The TMPRSS2–ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition

Payel Chatterjee1,2, Gaurav S. Choudhary1,3, Turkeyah Alswillah4, Xiaohui Xiong5, Warren D. Heston1, Cristina Magi-Galluzzi6,7, Junran Zhang5, Eric A. Klein6, and Alexandru Almasan1,8

Abstract

Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2–ERG gene fusion protein. Here, we show that TMPRSS2–ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2–ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2–ERG was depleted by siRNA. The extent of DNA damage was enhanced and associated with TMPRSS2–ERG’s ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2–ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2–ERG was depleted by siRNA. Following IR, TMPRSS2–ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2–ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2–ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2–ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2–ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2–ERG. Mol Cancer Ther; 14(8); 1896–906. ©2015 AACR.

Introduction

The occurrence of gene fusion by chromosomal rearrangement is well established in hematologic tumors, a discovery that changed the way cancer is understood today (1). In epithelial tumors, however, gene fusions have only recently been ascertained, yet they are encountered in approximately 50% of prostate-specific antigen (PSA)–screened human prostate tumors (2). The most prevalent prostate cancer gene fusion joins the 5'-untranslated region of an androgen-regulated gene, TMPRSS2, with members of the E-twenty-six (ETS) transcription factor family (ERG or ETV1) through frequent chromosomal rearrangements (3). Such ERE gene fusions occur during the initiation of prostate cancer progression, which can then lead to the transition from high-grade prostatic intraepithelial neoplasia lesions to invasive carcinoma (4, 5). The TMPRSS2–ERG rearrangement can occur either by interstitial deletion (2, 6, 7) or by chromosomal translocation (8) as both fusion protein partners are located on chromosome 21q just 3 Mb apart. Recent studies reported that androgen stimulation facilitates chromosomal proximity of the TMPRSS2 and ERG genomic loci in several cell lines (9, 10), which can then drive the formation of TMPRSS2–ERG rearrangements at low frequency (9, 11).

As ETS gene fusions can lead to DNA double-strand breaks (DSB) in prostate cancer (12, 13), therapeutic strategies that target the DNA repair pathway as well as the ETS gene fusions can be effective in patients with tumors harboring such fusions. The ETS gene fusion status may thus predict a patient’s response to therapy either indirectly, such as through the effects of anti-androgens, or directly, through novel agents that target the function of ETS gene fusions. Three pathways are required for repair of DNA DSBs: classical nonhomologous end joining (c-NHEJ), homologous recombination (HR), and alternative NHEJ (5). Ionizing radiation...
(IR)-induced DNA damage is predominantly repaired by c-NHEJ, which is rapid and active throughout the cell cycle. However, HR and alternative NHEJ, that are slower, could also be important for repairing IR-induced DNA DSBs (14–16). The c-NHEJ DNA repair proceeds through four sequential steps: (i) recognition of DNA DSBs and association of c-NHEJ components at DSBs, (ii) stabilization of DNA ends by tethering, (iii) processing of DNA ends, and (iv) ligation of DNA ends (17, 18). The initial step of c-NHEJ involves DSB recognition by the Ku70/80 heterodimer, which is followed by DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment (19). Broken DNA ends placed in close proximity by DNA-PKcs undergoes trans- and auto-phosphorylation at several sites, which induces its enzymatic activity, ultimately contributing to its dissociation from DNA. DNA-PKcs phosphorylation at Thr2609 is essential for its dissociation from chromatin and recruitment of downstream c-NHEJ components (21). The phosphorylation can be mediated either by ataxia telangiectasia mutated kinase (ATM) or by trans-autophosphorylation (22).

In this study, we define a unique molecular mechanism that elucidates how the TMPRSS2–ERG fusion protein inhibits DNA-PKcs, the critical kinase involved in c-NHEJ DNA repair. We show for the first time that TMPRSS2–ERG perturbs c-NHEJ DNA repair by inhibiting DNA-PKcs auto/trans-phosphorylation, blocking recruitment of XRCC4 to the chromatin, and diminishing the retention of the other core c-NHEJ components. Therefore, in TMPRSS2–ERG-expressing cells, the XRCC4–DNA-PKcs-dependent c-NHEJ is disrupted. As a consequence, PARP inhibitor (PARPi) radiosensitizes cells expressing the TMPRSS2–ERG gene fusion protein that represents most prostate cancer patients.

Materials and Methods

Cell culture and treatments

Human PC3 and VCaP prostate cancer cells were obtained from the ATCC and cultured as described previously (13). PC3 cells were authenticated by the Cell Line Authentication Services (Genetica DNA Laboratories) by comparative analysis with database profiles, where our cell line was compared with the known reference profile from ATCC. VCaP cells were bought within 6 months prior to performing the experiments. The TMPRSS2–ERG fusion III (the most common) isoform was transfected using Lipofectamine 2000 (Life Technologies), following selection in 1 mg/mL G418 (Invitrogen). For siERG-mediated knockdown, 50 ng of the siERG pool (Dharmacon) was delivered by selection in 1 mg/mL G418 (Invitrogen). The pellets were collected again after centrifugation.

Confocal immunostaining for DNA-damage markers

Cells were plated on coverslips in 35-mm culture dishes. After treatment, cells were fixed with 2.0% paraformaldehyde for 20 minutes at room temperature, washed three times for 5 minutes with phosphate-buffered saline (PBS), permeabilized with 0.2% Triton X-100 in PBS for 10 minutes, and blocked in 3% fetal bovine serum in PBS containing 0.1% Triton X-100 for 1 hour. The coverslips were then immunostained using αH2AX (Millipore), 53BP1 (Abcam), ERG (Epitomics), phospho-Ser25–53BP1, PARP (Cell Signaling Technology): phospho-Thr2609-DNA-PKcs, phospho-Ser2056-DNA-PKcs, Ser1778–53BP1, DNA Ligase IV (Abcam), Rad51, Ku70 (Santa Cruz Biotechnology), XRCC4 (Serotec), V5 (Life Technologies), XLF (Bethyl Laboratories) β-actin (Sigma-Aldrich) primary antibodies, followed by a fluorescently conjugated (Invitrogen) secondary antibody. Mounting of cells and staining of the nuclei were performed using an HCK Plan Apo 63×/1.4N. A oil immersion objective lens on a Leica TCS-SP2 confocal microscope (Leica Microsystems). The number of cells counted, representing different fields was ≥70. The number of foci in each nucleus was counted manually. The average number of foci was divided by number of nuclei to determine foci/nuclei.

HR assay

HR was measured as described previously (23–26). Briefly, 1 μg p-DR-GFP (HR substrate) and 500 ng of I-SceI-expressing plasmid were cotransfected in parental and TMPRSS2–ERG-expressing PC3 cells. After 48 hours, cells were harvested and the GFP-positive cells were detected by BD FACSCalibur flow cytometry. Functional GFP was generated after I-SceI cutting and subsequent repair by HR. The GFP-expressing plasmid was used as transfection control and the pCDNA plasmid as I-SceI carrier control.

Comet assay

Neutral Comet assay was performed in PC3 cells, with and without TMPRSS2–ERG expression, using the Comet Assay Kit (Trevigen) according to the manufacturer’s instructions. Comets were analyzed for olive moment using CometScore software (Tritek) as described earlier (13, 23).

Chromatin recruitment assay

Irradiated or untreated cells were fractionated and then subjected to a chromatin recruitment assay as described previously (13, 27). Two consecutive extractions were carried out for obtaining insoluble pellet. Cells were washed twice in ice-cold PBS and centrifuged by harvesting the supernatant and then resuspended for 20 minutes on ice in 200 μL extraction buffer 1 (50 mmol/L HEPES pH 7.5, 1 mmol/L EDTA, 150 mmol/L NaCl, 0.1% Triton X-100) supplemented with protease (Roche-Diagnostics) and phosphate inhibitors (Sigma-Aldrich). The pellet was collected after centrifugation at 14,000 × g for 3.5 minutes, and then incubated at room temperature in a shaker for 30 minutes after addition of 200 μL extraction buffer 2 (50 mmol/L HEPES pH 7.5, 1 mmol/L EDTA, and 150 mmol/L NaCl) supplemented with 200 μg/mL RNase A (Sigma-Aldrich). The pellet was collected again after centrifugation at 14,000 × g for 3.5 minutes, and then suspended in PBS containing 1% SDS. The samples were heated for 10 minutes and sonicated for 10 seconds before separation by SDS–PAGE and immunoblotted with the above-indicated antibodies. Protein levels were quantified by the ImageJ (NIH, Bethesda, MD).

Flow cytometry

Cell-cycle distribution was determined by flow cytometry as indicated previously (26) for cells treated with 4-Gy IR, with or without rucaparib for 24 and 48 hours. After treatment, cells were
collected and incubated in a solution containing propidium iodide (PI; 50 μg/mL), RNase A (0.1 mg/mL), Triton X (0.05%), and analyzed on a BD FACSCalibur flow cytometer (Beckton Dickinson). The raw data obtained were analyzed by CellQuest (Version 5.2.1) software. The results were normalized to control cells.

Statistical analysis

Statistical comparisons between groups were conducted using a two-tailed Student t test or two-way ANOVA in Prism (Version 4.0c; GraphPad). Standard deviation (SD) was calculated from experiments conducted in triplicate and is indicated by error bars on the figures. All experiments were repeated three times, independently. The statistical significance was set to a level < 0.05.

Results

The TMPRSS2–ERG fusion gene induces DNA damage

The TMPRSS2–ERG fusion gene is prevalent in prostate cancer (28) and its expression is associated with constitutive DNA damage before any treatment (12, 13). To address how TMPRSS2–ERG contributes to DNA damage, we first examined

Figure 1.

The TMPRSS2–ERG fusion gene induces DNA damage in VCaP cells. Confocal immunostaining for γH2AX (A) and 53BP1 (B) at the indicated times following 10 Gy IR in VCaP parental and siERG-expressing derivative cells. C, quantification of the number of γH2AX (left) and 53BP1 (right) IRIFs in VCaP parental and derivative cells with ERG depleted by siERG. Left, top, Western blot analysis for levels of ERG in control (Ct) and siERG-treated VCaP cells. Typically, >70 cells, representing different fields, were scored for IRIFs. β-Actin was used as a loading control. Error bars, SD (n = 3). P < 0.0001 was calculated by two-way ANOVA.
the constitutive and IR-induced DNA damage in VCaP cells, which harbor TMPRSS2–ERG, compared with derivative cells in which ERG expression was depleted by siRNA-mediated knockdown (Fig. 1). Untreated VCaP cells displayed constitutively γH2AX and 53BP1 foci, two prominent DNA-damage markers, thus indicating a basal level of DNA damage. At 30 and 60 minutes after IR, VCaP but not siRNA-expressing derivative cells, showed an elevated number of γH2AX and 53BP1 IR-induced foci (IRIFs), indicating accumulation of DNA damage (Fig. 1A and B). These data suggest that in VCaP cells, which endogenously express the fusion gene, the resolution of DNA-damage foci is delayed compared with the cells in which TMPRSS2–ERG is depleted, indicating that IR-induced DNA-damage repair in these cells is impaired and occurs with slower kinetics. The significant increase (\(P < 0.001 \)) in γH2AX and 53BP1 IRIF number at 60 minutes following IR (Fig. 1C) indicates that TMPRSS2–ERG expression results in constitutive DNA damage, which is augmented by IR.

Because the VCaP cells with the fusion gene depletion were unable to proliferate proficiently because of their dependency on TMPRSS2–ERG (29), we expressed it stably in PC3 cells, which, unlike VCaP cells, do not express it endogenously. Constitutive DNA damage was prominent in cells expressing TMPRSS2–ERG, but not in parental PC3 cells. Thus, PC3 cells expressing TMPRSS2–ERG displayed constitutive γH2AX and 53BP1 foci, which increased following IR treatment (Fig. 2A and B). In parental PC3 cells, most of the γH2AX IRIFs were resolved by 6 hours after IR; in contrast, cells expressing TMPRSS2–ERG showed more persistent γH2AX IRIFs at 3 and 6 hours, indicating that IR-induced DNA-damage repair was impaired (Fig. 2A). Nevertheless, the number of γH2AX IRIFs was reduced significantly (\(P = 0.0002 \)) by 6 hours compared with that found at 1 hour (Fig. 2C), suggesting that the DNA repair was not completely inhibited in the fusion-expressing cells, but it rather proceeded with a slower kinetics. Expression of ERG was determined by immunoblot in cells that do or do not express it.

Figure 2.
TMPRSS2–ERG enhances DNA damage and decreases the DNA repair kinetics. Confocal immunostaining for γH2AX (A) and 53BP1 (B) foci following IR (10 Gy) treatment in PC3 parental and derivative cells expressing the TMPRSS2–ERG fusion gene. C, quantification of the number of γH2AX (left), and 53BP1 (right) foci at the indicated times. \(P < 0.0001 \) was calculated by two-way ANOVA. Error bars, SD (n = 3). D, TMPRSS2–ERG-V5 tag expression was detected with antibody against the V5-tag and the V5–TMPRSS2–ERG expression specificity examined by its siERG-mediated downregulation.
including following siERG-mediated silencing (Fig. 2D). 53BP1 IRIFs also increased significantly ($P < 0.0001$) following IR in TMPRSS2–ERG-expressing cells at all-time points compared with parental PC3 cells (Fig. 2B and C).

Rad51 is a key component in HR repair of IR-induced DNA damage that has been reported to compensate for diminished c-NHEJ (30). Examination of Rad51 revealed a significant ($P = 0.001$) increase in the number of IRIFs in TMPRSS2–ERG-expressing PC3 cells compared with parental cells as early as 3 hours following IR, and which remained elevated at 6 hours ($P = 0.001$), at a time when such foci were substantially diminished in parental cells (Fig. 3A and B). Importantly, using an HR reporter (DR-GFP) described previously (23–26), an increased HR activity was observed ($P < 0.01$) in TMPRSS2–ERG-expressing PC3 cells as compared with parental cells (Fig. 3C). This functional assay further supports the concept that PC3 fusion III-expressing cells compensate for the diminished NHEJ repair by enhancing HR activity.

We previously reported that rucaparib, a potent poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) was most effective in radiosensitizing prostate cancer cells that harbor TMPRSS2–ERG (13). Treatment with PARPi and radiation led to diminished Rad51 IRIFs indicating diminished HR repair (Fig. 3A). Next, we used the neutral Comet single cell gel electrophoresis assay to measure DSBs under neutral conditions, as it detects DSB- and not single-stranded DNA damage. There was significant ($P < 0.001$) increase in DNA damage at 1 and 24 hours following this combination treatment, as determined by olive moment in cells expressing TMPRSS2–ERG compared with parental PC3 cells (Fig. 3D). Together, these data indicate enhanced DNA damage and diminished DNA repair when IR is administered in combination with PARPi in TMPRSS2–ERG-expressing cells.

Presence of TMPRSS2–ERG inhibits radiation-induced cell-cycle arrest

The DNA-damage response following exposure to IR involves activation of cell-cycle checkpoints. IR prominently promotes G2–M arrest (31), which can be sustained longer in radiosensitive cells (17, 32). At 24 hours following IR, PC3 parental cells underwent robust G2–M arrest, with PARPi enhancing the...
IR-induced arrest approximately 1.5-fold (Fig. 4A and Supplementary Table S1). IR-induced cell-cycle arrest was attenuated by 48 hours in PC3 cells, whereas cells undergoing a combination treatment of PARPi with IR still displayed an enhanced and persistent arrest in G2–M (Fig. 4B and Table 1). In contrast, TMPRSS2–ERG-positive PC3 cells displayed a markedly diminished cell-cycle arrest after IR, with only a 1.2-fold increase in G2–M compared with the 2.9-fold increase in parental PC3 cells, indicating that radiation has a reduced effect on these cells. IR in combination with PARPi increased the proportion of fusion-positive PC3 cells undergoing G2–M arrest at 24 hours that was maintained at 48 hours after treatment. The proportion of cells in S-phase at 24 hours following the IR and PARPi combination treatment was 2-fold greater in TMPRSS2–ERG compared with parental PC3 cells. These data could partially explain the increased radiosensitivity of TMPRSS2–ERG-positive cells with PARPi treatment (13), as cell-cycle arrest due to checkpoint activation after IR was reduced in the presence of TMPRSS2–ERG compared with PC3 parental cells, as recently reported (33), yet PARP inhibition compensated for this reduction.

Defective recruitment of XRCC4 to chromatin and retention of core c-NHEJ factors

IR-induced DNA damage is predominantly repaired by rapid, error-prone c-NHEJ (34). The initiation step of c-NHEJ involves Ku70/Ku80 heterodimers binding to the free DSB ends, which then act as a scaffolding protein to recruit other essential DNA repair components, such as DNA-PKcs, XRCC4, XLF, and Ligase IV (35). To determine the impact of TMPRSS2–ERG on the c-NHEJ pathway, chromatin recruitment of c-NHEJ factors was examined in PC3 parental and derivative cells expressing TMPRSS2–ERG. Strikingly, XRCC4 was not recruited in TMPRSS2–ERG-expressing cells following IR. In contrast, XRCC4 was recruited abundantly to the chromatin of parental PC3 cells (Fig. 5A). This difference could not be accounted for by differences in XRCC4 levels, which were comparable in the two cell lines (Fig. 5B). Levels of Ku70, XLF, and Ligase IV that were recruited to the chromatin and which increased after IR were also diminished in TMPRSS2–ERG-expressing cells compared with parental PC3 cells (Fig. 5A and C). There was no significant difference in the recruitment and retention of ATM, a critical DNA-damage sensor, and of its activated form, Ser1981-ATM (Fig. 5A), suggesting that TMPRSS2–ERG does not affect ATM expression or function, indicating that the DNA-damage response was not perturbed in TMPRSS2–ERG-expressing cells (Fig. 5A). Surprisingly, the V5-tagged TMPRSS2–ERG fusion protein was constitutively bound to chromatin. The levels of PARP, a chromatin-bound protein known to be involved in the DNA-damage response, were comparable between the two cell lines (Fig. 5A and C). These results indicate that TMPRSS2–ERG is present on the chromatin and perturbs DNA-PKcs function and

Figure 4. TMPRSS2–ERG expression prevents cell-cycle arrest. Cell-cycle analysis of parental and TMPRSS2–ERG-expressing PC3 cells at 24 hours (A) and 48 hours (B) following IR (10 Gy) administered alone or in combination with PARPi (2.5 μmol/L).

Figure 5. TMPRSS2–ERG impairs the recruitment and retention of NHEJ components. A, chromatin recruitment of indicated proteins at 0, 30, and 60 minutes after IR (10 Gy), examined with the corresponding primary antibodies; cell fractionation was performed as described in Materials and Methods. B, XRCC4, Ligase IV, and XLF levels in PC3 and TMPRSS2–ERG-expressing cells at the indicated times following IR. β-Actin was used as a loading control. C, chromatin recruitment of indicated proteins at 0, 30, and 60 minutes following IR (10 Gy). The data are representative of three independent experiments.
XRCC4 recruitment. Together, these data suggest that the repair of the DNA damage in cells expressing TMPRSS2–ERG is mediated by a repair pathway independent of XRCC4–DNA-PKcs.

TMPRSS2–ERG inhibits DNA-PKcs

The most deleterious form of IR-induced DNA damage are DSBs. These DSBs are predominantly repaired by c-NHEJ, for which DNA-PKcs is the principal kinase required (34). The best characterized enzymatic substrate of DNA-PKcs is DNA-PKcs itself, with the phosphorylation sites being present in several clusters (18). Phosphorylation of DNA-PKcs in the ABCDE cluster on Thr2609 plays an important role in enabling the dissociation of DNA-PKcs from chromatin (36). Following IR, the chromatin-bound cellular fraction from parental cells contained DNA-PKcs phosphorylated on Thr2609 almost as early as 30 minutes, whereas TMPRSS2–ERG–expressing PC3 cells showed delayed and reduced DNA-PKcs phosphorylation (Fig. 5C). This finding is consistent with the higher retention, and, therefore, more abundant DNA-PKcs presence on the chromatin in PC3 cells expressing TMPRSS2–ERG.

To directly examine the role of DNA-PKcs, we examined its activation in VCaP cells, which express TMPRSS2–ERG endogenously. Indeed, VCaP cells had minimal, if any Thr2609 foci at 30 minutes, whereas TMPRSS2–ERG also had abrogated Thr2609 DNA-PKcs phosphorylation both before and following IR (Fig. 5B). Similarly, Ser2056 DNA-PKcs phosphorylation in the PQR cluster was absent in TMPRSS2–ERG–expressing, but not in parental cells at 30 and 60 minutes following IR (Fig. 5C) compared with a high number of such foci in derivative cells in which TMPRSS2–ERG expression was depleted by siRNA. PC3 cells with stable expression of TMPRSS2–ERG also had abrogated Thr2609 DNA-PKcs phosphorylation both before and following IR (Fig. 6B). Similarly, Ser2056 DNA-PKcs phosphorylation in the PQR cluster was absent in TMPRSS2–ERG–expressing, but not in parental cells at 30 and 60 minutes following IR (Supplementary Fig. S1). These results indicate that, by interacting with DNA-PKcs, TMPRSS2–ERG does indeed inhibit DNA-PKcs Thr2609 and Ser2056 autophosphorylation required for its function. Finally, we and others have shown that Ser1778 is a 53BP1 C-terminal phosphorylation target of DNA-PKcs (37, 38) that contributes significantly to DNA repair after IR (39). Ser1778 53BP1 foci were also absent in PC3 cells expressing TMPRSS2–ERG (Fig. 6C), indicating defective DNA repair, similar to results obtained when PC3 cells were pretreated with the specific DNA-PKcs inhibitor NU7441 (Fig. 6C). Taken together, these findings establish conclusively that DNA-PKcs activity is blocked in cells expressing TMPRSS2–ERG.

TMPRSS2–ERG reduces MDC1 IRIFs

In addition to Ser1778, 53BP1 is also phosphorylated following IR-induced DNA damage on Ser25/29. This modification, which is known to depend predominantly on ATM and less on DNA-PKcs (37), has been shown to be critical for an efficient DNA-damage response (40). However, we found no detectable difference in the number of Ser25/29-53BP1 IRIFs between TMPRSS2–ERG-expressing and parental PC3 cells (Supplementary Fig. S2A). MDC1, a pivotal mediator of the DNA-damage response (25), has been proposed to be an upstream regulator of 53BP1. Both 53BP1 and MDC1 are downstream targets of the ATM-mediated DNA repair pathway, with ATM-mediated Ser25/29-53BP1 phosphorylation being regulated via MDC1 (41). At 60 minutes after IR, the number of Ser96-MDC1 IRIFs was reduced in TMPRSS2–ERG–expressing, but not parental PC3 cells (Supplementary Fig. S2B). These results indicate that in TMPRSS2–ERG–expressing cells, ATM-regulated Ser25/29 phosphorylation of 53BP1 is not solely mediated via MDC-1 because diminished MDC1 IRIFs did not affect 53BP1 phosphorylation on Ser25/29.

Discussion

The TMPRSS2 gene fusion to the oncogenic ETS family members ERG and ETV1 is common in prostate cancer and has significant implications for understanding prostate cancer tumorigenesis and developing novel approaches for diagnosis and therapy. These rearrangements are present in the majority of patients with prostate cancer, being reported in up to 60% of prostate cancer incident cases (27). A previous report has shown that the TMPRSS2–ERG fusion protein interacts with DNA-PKcs (12), suggesting that TMPRSS2–ERG is involved in c-NHEJ. Our data demonstrate for the first time that TMPRSS2–ERG perturbs c-NHEJ by inhibiting DNA-PKcs phosphorylation and XRCC4 recruitment.

Expression of TMPRSS2–ERG leads to constitutive DNA damage (12, 13). We found that VCaP cells that express TMPRSS2–ERG endogenously and PC3 cells that express it ectopically, displayed yH2AX and 53BP1 foci constitutively. The abundance of these foci was further elevated following IR as diminished or delayed DNA repair kinetics led to accumulation of and/or persistence of DNA damage. This observation suggests that DNA-PKcs–dependent c-NHEJ is defective in these cells. Depletion of TMPRSS2–ERG in VCaP cells restored the DNA repair kinetics and reduced the DNA damage to a level comparable with that found in parental PC3 cells, indicating that TMPRSS2–ERG triggers/facilitates DNA damage and/or prevents its effective repair. Strikingly, in TMPRSS2–ERG–expressing, but not parental cells, the recruitment of XRCC4 to chromatin following IR was completely abrogated. Moreover, the retention of Ku70, XLF, and ligase IV was diminished in the presence of TMPRSS2–ERG. As a previous report suggested that DNA-PKcs binds to the ERG fusion gene product (12), this interaction might hinder the recruitment or retention of other c-NHEJ factors. We show that DNA-PKcs activity is suppressed in the presence of TMPRSS2–ERG, as indicated by the absence of foci of Thr2609 and Ser2056 DNA-PKcs and a critical DNA-PKcs substrate, Ser1778-53BP1 (37), as well as diminished DNA-PKcs auto-phosphorylation. The higher levels of chromatin-associated DNA-PKcs in the presence of TMPRSS2–ERG suggest that its dissociation from DSBs was impaired, consistent with its defective autophosphorylation. siRNA-mediated depletion of TMPRSS2–ERG fully restored the DNA-PKcs activity in these cells. These data are consistent with the interpretation that the presence of TMPRSS2–ERG on the chromatin interferes with c-NHEJ. A recent report suggests that Ligase IV contributes to DNA-PKcs autophosphorylation and that end joining occurs by early formation of a supramolecular entity composed of the DNA-PKcs, XLF, and Ligase IV complexes on DNA ends (42). Our finding of decreased chromatin retention of Ligase IV and XLF suggests that TMPRSS2–ERG is perturbing the formation of the end-joining complex and as a consequence, it is inhibiting c-NHEJ DNA repair. Interestingly, PC3 cells express another fusion gene, ETV4 (43), yet that has no effect on IR-induced DNA damage and its repair. Therefore, the effect on DNA repair is specific to the TMPRSS2–ERG fusion, which has been shown to interact with DNA-PKcs via its Y373 residue (12).

Prior studies have suggested that the choice of DNA-damage repair pathway, HR vs. c-NHEJ, depends on DNA-PKcs...
Figure 6.
TMPRSS2-ERG inhibits DNA-PKcs auto-phosphorylation and activity. Confocal immunostaining for phospho-DNA-PKcs Thr2609 at the indicated times following IR in VCaP (A) and PC3 cells (B), with or without expression of the TMPRSS2-ERG fusion. C, Ser1778-53BP1 phosphorylation as a DNA-PKcs target was examined by confocal immunostaining following IR in PC3 parental and TMPRSS2-ERG-expressing derivative cells without (left) or following pretreatment with NU7441 (right). Right, quantification of the respective foci on the left. Error bars represent SD (n = 3).
autophosphorylation status (30). When the phosphorylation of DNA-PKcs at the ABCDE cluster (e.g., Thr2609) is defective, HR is also inhibited because of the restricted access to DNA ends. However, subsequent defective phosphorylation of the PQR cluster (e.g., Ser2056) increases HR due to partial rescue from the end-blocking effect by DNA-PKcs at DSBs (30), thus suggesting that cells deficient in phosphorylation of DNA-PKcs at both the Thr2609 and Ser2056 sites have augmented HR. Rad51 is a major component of HR repair following IR, which has been suggested to compensate for diminished c-NHEJ (30). Indeed, our data indicate that in TMPRSS2–ERG-expressing, but not parental cells, elevated Rad51 foci are present as early as 3 hours following IR, indicating earlier or accelerated occurrence of HR, corroborated by a functional HR reporter assay.

However, the Rad51 foci were diminished in TMPRSS2–ERG-expressing cells upon PARP inhibition and the persistent DNA damage induced by PARP1-mediated DNA repair. PARP1 binds to PARP on single-stranded DNA breaks, which cannot be repaired and become DSBs following DNA replication (16). As the TMPRSS2–ERG-expressing cells are extremely sensitive to PARPi coadministered with IR (13), there is an enhanced likelihood of involvement of PARP in the DNA repair process following IR-induced DNA damage.

Interestingly, we reported that there was no significant difference in radiosensitivity between cells expressing TMPRSS2–ERG compared with isogenic derivatives that did not express it, whether it was downregulated (in VCaP that express it) or overexpressed (in PC3 that do not express it) (13), suggesting an adaptive cellular response to chronic expression of PARP1–ERG. Here, we extend these observations by showing that there was no difference in DNA damage initiation as indicated by activation of ATM and Comet assays. Clinical data indicating that TMPRSS2–ERG is not prognostic for following prostate cancer radiotherapy (44) support this conclusion. A recent study found that ERG expression conferred a small enhancement in radio-sensitization (45). These differences may be caused by the different constructs (ERG vs. TMPRSS2–ERG) or the experimental conditions used in the two studies.

Replication stress driven by oncogenes or other growth-stimulating factors in tumor cells can produce collapsed replication forks and other DNA structures that lead to additional DNA damage that needs to be repaired (46) Thus, tumor cells expressing TMPRSS2–ERG may also have higher endogenous levels of DNA damage, with IR leading to additional lesions requiring repair. Under proficient DNA repair conditions, regardless of TMPRSS2–ERG expression, cells may be able to complete DNA repair without saturating the DNA repair ability. However, if DNA repair is prevented by PARP inhibition, an additional DNA lesion burden in cells with TMPRSS2–ERG may saturate the DNA repair capacity and sensitize these cells more relative to cells that do not express TMPRSS2–ERG. This possibility may explain why PARP inhibition is more effective in cells expressing TMPRSS2–ERG (13, 47). The diminished ability to repair the DNA damage by c-NHEJ in cells chronically expressing TMPRSS2–ERG may lead to an adaptive response through a compensatory increase in HR; therefore, the overall DNA repair capacity might not be noticeably disrupted in these cells, unless PARP is inhibited.

In contrast to DNA-PKcs, we found that ATM regulation was not affected in TMPRSS2–ERG-expressing cells because the amounts of recruited total and Ser1981-phosphorylated forms of ATM after IR were comparable with those in PC3 parental cells. Moreover, there was no detectable difference between these cells in phosphorylation of Ser25/29-53BP1, an ATM target (37). A recent report has shown that ERG directly represses the expression of the checkpoint kinase 1 (CHK1), a key DNA-damage response cell-cycle regulator that is essential for the maintenance of genome integrity. This study found that ERG expression correlates with CHK1 down-regulation in human patients and that CHK1 down-regulation sensitized prostate cancer cells to DNA-damage (etoposide) but not docetaxel-based treatment (33). This finding provides support for the cell-cycle differences we observed in the TMPRSS2–ERG-expressing cells. However, phosphorylation on Ser964 of the mediator protein MDC1 was reduced in TMPRSS2–ERG-expressing cells, indicating that some ATM targets may be affected.

In summary, our studies provide new insights into the molecular understanding of IR-induced DNA repair deregulation by TMPRSS2–ERG, which interferes with the assembly of c-NHEJ factors at DSBs on the chromatin. By inhibiting c-NHEJ via defective recruitment of XRCC4 and impaired DNA-PKcs phosphorylation, TMPRSS2–ERG rearrangement may reveal a "synthetic lethal" interaction with HR, blocking repair of lesions at collapsed DNA replication forks induced by PARPi. As PARPi and Ku70/80 compete for repair of DSBs by distinct DNA repair pathways, it is possible that inhibition of c-NHEJ may activate PARPi-mediated DNA repair. PARP1 has been suggested to participate in a back-up, alternative NHEJ pathway that is more active in c-NHEJ-defective cells and in some instances has been shown to be predominant over HR (48). The role of alternative NHEJ, which has a specific requirement for PARPi and a resection factor (e.g., Ctp1), could be examined in the future in the response of TMPRSS2–ERG-expressing cells to IR. Recently, it has been shown that a hormone–DNA repair signaling circuit defines the response to genotoxic insults in prostate cancer, thus implicating androgen receptor signaling, the main therapeutic target in prostate cancer (49, 50). Collectively these findings help in our understanding the DNA repair mechanism following IR-induced DNA damage in cells expressing TMPRSS2–ERG, clinically significant as this gene fusion is present in most patients with prostate cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: P. Chatterjee, G.S. Choudhary, C. Magi-Galluzzi, J. Zhang, E.A. Klein, A. Almasan
Development of methodology: P. Chatterjee, G.S. Choudhary, X. Xiong, A. Almasan
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): G.S. Choudhary, T. Alswailah, X. Xiong, W.D. Heston
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): P. Chatterjee, G.S. Choudhary, T. Alswailah, A. Almasan
Writing, review, and/or revision of the manuscript: P. Chatterjee, G.S. Choudhary, W.D. Heston, C. Magi-Galluzzi, E.A. Klein, A. Almasan
Study supervision: A. Almasan

Acknowledgments
The authors thank Dr. Alan Kraker (Pfizer) for rucaparib and their colleagues Drs. Judy Drazba and John Peterson (Imaging Core) for technical assistance, Drs. Janet Houghton and Tapati Mazumdar for flow cytometry.
References

Chatterjee et al.

The TMPRSS2–ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition

Payel Chatterjee, Gaurav S. Choudhary, Turkeyah Alswillah, et al.

Updated version Access the most recent version of this article at: doi:10.1158/1535-7163.MCT-14-0865

Supplementary Material Access the most recent supplemental material at: http://mct.aacrjournals.org/content/suppl/2015/06/04/1535-7163.MCT-14-0865.DC1

Cited articles This article cites 50 articles, 21 of which you can access for free at: http://mct.aacrjournals.org/content/14/8/1896.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.