Improved Circulating Tumor Cell Detection by a Combined EpCAM and MCAM CellSearch Enrichment Approach in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy

Wendy Onstenk1, Jaco Kraan1, Bianca Mostert1, Mieke M. Timmermans1, Ayoub Charehbili2,3, Vincent T.H.B.M. Smit4, Judith R. Kroep2, Johan W.R. Nortier2, Saskia van de Ven2, Joan B. Heijns5, Lonneke W. Kessels6, Hanneke W.M. van Laarhoven7, Monique M.E.M. Bos8, Cornelis J.H. van de Velde3, Jan W. Gratama9, Anieta M. Sieuwerts1, John W.M. Martens1, John A. Foekens1, and Stefan Sleijfer1

Abstract

Circulating tumor cells (CTC) are detected by the CellSearch System in 20% to 25% of patients with primary breast cancer (pBC). To improve CTC detection, we investigated melanoma cell adhesion molecule (MCAM) enrichment next to epithelial cell adhesion molecule (EpCAM) and tested the clinical relevance of MCAM-positive CTCs in patients with HER2-negative breast cancer (mBC) in the NEOZOTAC trial. Using the CellSearch System, EpCAM-positive and MCAM-positive CTCs were separately enriched from 7.5 mL blood, at baseline and after the first NAC cycle. Circulating endothelial cells (CEC) were measured using flow cytometry. Primary objective was to improve the CTC detection rate to ≥40% combining EpCAM/MCAM. Correlations of CTC and CEC counts and pathologic complete response (pCR) were also explored. At baseline, we detected EpCAM-positive and MCAM-positive CTCs in 12 of 68 (18%) and 8 of 68 (12%) patients, respectively. After one cycle, this was 7 of 44 (16%) and 7 of 44 (16%) patients, respectively. The detection rate improved from 18% at baseline and 16% after one cycle with EpCAM to 25% (P = 0.08) and 30% (P = 0.02), respectively, with EpCAM/MCAM. No patients without MCAM-positive CTCs versus 23% of patients without MCAM-positive CTCs at baseline achieved pCR (P = 0.13). EpCAM-positive CTCs and CEC counts were not correlated to pCR. Combined EpCAM/MCAM CellSearch enrichment thus increased the CTC detection rate in stage II/III pBC. We found no associations of CTC and CEC counts with pCR to NAC. The clinical relevance of MCAM-positive CTCs deserves further study.

Introduction

A circulating tumor cell (CTC) count from peripheral blood as measured by the FDA-approved CellSearch System (Janssen Diagnostics) is a strong prognostic factor in both primary and metastatic breast cancers (1). Although 70% of patients with metastatic breast cancer (mBC) have ≥1 CTC/7.5 mL of blood, in primary breast cancer (pBC), this proportion is only as low as 20% to 25% (1–6). In both cases, the presence of CTCs is associated with poor prognosis. For mBC, patients with ≥5 CTCs/7.5 mL blood have significantly shorter median progression-free survival (PFS) and overall survival (OS) compared with patients with <5 CTCs (1, 7, 8). For pBC, patients with ≥1 CTC do significantly worse concerning disease-free survival (DFS) and OS compared with patients without CTCs (1, 3, 5–7).

Improvements in the detection of CTCs can be made. The CellSearch System relies on the expression of the epithelial cell adhesion molecule (EpCAM; CD326) on CTCs and misses EpCAM-negative CTCs (8–11). We showed that particularly breast cancer cell lines with epithelial-to-mesenchymal transition (EMT) features lack expression of EpCAM and are therefore not detected by the CellSearch System (9, 12). Because cells that have undergone EMT probably represent an aggressive, clinically relevant subpopulation of CTCs (10), we aimed to detect EpCAM-negative CTCs by alternative approaches. We found melanoma cell adhesion molecule (MCAM; CD146) to be expressed on EpCAM-negative breast cancer cell lines and tested its use as enrichment marker next to EpCAM. In a small series of patients with mBC, MCAM-positive CTCs were detected in 9 of 20 patients...
Besides CTCs, circulating endothelial cells (CEC) have been proposed as prognostic marker in breast cancer (13). Being sloughed off the vessel wall, they are a putative marker of angiogenesis and vascular damage. Accordingly, increased CEC counts are found in patients with different solid malignancies, including breast cancer (13). However, the clinical value of CEC counts before start of and changes during treatment remains to be investigated.

In this study, we used an EpCAM/MCAM CellSearch enrichment approach to improve CTC detection in patients with stage II/III breast cancer starting neoadjuvant chemotherapy (NAC). Primary objective was to improve the CTC detection rate from approximately 20% to 40% of patients. Secondary objectives were to determine baseline CEC counts and changes of CTCs and CECs during NAC, and to investigate associations between the presence and dynamics of EpCAM-positive and MCAM-positive CTCs and CECs with pathologic complete response (pCR) to NAC.

Patients and Methods

Patients

As a side-study to the NEOZOTAC trial—a multicenter, randomized phase III trial initiated by the Dutch Breast Cancer Research Group (BOOG; ref. 14)—patients with HER2-negative stage II/III breast cancer who provided additional informed consent for CTC blood sampling were enrolled. Patients were stage II/III breast cancer who provided additional informed consent for CTC blood sampling were enrolled. Patients were to determine baseline CEC counts and changes of CTCs and CECs during NAC, and to investigate associations between the presence and dynamics of EpCAM-positive and MCAM-positive CTCs and CECs with pathologic complete response (pCR) to NAC.

Blood draws and sample processing

Before start of and after the first NAC cycle, 2 × 10 ml blood was drawn into CellSave preservative tubes (Janssen Diagnostics). All samples were processed within 96 hours at the central laboratory, Erasmus MC Cancer Institute, Rotterdam, the Netherlands. Two CTC enumerations, both from 7.5 ml of blood, were done using the CellSearch System as described before (9). In brief, EpCAM-positive and MCAM-positive CTCs were enumerated in two separate runs using the CellSearch Epithelial Cell Kit (Janssen Diagnostics). For the MCAM enrichment, anti-MCAM ferrofluid-bound antibodies from the CellSearch Circulating Endothelial Cell Kit (Janssen Diagnostics) were used and FITC-conjugated CD34 (BD Biosciences; clone 8G12) was added as extra marker to exclude a subset of cytokeratin (CK)-18–expressing CECs (9). Nucleated, EpCAM, or MCAM-enriched cells, positive for CK/8/18/19, and negative for CD45 and CD34 for MCAM-positive cells, were considered CTCs. To enable distinction between EpCAM-positive and MCAM-positive CTCs, separate EpCAM- and MCAM enrichments were run. Combined EpCAM/MCAM CTC counts were calculated afterwards, using the sum of both separate enrichments.

The enumeration of CECs was done from 4 ml of blood using a flowcytometric assay with CD34+/DNA−/CD146−/CD45− as CEC phenotype, as described in full detail before (15).

Immunohistochemistry on primary tumor tissue

Expression of EpCAM and MCAM was evaluated on diagnostic core needle biopsies of primary tumors taken before NAC. Slides were incubated with anti-MCAM (1:100, clone N1238; Abcam) or anti-EpCAM (1:500, clone VU1D9; Cell Signaling Technologies), followed by the Envision System (DAKO) and counterstaining with hematoxylin. Scoring of staining intensity (negative/weak/moderate/strong) and estimation of the percentage of positive tumor cells were done by a well-trained technician and pathologist.

Statistical analysis

Primary objective of this study was to improve the CTC detection rate in patients with pBC using the EpCAM/MCAM CellSearch System as described before (9). In brief, EpCAM-positive and MCAM-positive CTCs were enumerated in two separate runs using the CellSearch Epithelial Cell Kit (Janssen Diagnostics). For the MCAM enrichment, anti-MCAM ferrofluid-bound antibodies from the CellSearch Circulating Endothelial Cell Kit (Janssen Diagnostics) were used and FITC-conjugated CD34 (BD Biosciences; clone 8G12) was added as extra marker to exclude a subset of cytokeratin (CK)-18–expressing CECs (9). Nucleated, EpCAM, or MCAM-enriched cells, positive for CK/8/18/19, and negative for CD45 and CD34 for MCAM-positive cells, were considered CTCs. To enable distinction between EpCAM-positive and MCAM-positive CTCs, separate EpCAM- and MCAM enrichments were run. Combined EpCAM/MCAM CTC counts were calculated afterwards, using the sum of both separate enrichments.

The enumeration of CECs was done from 4 ml of blood using a flowcytometric assay with CD34+/DNA−/CD146−/CD45− as CEC phenotype, as described in full detail before (15).

Immunohistochemistry on primary tumor tissue

Expression of EpCAM and MCAM was evaluated on diagnostic core needle biopsies of primary tumors taken before NAC. Slides were incubated with anti-MCAM (1:100, clone N1238; Abcam) or anti-EpCAM (1:500, clone VU1D9; Cell Signaling Technologies), followed by the Envision System (DAKO) and counterstaining with hematoxylin. Scoring of staining intensity (negative/weak/moderate/strong) and estimation of the percentage of positive tumor cells were done by a well-trained technician and pathologist.

Statistical analysis

Primary objective of this study was to improve the CTC detection rate in patients with pBC using the EpCAM/MCAM CellSearch System as described before (9). In brief, EpCAM-positive and MCAM-positive CTCs were enumerated in two separate runs using the CellSearch Epithelial Cell Kit (Janssen Diagnostics). For the MCAM enrichment, anti-MCAM ferrofluid-bound antibodies from the CellSearch Circulating Endothelial Cell Kit (Janssen Diagnostics) were used and FITC-conjugated CD34 (BD Biosciences; clone 8G12) was added as extra marker to exclude a subset of cytokeratin (CK)-18–expressing CECs (9). Nucleated, EpCAM, or MCAM-enriched cells, positive for CK/8/18/19, and negative for CD45 and CD34 for MCAM-positive cells, were considered CTCs. To enable distinction between EpCAM-positive and MCAM-positive CTCs, separate EpCAM- and MCAM enrichments were run. Combined EpCAM/MCAM CTC counts were calculated afterwards, using the sum of both separate enrichments.

The enumeration of CECs was done from 4 ml of blood using a flowcytometric assay with CD34+/DNA−/CD146−/CD45− as CEC phenotype, as described in full detail before (15).

Immunohistochemistry on primary tumor tissue

Expression of EpCAM and MCAM was evaluated on diagnostic core needle biopsies of primary tumors taken before NAC. Slides were incubated with anti-MCAM (1:100, clone N1238; Abcam) or anti-EpCAM (1:500, clone VU1D9; Cell Signaling Technologies), followed by the Envision System (DAKO) and counterstaining with hematoxylin. Scoring of staining intensity (negative/weak/moderate/strong) and estimation of the percentage of positive tumor cells were done by a well-trained technician and pathologist.

Statistical analysis

Primary objective of this study was to improve the CTC detection rate in patients with pBC using the EpCAM/MCAM CellSearch System as described before (9). In brief, EpCAM-positive and MCAM-positive CTCs were enumerated in two separate runs using the CellSearch Epithelial Cell Kit (Janssen Diagnostics). For the MCAM enrichment, anti-MCAM ferrofluid-bound antibodies from the CellSearch Circulating Endothelial Cell Kit (Janssen Diagnostics) were used and FITC-conjugated CD34 (BD Biosciences; clone 8G12) was added as extra marker to exclude a subset of cytokeratin (CK)-18–expressing CECs (9). Nucleated, EpCAM, or MCAM-enriched cells, positive for CK/8/18/19, and negative for CD45 and CD34 for MCAM-positive cells, were considered CTCs. To enable distinction between EpCAM-positive and MCAM-positive CTCs, separate EpCAM- and MCAM enrichments were run. Combined EpCAM/MCAM CTC counts were calculated afterwards, using the sum of both separate enrichments.

The enumeration of CECs was done from 4 ml of blood using a flowcytometric assay with CD34+/DNA−/CD146−/CD45− as CEC phenotype, as described in full detail before (15).
Results

From December 2010 until May 2012, 81 patients were recruited from the NEOZOTAC trial (14). Only patients with both EpCAM and MCAM enumerations available were used in the analyses, leaving 68 evaluable patients at baseline—thus meeting our power calculations—and 39 patients after one NAC cycle (Fig. 1). The characteristics of the 68 patients are summarized in Table 1 and specified per patient in Supplementary Table S1.

Table 1. Patient characteristics and comparison of characteristics and outcome to NAC between patients with and without EpCAM-positive CTC(s) and patients with and without MCAM-positive CTC(s)

<table>
<thead>
<tr>
<th>Clinopathologic variable at diagnosis</th>
<th>All patients</th>
<th>EpCAM-positive CTCs at baseline</th>
<th>MCAM-positive CTCs at baseline</th>
<th>EpCAM- and/or MCAM-positive CTCs at baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>No CTCs ≥ 1 CTC</td>
<td>No CTCs ≥ 1 CTC</td>
<td>No CTCs ≥ 1 CTC</td>
</tr>
<tr>
<td>Age at diagnosis (years ± SD)</td>
<td>68</td>
<td>56</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Clinical tumor classification before NAC</td>
<td>51.2 ± 7.7</td>
<td>51.4 ± 7.9</td>
<td>49.9 ± 6.8</td>
<td>51.4 ± 7.9</td>
</tr>
<tr>
<td>Histological subtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductal</td>
<td>37 (54%)</td>
<td>28 (50%)</td>
<td>9 (75%)</td>
<td>30 (50%)</td>
</tr>
<tr>
<td>Lobular</td>
<td>13 (19%)</td>
<td>12 (21%)</td>
<td>1 (8%)</td>
<td>13 (22%)</td>
</tr>
<tr>
<td>Other</td>
<td>7 (10%)</td>
<td>6 (11%)</td>
<td>1 (8%)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>11 (16%)</td>
<td>10 (18%)</td>
<td>1 (8%)</td>
<td>11 (18%)</td>
</tr>
<tr>
<td>Hormone receptor expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrogen receptor Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>57 (84%)</td>
<td>46 (82%)</td>
<td>11 (92%)</td>
<td>50 (83%)</td>
</tr>
<tr>
<td>Progesterone receptor Positive</td>
<td>45 (66%)</td>
<td>36 (64%)</td>
<td>9 (75%)</td>
<td>38 (63%)</td>
</tr>
<tr>
<td>Menopausal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/perimenopausal</td>
<td>35 (52%)</td>
<td>29 (52%)</td>
<td>6 (50%)</td>
<td>31 (52%)</td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>52 (74%)</td>
<td>26 (46%)</td>
<td>6 (50%)</td>
<td>28 (47%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (1%)</td>
<td>1 (2%)</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Treatment received</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC</td>
<td>33 (49%)</td>
<td>27 (48%)</td>
<td>6 (50%)</td>
<td>30 (50%)</td>
</tr>
<tr>
<td>TAC + ZA</td>
<td>35 (51%)</td>
<td>29 (52%)</td>
<td>6 (50%)</td>
<td>30 (50%)</td>
</tr>
<tr>
<td>Pathologic complete response to NAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14 (21%)</td>
<td>12 (21%)</td>
<td>2 (17%)</td>
<td>14 (23%)</td>
</tr>
<tr>
<td>No</td>
<td>54 (79%)</td>
<td>44 (79%)</td>
<td>10 (83%)</td>
<td>46 (77%)</td>
</tr>
</tbody>
</table>

CTC counts

At baseline, 12 patients (18%) had ≥1 EpCAM-positive CTC(s) (median, 1; range, 1–4) and 8 (12%) had ≥1 MCAM-positive CTC(s) (median, 1; range, 1–5). Five patients (7%) had MCAM-positive CTCs only. The CTC detection rate increased from 16% with EpCAM alone to 25% when considering all EpCAM-positive and/or MCAM-positive CTCs (P = 0.08). The comparison between EpCAM-positive and MCAM-positive CTCs is shown in Table 2.

After the first NAC cycle, we detected EpCAM-positive CTCs in 6 patients (15%; median, 1; range, 1–7) and MCAM-positive CTCs in 6 patients (15%; median, 1; range, 1–4). Only one patient had both five EpCAM-positive CTCs and one MCAM-positive CTC. The CTC detection rate at this time point significantly increased from 16% with EpCAM only to 30% using EpCAM/MCAM combined (P = 0.02; Table 2.).

Table 2. Observed CTC counts after EpCAM versus MCAM enrichment in patients with both enumerations available at baseline and after the first cycle of NAC

<table>
<thead>
<tr>
<th>MCAM</th>
<th>Negative</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>51</td>
<td>9</td>
</tr>
<tr>
<td>Positive</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>After cycle</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>Positive</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>7</td>
</tr>
</tbody>
</table>

NOTE: Both enrichments were done from 7.5 mL of blood in separate runs and compared afterwards. A positive CTC count means ≥1 CTC/7.5 mL.
Endothelial cell counts

tions of changes in CTC counts during NAC.

during NAC. Figure 2 (left three bars) shows the observed direc-
time points and also turned positive for EpCAM-positive CTCs

These patients had EpCAM-positive CTCs at baseline or after the
cycle, whereas there were none detectable at baseline. None of

All patients

N = 39

Patients with pCR after NAC

n = 32

Patients without pCR after NAC

n = 33

Patients with pCR after NAC

n = 9

Figure 2.

Changes in CTC counts between baseline and after the first cycle of NAC with respect to the cutoff of ≥1 CTC/7.5 mL blood. Left three bars, all evaluable patients with blood drawn at both time points. Middle three bars, patients in whom pCR to NAC was not achieved. Right three bars, patients with pCR to NAC. No differences in CTC changes were found between patients with and without pCR. Reported P values are from χ² tests.

Comparing CTC counts at baseline and after the first cycle, 5
patients (13%) switched from CTC negative to positive when considering EpCAM-positive CTCs. Three of these patients did not have any MCAM-positive CTCs at both time points, whereas two had one MCAM-positive CTC after the first NAC cycle, of whom one had no MCAM-positive CTCs at baseline. In five other patients, we detected MCAM-positive CTCs after the first NAC cycle, whereas there were none detectable at baseline. None of these patients had EpCAM-positive CTCs at baseline or after the first cycle. One patient (3%) had MCAM-positive CTCs at both time points and also turned positive for EpCAM-positive CTCs during NAC. Figure 2 (left three bars) shows the observed directions of changes in CTC counts during NAC.

Endothelial cell counts

At baseline and after the first cycle, CECs were enumerated in 68
and 42 patients, respectively (Fig. 1). Median CEC counts were
44.5/4 mL blood (range, 3–1,475) at baseline and 144.5/4 mL
blood (range, 9–807) after the first cycle. In the 42 patients with
CEC counts at both time points available, we observed a significant
median increase during the first NAC cycle from 31.5 to
144.5 CECs (P < 0.001; Fig. 3). In 10 patients (24%), CECs
decreased during treatment.

Associations with clinical parameters

We found no associations between the presence of EpCAM-
positive and/or MCAM-positive CTCs at baseline and clinical
characteristics (Table 1). Fourteen of 68 patients (21%) achieved
pCR after NAC. The presence of EpCAM-positive CTCs at
baseline was not correlated with pCR. Interestingly, none of the
8 patients with ≥1 MCAM-positive CTC(s) at baseline achieved
pCR compared with 14 of 60 patients (23%) without MCAM-
positive CTCs (P = 0.13). Changes of either EpCAM-positive or
MCAM-positive CTCs during NAC were not associated with pCR
(Fig. 2, middle and right bars).

Figure 3.

Box-and-whisker plots showing observed CEC counts in 4 mL blood at
baseline (black-striped boxes) and after the first cycle of NAC (white-crossed
boxes) in all evaluable patients with blood drawn at both time points (N = 42).
All 42 patients are shown in left two boxes, patients who did not achieve pCR are
shown in the middle two boxes, and those who did achieve pCR are shown
in the right two boxes. A significant median increase in CECs during NAC was
found, which was not different for patients with or without pCR. Boxes show
the medians (middle line) and interquartile ranges (IQR), whiskers extend
from the median + 1.5 x IQR to median – 1.5 x IQR. Reported P value is from a
Wilcoxon signed ranks test.
Median CEC counts at baseline were 61.5/4 mL in the 14 patients with pCR compared with 40.5 in the 54 patients without pCR ($P = 0.37$). In the 42 patients with both CEC counts available, comparable median increases were observed between patients with and without pCR to NAC (Fig. 3). The pCR rate in patients with decreasing CEC counts was 2/10 (20%), which was not different from the 7 of 32 patients (22%; $P = 0.90$) with pCR and increasing CEC counts.

Expression of EpCAM and MCAM in primary tumors

Core needle biopsies taken before NAC were collected from 65 patients. In 5 patients, no invasive tumor or too few tumor cells were present for reliable evaluation, leaving 60 tumors for the evaluation of EpCAM. All tumors were positive for EpCAM, but seven tumors showed an EpCAM-negative focus and six had an EpCAM-weak focus. Expression of MCAM could be assessed in 59 seven tumors showed an EpCAM-negative focus and six had an EpCAM-weak focus. No MCAM-positive CTCs were detected in patients with MCAM-negative CTCs at baseline, nor changes of CTCs after the first NAC cycle.

In this study, we investigated MCAM as additional CellSearch enrichment marker next to EpCAM to improve the CTC capture rate in stage II/III breast cancer. At baseline, the CTC detection rate increased from 18% using EpCAM only to 25% using both MCAM and EpCAM. After one NAC cycle, we observed a significant increase from 16% to 30%. Nevertheless, the primary goal to improve the detection rate to >40%, at beforehand defined as clinically relevant, was not met.

Neither the presence of EpCAM-positive or MCAM-positive CTCs at baseline, nor changes of CTCs after the first NAC cycle correlated with clinicopathologic parameters. Interestingly, none of the patients with MCAM-positive CTCs at baseline achieved pCR compared with 23% of patients without MCAM-positive CTCs. Although not statistically significant, this difference may point to a prognostic unfavorable value of MCAM-positive CTCs and deserves further study. The pCR rate between patients with and without EpCAM-positive CTCs was similar. Baseline CEC counts and changes of either CECs or CTCs during NAC were not associated with pCR in our patient group. Associations with clinical outcome in terms of DFS and OS will have to be awaited.

Three other studies investigated the predictive and/or prognostic values of CTCs in the neoadjuvant setting (Table 3; refs. 2, 5–7, 17). The 11% to 23% of patients found CTC positive by EpCAM enrichment in these trials compares well with the 18% we found using the EpCAM enrichment only. Also in agreement with our findings, neither the presence of CTCs before or after NAC, nor changes during treatment correlated with pCR (2, 5, 17). Importantly, in the REMAGUS02 trial, pCR was no prognostic factor for distant metastasis-free survival and OS, whereas the baseline CTC count was (6, 7). The presence of CTCs might thus outperform pCR as prognostic factor in patients treated with NAC, possibly as indicator of the presence of micrometastases.

Increasing the CTC capture rate from peripheral blood will probably improve the prognostic and predictive value of CTC enumeration. Because MCAM is an EMT-inducer (18, 19), it might be a valuable enrichment marker for mesenchymal CTCs. Epithelial and mesenchymal CTCs were found to co-occur in patients with mBC, but mesenchymal cells showed to be better capable in predicting treatment failure (10). Previously, we showed that the CellSearch System misses EpCAM-negative breast cancer cell lines with EMT features and that recovery of these cell lines improves using MCAM, which is frequently expressed on these cell lines (9, 12).

We investigated the dual EpCAM/MCAM enrichment approach in patients with mBC and detected MCAM-positive CTCs in 9 of 20 patients (45%; ref. 9). Although associations with clinical outcome were not investigated, we hypothesized that MCAM-positive CTCs represent the mesenchymal, more aggressive subtype of CTCs. An upregulation of EMT-related transcription factors in CTCs during NAC has also been reported, possibly as survival mechanism for CTCs during chemotherapy (20). More insight into the process of EMT and the phenotype of mesenchymal CTCs will be required to investigate the clinical relevance of mesenchymal CTCs. Besides a loss of EpCAM, we found a downregulation of cytokeratins. Instead we found CD49f to be upregulated. Combining cytokeratin staining with CD49f in the CellSearch System resulted in improved recovery of cell lines with EMT features (21). The value of CD49f on the recovery of MCAM-positive CTCs and the clinical value thereof will be subject in a future study.

Discussion

In this study, we investigated MCAM as additional CellSearch enrichment marker next to EpCAM to improve the CTC capture rate in stage II/III breast cancer. At baseline, the CTC detection rate increased from 18% using EpCAM only to 25% using both MCAM and EpCAM. After one NAC cycle, we observed a significant increase from 16% to 30%. Nevertheless, the primary goal to improve the detection rate to >40%, at beforehand defined as clinically relevant, was not met.

Neither the presence of EpCAM-positive or MCAM-positive CTCs at baseline, nor changes of CTCs after the first NAC cycle correlated with clinicopathologic parameters. Interestingly, none of the patients with MCAM-positive CTCs at baseline achieved pCR compared with 23% of patients without MCAM-positive CTCs. Although not statistically significant, this difference may point to a prognostic unfavorable value of MCAM-positive CTCs and deserves further study. The pCR rate between patients with and without EpCAM-positive CTCs was similar. Baseline CEC counts and changes of either CECs or CTCs during NAC were not associated with pCR in our patient group. Associations with clinical outcome in terms of DFS and OS will have to be awaited.

Three other studies investigated the predictive and/or prognostic values of CTCs in the neoadjuvant setting (Table 3; refs. 2, 5–7, 17). The 11% to 23% of patients found CTC positive by EpCAM enrichment in these trials compares well with the 18% we found using the EpCAM enrichment only. Also in agreement with our findings, neither the presence of CTCs before or after NAC, nor changes during treatment correlated with pCR (2, 5, 17). Importantly, in the REMAGUS02 trial, pCR was no prognostic factor for distant metastasis-free survival and OS, whereas the baseline CTC count was (6, 7). The presence of CTCs might thus outperform pCR as prognostic factor in patients treated with NAC, possibly as indicator of the presence of micrometastases.

Increasing the CTC capture rate from peripheral blood will probably improve the prognostic and predictive value of CTC enumeration. Because MCAM is an EMT-inducer (18, 19), it might be a valuable enrichment marker for mesenchymal CTCs. Epithelial and mesenchymal CTCs were found to co-occur in patients with mBC, but mesenchymal cells showed to be better capable in predicting treatment failure (10). Previously, we showed that the CellSearch System misses EpCAM-negative breast cancer cell lines with EMT features and that recovery of these cell lines improves using MCAM, which is frequently expressed on these cell lines (9, 12).

We investigated the dual EpCAM/MCAM enrichment approach in patients with mBC and detected MCAM-positive CTCs in 9 of 20 patients (45%; ref. 9). Although associations with clinical outcome were not investigated, we hypothesized that MCAM-positive CTCs represent the mesenchymal, more aggressive subtype of CTCs. An upregulation of EMT-related transcription factors in CTCs during NAC has also been reported, possibly as survival mechanism for CTCs during chemotherapy (20). More insight into the process of EMT and the phenotype of mesenchymal CTCs will be required to investigate the clinical relevance of mesenchymal CTCs. Besides a loss of EpCAM, we found a downregulation of cytokeratins. Instead we found CD49f to be upregulated. Combining cytokeratin staining with CD49f in the CellSearch System resulted in improved recovery of cell lines with EMT features (21). The value of CD49f on the recovery of MCAM-positive CTCs and the clinical value thereof will be subject in a future study.

Table 3. Overview of relevant literature concerning the prognostic value of CTCs in patients with mBC treated with NAC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Trial</th>
<th>Detection platform</th>
<th>Blood volume (mL)</th>
<th>% CTC-positive patients</th>
<th>Correlation with pCR</th>
<th>DMFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierga et al. (5)</td>
<td>REMAGUS02</td>
<td>CellSearch</td>
<td>7.5</td>
<td>115</td>
<td>23%</td>
<td>17%</td>
<td>No</td>
</tr>
<tr>
<td>Bidard et al. (6,7)</td>
<td>GeparQuattro</td>
<td>CellSearch</td>
<td>7.5</td>
<td>287</td>
<td>22%</td>
<td>11%</td>
<td>No</td>
</tr>
<tr>
<td>Azim et al. (18)</td>
<td>NeoALLTO</td>
<td>CellSearch after Ficoll density gradient separation</td>
<td>22.5</td>
<td>51</td>
<td>11%</td>
<td>13%</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations: HR, hazard ratio; CI, confidence interval; FU, follow-up; DMFS, distant metastasis-free survival; NR, not reported.
Little is known about the prognostic value of CECs in breast cancer. Research in this field is greatly hampered by the lack of consensus on CEC phenotype. Consequently, different CEC definitions are handled and observed CEC counts using the different techniques are a 1,000-fold apart. Nonvalidated methods also showed to count macrophages and large platelets as CECs, leading to incomparable results. Technical obstacles have to be taken before concluding on the clinical value of CEC counts. Using a thoroughly validated flowcytometric method to measure CECs in 4 mL of peripheral blood, we found increasing CEC numbers during NAC, but no associations with pCR to NAC. The increase in CECs probably represents vascular damage due to NAC. Whether this is associated with long-term vascular complications warrants additional studies.

In conclusion, using MCAM as an additional enrichment marker next to EpCAM in the CellSearch System might improve the detection of CTCs in stage II/III breast cancer. Whether the detection of MCAM-positive CTCs and changes thereof during treatment of localized or metastatic breast cancer are of clinical relevance in terms of clinical outcome deserves further investigation.

Disclosure of Potential Conflicts of Interest
J.W.M. Martens and S. Sleijfer report receiving a commercial research grant from Janssen Diagnostics LLC. J.A. Foekens reports receiving other commercial research support from Janssen Diagnostics LLC. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: B. Mostert, J.R. Kroep, J.W.R. Nortier, S. van de Ven, J.W.M. Martens, S. Sleijfer

References

Molecular Cancer Therapeutics

Improved Circulating Tumor Cell Detection by a Combined EpCAM and MCAM CellSearch Enrichment Approach in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy

Wendy Onstenk, Jaco Kraan, Bianca Mostert, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0653

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/12/31/1535-7163.MCT-14-0653.DC1

Cited articles
This article cites 22 articles, 8 of which you can access for free at:
http://mct.aacrjournals.org/content/14/3/821.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/14/3/821.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.