhibiting the progression through mitosis and by S-phase block (Fig. 2). Consequently, the changes in the PI3K/AKT pathway activity can have a dual origin. It has been previously shown that PI3K/AKT pathway can regulate the progression of cells through G1-S and G2-M phases. On the other hand, the modification of cell-cycle progression may in turn influence expression levels of AKT. Our data demonstrate that ML264 in DLD-1 and HCT116 cells decreased the levels of β-catenin phosphorylated at serine 552 and additionally in HCT116 ML264 treatment reduced the levels of total β-catenin (Fig. 3C and D). The reduced levels of β-catenin phosphorylated at serine 552 could be a result of downregulation of the expression level of AKT, and its reduced activation.

The exact mechanism by which ML264 regulates the RAS/MAPK/PI3K and WNT signaling pathways is still unknown. Ongoing studies that pertain to the analysis of the protein and RNA levels of the components of the RAS/MAPK/PI3K and WNT pathways at much shorter intervals (e.g., hourly) are currently under way.

Altogether, these results suggest that ML264 inhibits the MAPK pathway by reducing EGR1 and KL5 levels and further that this causes reduced levels of active β-catenin (β-catenin Ser552), which is associated with the downregulation of AKT.

ML264 negatively regulates the expression of cyclins

As shown earlier, treatment with ML264 altered the cell-cycle progression of DLD-1 and HCT116 cells as compared to DMSO control. The cell-cycle profiles of both cell lines were assayed using cell cycle analysis. As shown in Figure 4A, ML264 caused a significant increase in the percentage of cells in the G1 phase and a corresponding decrease in the percentage of cells in the S and G2/M phases, indicating a decreased cell proliferation rate and an increased cell survival rate. This is consistent with the results shown in Figure 4B, which depict that ML264 inhibited the growth of these cell lines as compared to DMSO control. These results indicate that ML264 has a negative effect on cell growth and proliferation.

Figure 3. Inhibitory effects of ML264 on protein levels of selected components of the MAPK, WNT, and PI3K signaling pathways. DLD-1 and HCT116 cells were seeded with medium containing DMSO or 10µmol/L ML264. Twenty-four, 48, and 72 hours after treatment cells were collected for protein analysis. DLD-1(A) and HCT116 (B)—representative Western blots of selected components of MAPK signaling pathway. DLD-1 (C) and HCT116 (D)—representative Western blots of selected components of PI3K and WNT signaling pathways.
with control (Fig. 2). It has been previously shown that KLF5 is a pro-proliferative factor in colorectal cancer cells and that it regulates the expression levels of cyclins D1 and B (7, 14, 34–38). We therefore analyzed the expression levels of cyclins D1, E, A2, and B1 in DLD-1 and HCT116 cells that were treated with ML264 or with vehicle in a manner corresponding to that shown in Fig. 2. As shown in Fig. 4A and B, cyclins E, A2, and B1 are downregulated in both cell lines with changes evident even in the first day of treatment with ML264. However, cyclin D1 levels are differentially regulated in these cell lines. In HCT116 cells, we observed a decrease in cyclin D1 levels at 24 and 48 hours after ML264 treatment (Fig. 4B). However, this trend was not apparent in ML264-treated DLD-1 cells (Fig. 4A). We next investigated whether the changes in protein levels were the result of decreased transcription of the corresponding cyclin genes. As shown in Fig. 4C and D, we failed to see a significant change in the cyclin D1 mRNA levels for either cell line that was treated with ML264 (with exception of DLD-1 cells after 72 hours treatment). However, mRNA levels for cyclins E, A2, and B1 in both cell lines were downregulated during the 3-day treatment with ML264. Here, we showed that ML264 affects cell-cycle progression by increasing the population of the cells in the S-phase and by inhibiting cells from entering mitosis or from transitioning through mitosis (Fig. 2). The rate of cell proliferation can be affected in many ways, for example, by perturbing the cell cycle, by arrest, and/or by promoting apoptosis (39, 40), and is associated with cell-cycle progression and is regulated by cyclins (e.g., A2, B1, and E1). Our results (Fig. 4A–D) show that ML264 affects the expression levels of RNA and protein of cyclin B1 (which is responsible for the transition through mitosis), cyclin A2 (which regulates G1–S and G2–M transition), and cyclin E1 (which plays a role in the G1–S transition; ref. 41). Previously, we demonstrated that KLF5 is a positive transcriptional regulator of cyclin D1 and cyclin B1 (37). Current data suggest that upon treatment with ML264, cyclin B1 expression levels are decreased, which may be a direct effect of KLF5 downregulation. Additionally, it has been shown that KLF5 regulates the promoter activity of cyclin E, although promoting proliferation of vascular smooth muscle (42). The relationship between KLF5 and cyclin A2 has not been studied until now. Taken together, these results show that ML264 decreases the levels of EGR1 and KLF5 and modulates the cell-cycle progression by perturbing the levels of cyclins.
ML264 inhibits the growth of DLD-1 tumor xenografts in nude mice

Subsequent to finding that ML264 inhibits proliferation of colorectal cancer cell lines in vitro, we evaluated its effectiveness in inhibiting growth of tumor xenografts in nude mice. In these experiments, DLD-1 cells were subcutaneously injected into nude mice until a tumor volume of approximately 100 mm³ was achieved. The mice were then injected intraperitoneally for 10 days with ML264 according to the following regimens: 10 mg/kg (once per day), 10 mg/kg (twice per day), and 25 mg/kg (twice per day). In all cases controls were similarly maintained, DLD-1 cells were subcutaneously injected into nude mice until a tumor volume of approximately 100 mm³ was achieved, and mice were then injected intraperitoneally for 10 days with vehicle, as described in the Materials and Methods section. Black lines, vehicle-treated mice; red lines, ML264-treated mice; black arrows, start of injections of vehicle or ML264. Tumor volume is depicted in A–C and mice weight in D–F. *** and ****, significant difference (P < 0.001 and P < 0.0001, respectively) between the ML264- and vehicle-treated groups. G, photographic images of the tumors collected at the end of 10 days treatment as shown in B and C.

Figure 5.
ML264 inhibits the growth of DLD-1-derived tumor xenografts in nude mice model. DLD-1 cells were subcutaneously injected into nude mice for the development of xenograft tumors. Mice were treated with vehicle only or with ML264 as follows: daily with 10 mg/kg (A and D), twice per day with 10 mg/kg (B and E), or twice per day with 25 mg/kg (C and F) as detailed in the Materials and Methods section. Black lines, vehicle-treated mice; red lines, ML264-treated mice; black arrows, start of injections of vehicle or ML264. Tumor volume is depicted in A–C and mice weight in D–F. *** and ****, significant difference (P < 0.001 and P < 0.0001, respectively) between the ML264- and vehicle-treated groups. G, photographic images of the tumors collected at the end of 10 days treatment as shown in B and C.
in the number of mitotic figures in xenografts from mice treated twice daily with ML264 at 25 mg/kg. This explains the lack of xenograft growth in ML264-treated mice (Fig. 5C). The initial histologic analysis indicated that there is an increase in the level of fibrosis and inflammation in the xenografts treated with ML264 in comparison to vehicle treated. Thus, we stained the tumors for vimentin to detect fibroblasts associated with fibrosis. Here, we observed a significantly increased density of fibroblasts in the ML264-treated xenografts (Fig. 6D). Consequently, we stained the tissues for the presence of inflammatory cells. As shown in Fig. 6E, xenografts treated with ML264 had increased levels of mononuclear phagocytes staining for Mac-3. As KLF5 is pro-proliferative marker and a potential target for ML264’s activity, we next investigated the impact of ML264 on KLF5 levels in these xenografts. As seen using IHC (Fig. 7A and Supplementary Fig. S2), there is a reduction in KLF5 levels and an absence of KLF5 from the nuclei in the xenografts from mice treated with ML264. This result was corroborated by a Western blot analysis for KLF5, shown in Fig. 7B. We also examined these xenografts for EGR1, a major transcriptional regulator of KLF5, and saw a significant reduction of EGR1 in xenografts from mice that had been treated with ML264 (Fig. 7C and Supplementary Fig. S3). Furthermore, we performed staining for Ki-67, a well-characterized marker of cell proliferation (43), to assess the proliferation status of the tissue.
xenografts with or without treatment. As shown in Fig. 7D and E, the levels of Ki-67 staining are significantly reduced in xenografts from mice that were treated with ML264 as compared with those from control mice.

In the present study, we have shown that ML264 efficiently inhibits the growth of colorectal cancer cells in vitro (Fig. 1) and in vivo (Figs. 5–7). We were able to show that in an in vitro system ML264 regulates the cell-cycle progression while inducing apoptosis minimally (Fig. 2 and Supplementary Fig. S1). Interestingly, we have noticed that the arrest of cells in S-phase and the induction of apoptosis (Fig. 2 and Supplementary Fig. S1) are accompanied by increased levels of phosphorylated ERK and by decreased levels of phosphorylated AKT (Fig. 3). This phenomenon has been reported previously and has an important implications for the approach, particularly in the development of combinatorial drug treatments that target the MAPK signaling pathway (44–46). Our results demonstrate that ML264 significantly inhibits cellular proliferation, and mitosis in particular, in both in vitro and in vivo systems, as shown by analyses of (i) mitotic figures in DLD-1 cells treated in culture (Fig. 1E and F) and (ii) mitotic figures and Ki-67 staining of DLD-1-derived xenografts (Figs. 6B and C and 7D and E). Our studies showed that ML264 efficiently modulates cell-cycle progression and affects the expression pattern of cyclin B1, A2, and E (Figs. 1, 2, and 4). It has been previously shown that EGR1 and KLF5 regulate progression through the cell cycle by modifying the levels of cyclins D1 and B1, also that KLF5 affects cyclin E (37, 42). It is feasible that ML264 acts by decreasing the levels of EGR1 and KLF5, inhibiting the expression of the mentioned cyclins, and interrupting the cell-cycle progression.

ML264 originated from an ultrahigh-throughput screen to identify compounds that inhibit the proliferation of colorectal cancer cells by targeting the expression of KLF5 (25). In these experiments, we have demonstrated that ML264 is capable of reducing the expression levels of KLF5 in cells treated in culture (Fig. 3A and B) and in a tumor xenograft model of tumorigenesis (Fig. 7A and B and Supplementary Fig. S2). Moreover, we have found that this compound has a profound effect on the expression levels of EGR1, a direct transcriptional regulator of KLF5 (Figs. 3A and B and 7C, and Supplementary Fig. S3). At present, the exact mechanism by which ML264 inhibits KLF5 is unknown. Studies are currently under way to assess the mechanism of action and define if it has either a direct or indirect effect on KLF5 expression.
Our in vitro Drug Metabolism and Pharmacokinetics (DMPK) studies suggested that ML264 would have high stability to first pass metabolism due to its high stability upon exposure to hepatic microsomes. ML264 also does not inhibit the activity of cytochrome P450 isoenzymes, indicative of its potential for safety with respect to drug–drug interactions. Importantly, it was inactive against a selected panel of 47 kinases and 67 protein targets of therapeutically and/or toxicologic interest (25). Our in vivo DMPK studies demonstrated that ML264 has 2-hour half-life in mice. Interestingly, ML264 also displays 47% oral bioavailability in mice, a very promising feature for compound development with potential therapeutic advantages. Ongoing studies in our laboratory aim to identify the direct target of ML264 and to test its role in modulating the early steps of development of intestinal adenomas using ApcMin/KRAS24C mice models.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: A. Ruiz de Sabando, C. Wang, T.D. Bannister, V.W. Yang, A.B. Bialkowska

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A. Ruiz de Sabando, C. Wang, Y. He, J. Kim, T.D. Bannister, A.B. Bialkowska

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A. Ruiz de Sabando, M. Garcia-Barros, K.R. Shroyer, T.D. Bannister, V.W. Yang, A.B. Bialkowska

Writing, review, and/or revision of the manuscript: A. Ruiz de Sabando, M. Garcia-Barros, K.R. Shroyer, T.D. Bannister, V.W. Yang, A.B. Bialkowska

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): V.W. Yang

Study supervision: V.W. Yang, A.B. Bialkowska

Acknowledgments

The authors thank Dr. Jie Yang from the Department of Preventive Medicine, Stony Brook University, for assistance regarding biostatistical analysis of the tumor growth. They also thank Research Flow Cytometry Core in the Department of Pathology, Stony Brook University, for assistance with data analysis.

Grant Support

This work was supported by grants from the NIH (DK052230, CA064197, and CA172113 to V.W. Yang; CA172113 to A.B. Bialkowska; CA172517 to M. Garcia-Barros, and CA172113 and MIH084512 to T.D. Bannister).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received July 17, 2015; revised October 6, 2015; accepted October 14, 2015; published OnlineFirst November 30, 2015.

References

Molecular Cancer Therapeutics

ML264, A Novel Small-Molecule Compound That Potently Inhibits Growth of Colorectal Cancer

Ainara Ruiz de Sabando, Chao Wang, Yuanjun He, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-15-0600

Supplementary Material
Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2015/11/26/1535-7163.MCT-15-0600.DC1

Cited articles
This article cites 44 articles, 14 of which you can access for free at: http://mct.aacrjournals.org/content/15/1/72.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at: /content/15/1/72.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.