A Combinatory Strategy for Detection of Live CTCs Using Microfiltration and a New Telomerase-Selective Adenovirus

Yanchun Ma1,2, Sijie Hao3, Shuwen Wang2,4, Yuanjun Zhao2, Bora Lim5, Ming Lei1, David J. Spector6, Wafik S. El-Deiry5, Si-yang Zheng3, and Jiyue Zhu2,4

Abstract

Circulating tumor cells (CTC) have become an important biomarker for early cancer diagnosis, prognosis, and treatment monitoring. Recently, a replication-competent recombinant adenovirus driven by a human telomerase gene (hTERT) promoter was shown to detect live CTCs in blood samples of patients with cancer. Here, we report a new class of adenoviruses containing regulatory elements that repress the hTERT gene in normal cells. Compared with the virus with only the hTERT core promoter, the new viruses showed better selectivity for replication in cancer cells than in normal cells. In particular, Ad5GTSe, containing three extra copies of a repressor element, displayed a superior tropism for cancer cells among leukocytes and was thus selected for CTC detection in blood samples. To further improve the efficiency and specificity of CTC identification, we tested a combinatory strategy of microfiltration enrichment using flexible micro spring arrays and Ad5GTSe imaging. Our experiments showed that this method efficiently detected both cancer cells spiked into healthy blood and potential CTCs in blood samples of patients with breast and pancreatic cancer, demonstrating its potential as a highly sensitive and reliable system for detection and capture of CTCs of different tumor types. Mol Cancer Ther; 14(3): 835–43. ©2015 AACR.

Introduction

Cancers shed their tumor cells into the peripheral blood, generating metastases that confer lethality. Circulating tumor cells (CTC) have been detected in patients with many types of cancers, even those with no signs of clinically overt metastases (1). Because of their easy accessibility, CTCs are clinically relevant to cancer detection and prognosis. Repeated sampling of CTCs may be used for real-time assessment of cancer progression and treatment response (2).

CTC detection and capture are technically demanding. One of the challenges is their extremely low abundance in the peripheral blood: the clinically relevant numbers of CTCs are as low as one CTC per 10^5 to 10^7 nucleated blood cells. CTCs are also highly variable and their genetic and epigenetic characteristics differ not only among tumors of different tissue origins, but also within the same cancer type, or even within a patient. Most current detection strategies are based on the epithelial markers like epithelial cell adhesion molecule (EpCAM) and cytokeratins (CK). However, evidence is accumulating that, in certain tumor types, these epithelial markers may be downregulated during tumor cell dissemination, potentially hampering the detection of CTCs (3). To date, the CellSearch assay for patients with breast, prostate, and colon cancer, based on EpCAM expression, is the only CTC detection method cleared by the FDA. We and others have shown that, in at least some cases, CellSearch detection of CTC is less efficient than detection after enrichment by microfiltration (4, 5). Thus, simple and fail-safe techniques for efficient CTC enumeration and capture are still needed for clinical applications.

Most adult cancers are of epithelial origin and CTCs in these patients are larger than blood leukocytes. CTC enrichment by microfiltration, based on intrinsic physical parameters such as size and deformability, is cost-effective (6–8). To further improve the efficiency of microfiltration and the viability of enriched cells, we previously described a flexible micro spring array (FMSA) device, a new design of microfilters that can enrich CTCs from 7.5 mL of blood samples with 10^4-fold enrichment, 90% capture efficiency, and over 80% viability within 10 minutes (9). Thus, filtration by FMSA is less disruptive to cell integrity than other microfiltration devices, providing a platform capable of enrichment and analysis of viable CTCs from clinically relevant volumes of blood samples (4).

Telomerase expression is a hallmark of cancer (10) and is required for limitless proliferation of tumor cells. The catalytic subunit of human telomerase, hTERT, is silenced in normal human somatic cells but activated in the majority of cancers.

1College of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China. 2Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania. 3Micro & Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania. 4Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington. 5Division of Hematology-Oncology, Penn State Hershey Cancer Institute, Hershey, Pennsylvania. 6Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania.

Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).

Y. Ma and S. Hao contributed equally to this article.

Current address for W.S. El-Deiry: Fox Chase Cancer Center, 333 Cottman Avenue, Room P2035, Philadelphia, PA 19111.

Corresponding Author: Jiyue Zhu, Washington State University College of Pharmacy, PBS 323, PO Box 1495, Spokane, WA 99210. Phone: 509-368-6565; Fax: 509-368-6561; E-mail: jiyue.zhu@wsu.edu

doi: 10.1158/1535-7163.MCT-14-0693

©2015 American Association for Cancer Research.

www.aacrjournals.org
This common trait of cancer cells was used in the development of the GFP-containing recombinant adenovirus OBP-401, in which an hTERT promoter drives the viral E1 "master regulator" gene. This virus infects CTCs ex vivo without prior enrichment of blood samples, providing a new logic for CTC detection (11). However, evidence about the specificity of this virus for cancer cells is limited (12, 13). Although the strategy of CTC detection and enumeration by adenovirus infection remains promising, questions about its cancer cell specificity persist and the recombinant virus is not readily available for most academic scientists. Here, we report the development of a class of recombinant adenoviruses with DNA elements that repress hTERT promoter in normal cells (14). Our results show that multiple copies of the repressive element rendered the virus more selective for cancer cells than in normal cells, especially leukocytes, as determined by GFP imaging. Furthermore, we developed a combinatorial strategy for CTC detection and enumeration, by taking advantage of both efficient FMSA enrichment technique and the specificity and sensitivity conferred by imaging cells infected with the improved adenovirus. This combinatorial approach generated a simple and fail-safe, yet highly efficient, system for CTC analysis in the clinical setting without labor-intensive cytologic staining procedures.

Materials and Methods

Recombinant adenoviruses

Adenoviral constructs were derived from pAd25, a bacterial artificial chromosome (BAC) containing a wild-type adenovirus type V genome (15). The E3 gene in pAd25 was first replaced by a GFP cassette from pEGFP-N1 (Clontech), resulting in pAd5G. The hTERT promoter-containing adenoviral constructs were created by replacing the 179-bp E1 promoter with three versions of the hTERT promoter, using the hTERT ATG codon as the E1a initiation codon. Viruses were generated by transfecting linearized BACs into 293 packaging cells and purified by CsCl2 gradient ultracentrifugation. The structures of viral DNAs, prepared by Hirt's method, were verified by restriction enzyme digestion and direct sequencing of the junctions. Viral titers were determined by plaque-forming assays using Hela cells.

Cell culture and telomerase expression

Normal human foreskin fibroblasts (NHF) were obtained from Dr. Thea Tlsty's laboratory at University of California, San Francisco (San Francisco, CA) in 1995 and the fifth passage of this stock was used. Normal human breast epithelial cells (HBEC) were obtained in 2011 from Dr. Andrea Manni's laboratory at Hershey Medical Center (Hershey, PA) and cultured in MEGM mammary epithelial cell growth medium (Lonza). All cancer cell lines were obtained in 2011 from Dr. El-Deiry's laboratory where they were regularly authenticated by growth, morphologic observation, and protein expression that was monitored by Western blotting. These cells were used within two passages in the recommended culture conditions without further authentication after they were transferred. Human colon cancer cell lines HCT-116 and HT-29 were cultured in McCoy's 5A medium with 10% heat-inactivated FBS. Breast cancer cell lines MDA-MB-231 and T-47D were cultured in DMEM/F12 medium with 5% FBS and RPMI-1640 medium with 10% FBS, respectively. MCF-7 and 293 cells were cultured in DMEM with 10% FBS. MCF-10A cells were cultured in DMEM/F12 containing 10 µL/mL insulin, 30 ng/mL EGF, 100 ng/mL cholera toxin, and 0.5 µg/mL hydrocortisone. Human fibroblast lines 167b and NHF were cultured in MEM with 10% FBS. HX-98 cells were immortalized from HBECs using retrovirus pBABE-hTERT (17). mCherry-expressing cells were obtained by infecting cells with pQCXIP-mCherry or pBABE-neo-mCherry (for HX-98 cells) retroviruses, followed by selection with puromycin or neomycin and further enriched by flow cytometry (BD FACSAria cell sorter). Telomerase activities and hTERT mRNA expression in human cell lines were determined by TRAP assay and real-time RT-PCR analyses, as described previously (18, 19).

White blood cell preparation and adenoviral infection

Whole blood was centrifuged at 2,000 × rpm for 5 minutes and the plasma phase was removed. Erythrocytes were lysed by incubating the blood cells twice with red blood cell lysis buffer containing ammonium chloride at 37°C for 5 to 10 minutes, followed by centrifugation and suspension in PBS. mCherry-marked cancer cells, mixed with or without white blood cells (WBC), were infected with adenoviruses and plated at 37°C in nontissue culture 96-well plates.

Fluorescence signal detection and immunostaining

Cells in 96-well flat clear bottom black plates were infected with adenoviruses for 72 hours. GFP and mCherry fluorescence were
quantitated every 12 hours using a microplate reader (Spectra Max M5, Molecular Devices) with excitation/emission at 485 nm/528 nm and 585 nm/610 nm, respectively. Fluorescent images were captured with an EVOS Fl microscope. To identify leukocytes, mixtures of WBCs and cancer cells were fixed in BD fixation/permeabilization solution (BD Cytofix/Cytoperm Kit), transferred onto glass slides by cytospin, and stained sequentially with a CD45 antibody (Cell Signaling Technology) and Alexa Fluor 594-conjugated antibody (Invitrogen).

FMSA filtration

7.5 mL of blood samples were passed through a FMSA filtration device under gravity flow, followed by washing with 7.5 mL of PBS. During filtration, the FMSA device was retained between two sealing O-rings (polydimethylsiloxane, DOW Corning) and clamped within a housing consisting of two plastic jigs (4). A syringe barrel served as a sample-loading chamber at the top of the filtration device and the bottom was connected to a waste trap. Immediately after filtration, the microfilters with the attached O-rings were transferred to a well of a 6-well plate containing 1.5 mL of medium. Ad5GTSe virus was added to the top chamber formed between the O-ring and FMSA, followed by incubation at 37°C for 24 hours. For immunostaining, cells on the FMSA devices were fixed with 4% paraformaldehyde and permeabilized by addition of 0.3% Triton X-100. After blocking in 5% goat serum, cells were incubated sequentially with anti-cytokeratin 8/18/19 (clone 2A4, Abcam) and goat anti-mouse IgG conjugated to DyLight 550 (Thermo Scientific). Cells on the devices were blocked again with 5% goat serum, incubated with an anti-CD45 antibody conjugated to Alexa Fluor 647 (clone 35-Z6, Santa Cruz Biotechnology), and nuclei were stained with DAPI. Each fluorophore was imaged separately using a monochromatic camera (QImaging, Retiga Exi Blue) and composite images were constructed.

Figure 2.

hTERT expression and replication of recombinant adenoviruses. A, hTERT expression in cancer cell lines and normal cells. hTERT mRNA levels were determined by qRT-PCR. Values were normalized to the levels of 18S ribosomal RNA. *, normal cells with limited life spans. B, replication of recombinant adenoviruses. Twelve hours before infection, 1.5 x 10^4 cells were plated into individual wells of 96-well plates and infected with recombinant adenoviruses at MOI 10. GFP and mCherry fluorescent signals were recorded every 12 hours after infection using a microplate reader. Viral replication was reported as the ratio of GFP signals to those of mCherry. C, relationship of hTERT mRNA levels and adenoviral replication. The data in A were plotted against the levels of fluorescent signals at 24 hours in B. All data were collected as averages of triplicates.
were created with pseudocolor added using QCapture Pro 7 software (QImaging). Each mCherry\(^+\) and/or GFP\(^+\) cells were confirmed to be DAPI\(^+\) (data not shown).

For comparison, 7.5 ml of blood samples was also subjected to the CellSearch test at the Penn State Cancer Center (Hershey, PA). The CellSearch Analyzer II software preselects events that are potential CTCs based on EpCAM and CK positivity in close proximity to a DAPI signal. The standard CellSearch procedure was performed and candidate CTCs were scored by a trained operator.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 6, and results are reported as mean ± SD.

Results

Construction of recombinant adenoviruses
Recombinant adenoviruses were generated from the BAC construct pAdZ5 (15). First, the E3 gene, dispensable for virus replication in cell culture, was replaced by a GFP cassette to generate pAd5G. Three telomerase-specific adenoviral vectors were engineered from pAd5G (Fig. 1). pAd5GTS contains a 450-bp hTERT promoter, which is active in many cell types (20, 21). This DNA fragment, which contains the hTERT initiation codon, replaced a 179-bp sequence 5' of and including the E1a initiation codon. This configuration retains the viral packaging signal. In pAd5GTL, a 1.4-kb hTERT promoter substituted for the E1a promoter. The additional sequence in this long promoter contained four MZF-2 sites and an AP-1 site, which are important for repression of hTERT expression in normal cells (22, 23). pAd5GTS is similar to pAd5GTS except that it consists of three extra copies of a 20-bp negative control element (GGCAAGTGCAGAACCCCTG), containing overlapping E-box, Ets, and X-box sites (14, 24, 25). The replication of these recombinant viruses was examined in MCF7 cells (Supplementary Fig. S1). At a multiplicity of infection (MOI) of 10, GFP-positive cells were detected as early as 12 hours after infection and the numbers of infected cells continued to increase for at least 2 days after infection.

Adenoviral replication and telomerase expression
To determine the relationship between viral replication and hTERT expression, we used a collection of normal and cancer-derived cells of lung, breast, and colon origins. As shown in Fig. 2A and Supplementary Fig. S2, all the cancer cell lines tested expressed high levels of hTERT mRNA and telomerase activity. Fibroblast cell line 3C167 also contained abundant hTERT mRNA and telomerase activity. Furthermore, immortalized but untransformed breast epithelial MCF10A cells expressed detectable hTERT mRNA and telomerase activity. In contrast, NHFs and HBECs had little hTERT mRNA and undetectable telomerase.

An important objective of this work was to evaluate whether cancer cells mixed with normal cells would be preferentially labeled by virus infection of the mixed population (see below). Accordingly, we needed to establish a means of tracking the cancer cells in the mixtures. This strategy would also permit us to control for any differences among the cells lines in their.

Adenoviral infection of different cell types. A, efficiency of fluorescent labeling of normal and cancer cells by infection with recombinant adenoviruses. Approximately 200 cells were mixed with 100 \(\mu\)L of adenovirus stock and added to individual wells of a 96-well plate with no tissue culture coating. GFP-expressing cells were counted 24 hours after infection. Total numbers of cells were determined by counting mCherry\(^+\) cells. B, infection of WBCs by adenoviruses. WBCs (10\(^3\), 10\(^4\), or 10\(^5\)) were infected with 100 \(\mu\)L of adenovirus stock for 24 hours.
ability to express GFP. To do so, cells were transduced with retroviruses containing a mCherry protein and sorted by FACS, yielding over 98% mCherry-positive (mCherry⁺) cells. These cells were infected with adenoviruses and GFP/mCherry signal ratios were determined (Fig. 2B). All of the recombinant adenoviruses replicated more efficiently in telomerase-positive cancer cells than in normal cells, although cellular hTERT mRNA levels were not strictly correlated to viral GFP signals (Fig. 2C). The parental Ad5G virus replicated better than hTERT promoter-driven viruses in all of the cell lines. Ad5GtL and Ad5GTSe replicated even slower than Ad5GtS, especially in NHFs and HBECs, probably because the repressive elements reduced the rate of accumulation of E1a gene products and consequently delayed the viral lytic cycle.

Labeling cancer cells and white blood cells by adenoviruses

To determine the abilities of the recombinant adenoviruses to label cancer cells, about 200 cells in a single well of 96-well plates were infected with an individual adenovirus at different doses and GFP⁺ cells were quantified 24 hours later. As shown in Fig. 3A, over 80% of all immortal and cancer cells displayed GFP signals when infected with 10⁸ pfu/mL of any of the viruses. With 10⁷ pfu/mL of virus, the labeling efficiencies were still above 80% for most cell lines, except for 3C167b and T-47D lines. For normal and telomerase-nonexpressing NHFs and HBECs, the labeling efficiencies were lower than for cancer cell lines in most cases. Among different viruses, Ad5G infected both cancer cell lines and normal cells most efficiently, whereas the infection efficiencies by Ad5GTSe were lower than those by other viruses, requiring at least 10⁷ pfu/mL to label 70% to 80% of the cancer cells. Nevertheless, our data showed that 10⁷ pfu/mL Ad5GTSe was best suited for further investigations of differentially labeling cancer cells, although none of the viruses was strictly specific for cancer cells.

CTC preparations contain large amounts of blood cells even after enrichment, so we examined the ability of the adenoviruses to infect WBCs. WBCs were infected with adenoviruses and GFP-labeled cells were examined 24 hours after infection. Less than 5% of the WBCs were labeled at the highest Ad5G dose tested (10⁸ pfu/mL; Fig. 3B), much less than Ad5G-infected epithelial or fibroblast cells. The hTERT promoter-driven viruses infected WBCs at efficiencies much lower than Ad5G did. Ad5GTSe was particularly ineffective in labeling WBCs at 10⁷ pfu/mL dose. The data indicate that Ad5GTSe is suitable for distinguishing cancer cells from WBCs.

Preferential infection of cancer cells in mixtures with WBCs

To establish the feasibility of CTC detection using adenovirus-mediated imaging, mCherry⁺ HCT-116 colon cancer cells were mixed with WBCs and infected with 10⁸ pfu/mL of an adenovirus for 24 hours (Supplementary Fig. S3). When 100 or 1,000 HCT-116 cells were mixed with 10⁶ to 10⁷ WBCs, similar numbers of mCherry⁺ and GFP⁺ cells were observed. When 10 cancer cells were added to the WBCs, there were more GFP⁺ cells than mCherry⁺ cells especially after infection with Ad5G, indicating that Ad5G must have infected significant numbers of WBCs. Ad5GTSe-infected cells were a notable exception: similar numbers of GFP⁺ and mCherry⁺ cells were always observed, suggesting that very few WBCs if any were labeled by this virus. To illustrate the specificities of infection of HCT-116 cells by adenoviruses, GFP⁺ only, mCherry⁺ only, and double positive cells in the mixtures containing 100 HCT-116 cells were also counted (Fig. 4, left.

Figure 4.
Adenovirus-mediated labeling of mixtures of cancer and normal cells with WBCs. 100 mCherry⁺ HCT-116 (left charts), MCF7 (left charts), or HBECs (right charts) were mixed with 10⁵, 10⁶, or 10⁷ WBCs, and infected with 10⁷ pfu/mL adenoviruses in 100 µL. GFP, mCherry, and doubly-labeled cells were scored after 24 hour incubation.
Most of mCherry$^+$ cells were labeled by GFP, indicating that HCT-116 cells were efficiently infected by all four viruses. Conversely, upon infection by hTERT promoter-driven viruses, fewer GFP$^+$ mCherry$^-$ cells were detected than those in Ad5G-infected mixtures. In the case of Ad5GTSe, about five GFP$^+$ mCherry$^-$ cells were found even when 10^5 WBCs were used, indicating a strong tropism of this virus for HCT-116 cells. To check the infection of WBCs in the mixtures directly, one of the Ad5GTSe-infected cell mixtures (1000 HCT-116 cells and 10^5 WBCs) was stained with an antibody against CD45, a common leukocyte antigen. In this experiment, unlabeled HCT-116 cells were used so that the mCherry fluorescence would not interfere with the visualization of CD45 staining in the red channel. Supplementary Fig. S4 shows that no GFP$^+$ cells were used so that the mCherry$^+$ cells could be checked. In Table 1, the labeling efficiencies of cancer and normal breast epithelial cells, MCF7 and HBEC, respectively, in mixtures with WBCs. Hundred cells were mixed with varying numbers of WBCs, infected with 10^7 pfu/mL adenoviruses, and imaged 24 hours after infection. GFP$^+$/mCherry$^+$ cells were uninfected epithelial cells and GFP$^+$/mCherry$^-$ cells were most likely infected WBCs. As shown in the middle column of Fig. 4, there were significant numbers of GFP$^+$/mCherry$^+$ MCF7 cells in the Ad5G-infected mixtures in all conditions tested (grey bars), indicating that this virus produced significant false-positive signals due to its infection of WBCs. Ad5GTSe and Ad5GTL labeled some mCherry$^-$ cells, especially when 10^5 WBCs were present. Notably, Ad5GTSe labeled over 70% MCF7 cells in all conditions, but infected no more than 5 mCherry$^-$ cells even when 10^5 WBCs were used. As above, we did not detect any Ad5GTSe-labeled cells that expressed CD45 in a mixture of MCF7 cells and 10^5 WBCs (Supplementary Fig. S5).

The data in Figs. 2 and 3 showed that the recombinant adenoviruses also infect normal human cells. Indeed, these viruses infected and labeled many HBECs in the mixtures (Fig. 4, right column). Fewer cells were labeled by infection with Ad5GTL or Ad5GTSe, likely due to the negative regulatory elements in the hTERT promoter in these viruses. The results support the conclusion that, because it displayed the best selectivity in labeling cancer cells over both HMECs and WBCs, Ad5GTSe is a viable and attractive candidate for improved CTC detection.

Enrichment and imaging of cancer cells using FMSA microfilters

Because none of the viruses was absolutely specific for cancer cells, enrichment of cancer cells before adenoviral imaging may reduce false-positive signals. To explore the possibility of combining microfiltration enrichment and adenoviral imaging in CTC detection, approximately 300 mCherry-labeled colon cancer HCT-116 or breast cancer MCF7 cells were added to 7.5 mL of blood from healthy donors and the mixtures were passed through a FMSA filtration device (Figs. 5A and B). The microfilters were then transferred into single wells of a 6-well plate and infected with 10^7 pfu/mL Ad5GTSe for 24 hours. As shown in Table 1, the labeling efficiencies of cancer cells ranged from 75% to 93% in four experiments. However, there were three to five GFP$^+$/mCherry$^-$ cells, either rare mCherry$^-$ cancer cells or infected WBCs, in each experiment. This result demonstrated that Ad5GTSe could detect live cancer cells following their enrichment on FMSA.

Identification of CTCs in patient blood samples

Next, we applied this combinatory strategy in the analyses of blood samples from patients with breast and pancreatic cancers. Two 7.5 mL blood samples were collected from each patient. One sample was passed through a FMSA device and the captured cells were infected with 10^7 pfu/mL Ad5GTSe. To distinguish cells of epithelial origin from those of hematopoietic origin, the cells on FMSA were then stained with...
antibodies against CK, an epithelial marker, and CD45 (Fig. 5C). As shown in Table 2, GFP \(^+\) cells were identified in all patient samples, ranging from 19 in patient #4 to 32 in patient #3. Most of these GFP \(^+\) cells were CK\(^+\) and CD45\(^-\), consistent with an epithelial origin characteristic of most breast and pancreatic cancer cells. Interestingly, most CK\(^-\)/CD45\(^+\) cells were also infected by Ad5GTSe, as indicated by GFP expression in these cells, indicating that most of the CTCs in the clinical samples were actually viable.

Although a few GFP\(^+\) cells were detected in blood samples from two healthy donors (controls #1 and #2), none of them were CK\(^+\)/CD45\(^-\), suggesting that the GFP\(^+\)/CK\(^+\)/CD45\(^-\) cells in the samples from patients with cancer were tumor cells. The other 7.5 mL of blood sample from each patient was subjected in parallel to the CellSearch CTC test. Eight and one positive cells were detected in 7.5 mL of blood from patients #1 and #3, respectively, but none was found in other two samples. These data suggest that Ad5GTSe selectively detected CTCs in patients with breast and pancreatic cancer with potentially higher sensitivity than the CellSearch system. The results constitute proof of principle that the combinatorial strategy of microfiltration and adenoviral imaging using Ad5GTSe is likely an extremely sensitive and specific method for CTC detection and enumeration for patients with cancer.

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Total mCherry cells</th>
<th>GFP mCherry(^+) cells</th>
<th>Infection efficiency (GFP(^+)/mCherry(^+))</th>
<th>GFP mCherry(^+) cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCT-16</td>
<td>239</td>
<td>221</td>
<td>93%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>252</td>
<td>91%</td>
<td>3</td>
</tr>
<tr>
<td>MCF-7</td>
<td>236</td>
<td>178</td>
<td>75%</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>267</td>
<td>220</td>
<td>82%</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTE: Experiments were performed as described in Fig. 5B.

Table 2. Detection of potential CTCs in blood samples of patients with cancer

<table>
<thead>
<tr>
<th>Patients</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Control 1</th>
<th>Control 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK(^-)/CD45(^-)</td>
<td>18</td>
<td>4</td>
<td>17</td>
<td>2</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>CK(^+)/CD45(^+)</td>
<td>0</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>CK(^-)/CD45(^+)</td>
<td>0</td>
<td>tntc</td>
<td>1</td>
<td>tntc</td>
<td>0</td>
<td>tntc</td>
</tr>
<tr>
<td>CK(^+)/CD45(^-)</td>
<td>3</td>
<td>ND</td>
<td>5</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>Total GFP(^+) cells</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Veriex counting</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>ND</td>
<td>No</td>
</tr>
<tr>
<td>Cancer types</td>
<td>Breast (triple-negative)</td>
<td>Breast (ER(^+))</td>
<td>Pancreatic (stage IV)</td>
<td>Pancreatic (stage III)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Metastasis</td>
<td>Bone</td>
<td>Bone</td>
<td>Liver</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

NOTE: Numbers indicate the quantities of cells detected on each microfilter. Abbreviations: ND, not determined; tntc, too many to count.
viral replication, measured by GFP expression, and endogenous hTERT mRNA levels (Fig. 2). In addition, many cancer cells contain mutations at the hTERT locus, such as promoter mutations in familial and sporadic melanoma patients (28, 29). These mutations of the endogenous hTERT gene could also alter hTERT transcription and contribute to the miscorrelation between cellular hTERT mRNA levels and viral GFP signals in our study.

Another new observation in this study is that the hTERT promoter-driven adenoviruses replicate much less efficiently in WBCs than the wild-type Ad5G (Fig. 3B). The data suggest that the hTERT promoter has a low activity in normal blood cells. This low activity results in the poor replication of the hTERT promoter-containing viruses in WBCs and is likely the molecular basis for selective CTC detection in patient blood samples by these viruses (11).

We found that Ad5GTSe was best suited for discriminating between CTCs and WBCs in blood samples; 102 infectious particles of this virus labeled about five WBCs per 105 cells in all experiments. Thus, the lower limit of CTC detection by Ad5GTSe is about one in 105 WBCs. Although this was the best among all the recombinant adenoviruses, such an efficiency is unlikely to achieve accurate CTC detection in patients with cancer due to the overwhelmingly large numbers of WBCs in blood samples. Therefore, enrichment of cancer cells was required to reduce false-positive signals. To this end, we designed a novel strategy combining microfiltration enrichment using FMSA devices and adenoviral infection (4). In this combinatorial approach, FMSA filtration was used to enrich the CTCs against the WBCs by a factor of approximately 104. In a sample of 7.5 mL undiluted blood, the total number of WBCs on the filter was thus reduced to less than 104–5 falling within the range in which an optimal detection sensitivity and specificity of CTCs could be achieved by using Ad5GTSe.

Unlike microfilter devices used previously, the FMSA device has flexible micro springs that deform in response to pressure, allowing a higher flow-through rate under low differential pressure, minimizing cellular mechanical stress, and thus preserving viability (9). With this combined strategy, we identified more potential CTCs than the CellSearch assay in our experiments using a limited number of cancer patient samples (Table 1). Previously, Lin and colleagues also reported that immunostaining of patient samples enriched by a different type of microfilter identified potential CTCs in more patients with cancer as well as more CTCs in most patients (5). Thus, the superior recovery rate of CTCs by microfiltration in combination with adenoviral infection of live cells may lead to a faster and more efficient strategy of viable CTC detection and enumeration.

In summary, our current combinatorial strategy using imaging of adenovirus-infected cells has the potential to be an excellent method for detecting CTCs in clinical settings. First, adenoviral infection and imaging are simple procedures, requiring no sophisticated equipment or highly technical manipulations. Second, the method labels only live cells, because infection and replication in living cancer cells are required to obtain GFP expression. Third, the hTERT promoter-dependent viruses should infect many types of cancer cells, regardless of their origins and development stages. This broad host range is an important feature, because cells in most tumors are highly heterogeneous. Susceptibility to adenovirus infection is unlikely to be affected by changes in the molecular features of tumor cells, such as EMT, a transition from epithelial tumor cells to an invasive and mesenchymal cell-like phenotype, and so virus infection should provide a reliable CTC evaluation. Finally, though Kojima and colleagues reported the detection of CTCs by OBP-401 without enrichment (11), our study revealed that even the improved virus Ad5GTSe labeled normal leukocytes in patient samples. However, although the combinatorial strategy promises to result in a more sensitive detection with fewer false positives than straight adenoviral infection, additional studies will be needed to test its efficacy in various clinical settings.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: Y. Ma, S. Hao, S. Wang, W.S. El-Deiry, J. Zhu
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Hao, S. Wang, B. Lim, D.J. Spector, S.-Y. Zheng
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Y. Ma, S. Hao, S. Wang, B. Lim, W.S. El-Deiry, S.-Y. Zheng, J. Zhu
Writing, review, and/or revision of the manuscript: S. Hao, S. Wang, M. Lei, D.J. Spector, W.S. El-Deiry, S.-Y. Zheng, J. Zhu
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S.-Y. Zheng, J. Zhu
Study supervision: W.S. El-Deiry, S.-Y. Zheng, J. Zhu
Other (helped with proper analysis of data and summarized clinical aspect of patients from whom we obtained samples): B. Lim

Acknowledgments
The authors thank Dr. Richard Stanton of Cardiff University for adenoviral BAC constructs. D.J. Spector thanks Richard Courtney and members of the Department of Microbiology and Immunology for their support.

Grant Support
This work was supported by the NIH grants R03CA165182 and R01GM071725 (to J. Zhu) and DP2CA174508 (to S.-Y. Zheng). J. Zhu was also supported by the W.W. Smith Charitable Trust.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 19, 2014; revised December 15, 2014; accepted December 29, 2014; published OnlineFirst January 14, 2015.

References

Correction: A Combinatory Strategy for Detection of Live CTCs Using Microfiltration and a New Telomerase-Selective Adenovirus

In this article (Mol Cancer Ther 2015;14:835–43), which appeared in the March 2015 issue of Molecular Cancer Therapeutics (1), the authors regret that the affiliation for Dr. Sijie Hao is incorrectly listed as Department of C&M Physiology, Pennsylvania State University College of Medicine. The correct affiliation of Dr. Hao is as follows:

Micro and Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University.

Reference

Published OnlineFirst May 28, 2015.
doi: 10.1158/1535-7163.MCT-15-0250
©2015 American Association for Cancer Research.
A Combinatory Strategy for Detection of Live CTCs Using Microfiltration and a New Telomerase-Selective Adenovirus

Yanchun Ma, Sijie Hao, Shuwen Wang, et al.