Inhibition of p70S6K1 Activation by Pdcd4 Overcomes the Resistance to an IGF-1R/IR Inhibitor in Colon Carcinoma Cells

Yan Zhang¹, Qing Wang¹, Li Chen²,³, and Hsin-Sheng Yang¹,³

Abstract

Agents targeting insulin-like growth factor 1 receptor (IGF-1R) are being actively examined in clinical trials. Although there has been some initial success of single-agent targeting IGF-1R, attempts in later studies failed because of resistance. This study aimed to understand the effects of programmed cell death 4 (Pdcd4) on the chemosensitivity of the IGF-1R inhibitor OSI-906 in colorectal cancer cells and the mechanism underlying this impact. Using OSI-906–resistant and –sensitive colorectal cancer cells, we found that the Pdcd4 level directly correlates with cell chemosensitivity to OSI-906. In addition, tumors derived from Pdcd4 knockdown cells resist the growth inhibitory effect of OSI-906 in a colorectal cancer xenograft mouse model. Moreover, Pdcd4 enhances the antiproliferative effect of OSI-906 in resistant cells through suppression of p70S6K1 activation. Knockdown of p70S6K1, but not p70S6K2, significantly increases the chemosensitivity of OSI-906 in cultured colorectal cancer cells. Furthermore, the combination of OSI-906 and PF-4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906–resistant colon tumor cells in vitro and in vivo. Taken together, activation of p70S6K1 that is inhibited by Pdcd4 is essential for resistance to the IGF-1R inhibitor in colon tumor cells, and the combinational treatment of OSI-906 and PF-4708671 results in enhanced antiproliferative effects in colorectal cancer cells in vitro and in vivo, providing a novel venue to overcome the resistance to the IGF-1R inhibitor in treating colorectal cancer.

Introduction

The insulin-like growth factor 1 receptor (IGF-1R) signaling pathway has been shown to stimulate cancer development and progression in various cancers, including colorectal cancer (1–4). Conversely, inactivation of IGF-1R signaling inhibits tumor growth, reduces tumor metastasis, and enhances the antitumor effects of other cancer therapeutic agents (5–7). Upon binding with ligands (IGF-1, IGF-2, and insulin), IGF-1R leads to activation of downstream pathways, including the PI3K–AKT and Ras–MAPK pathways (2). Several epidemiologic studies have shown that IGF-1R activation correlates with the risk of colon cancer (8–10). In addition, immunohistochemical studies revealed that IGF-1R is overexpressed in colorectal cancer tissues compared with adjacent normal tissues (8). Moreover, the higher expression level of IGF-1R is associated with a higher grade and stage in patients with colorectal cancer (11). Thus, inhibition of the IGF-1R pathway may offer a promising strategy for colorectal cancer therapeutics.

OSI-906 (cis-3-[8-amino-1-(2-phenylquinolin-7-yl)imidazo[1, 5-a]pyrazin-3-yl]-1-methyl cyclobutanol) is a small molecule that binds to the ATP-binding pocket of tyrosine kinase receptors, causing dual inhibition of both IGF-1R and insulin receptor (IR; ref. 12). Tissue culture and xenograft studies have confirmed the antitumor properties of OSI-906 in several types of human cancer cells, including lung (13), colon (14, 15), liver (16), and ovarian (17). However, like other receptor tyrosine kinases that have been tested as therapeutic targets, tumor cells frequently develop resistance to IGF-1R inhibitors. Recently, in a study of 27 colon tumor cell lines responding to OSI-906 treatment, Pitts and colleagues (15) classified cell lines with an IC₅₀ value of ≤ 1.5 µmol/L as sensitive and cell lines with an IC₅₀ value of ≥ 5.0 µmol/L as resistant. A similar result was also reported by Flanigan and colleagues (14) using PQIP (cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobuty]-1- (2-phenyl-quinolin-7-yl)-imidazo[1,5-a] pyrazin-8-ylamine), an OSI-906 derivative. Consistent with the cell culture system, OSI-906 showed robust antitumor activity in the GEO (sensitive cell) xenografts, but did not significantly inhibit tumor growth in RKO (resistant cell) xenograft (14, 15). The mechanism that resistant cells deter the growth inhibition by OSI-906 is unknown.

Programmed cell death 4 (Pdcd4), a tumor suppressor, is frequently downregulated in several cancerous tissues compared with adjacent normal tissues, including colorectal cancer (18). Immunohistochemical studies showed that a high Pdcd4 protein level correlates with good prognosis in patients with colorectal cancer (18), suggesting that Pdcd4 expression level is an important factor for colorectal cancer patient survival. Overexpression of pdcd4 cDNA inhibits 12-O-tetradecanoylphorbol-13-acetate...
GEO-shLacZ (GEO-L), and GEO-shPdcd4 (GEO-P) cells were obtained from Selleckchem. All drugs were dissolved in DMSO at 10 mM and stored at −20° C for in vitro studies. For in vivo studies, both OSI-906 and PF-4708671 were dissolved in 25 mM tartaric acid.

Cell culture

The colon GEO and RKO cells were generously provided by Dr. Douglas Boyd (MD Anderson Cancer Center, Houston, TX), and the rest cell lines were purchased from the ATCC. GEO, HT29, RKO, and HCT116 cells were grown in McCoy’s medium. LoVo, SW480, SW620, and Colo205 cells were cultured in RPMI-1640 medium. Caco2 cells were cultured in Eagle’s Minimum Essential Medium. All medium was supplemented with 10% FBS, 2 mM L-glutamine, and 100 U/mL penicillin-streptomycin. HT29-shLacZ (HT29-L), HT29-shPdcd4 (HT29-P), GEO-shLacZ (GEO-L), and GEO-shPdcd4 (GEO-P) cells were generated as described previously (26). Cells were incubated at 37°C in a humidified atmosphere of 5% CO2 in air. All cell lines were tested and authenticated by the authors.

Overexpression of Pdcd4 and knockdown of S6K

For overexpression of Pdcd4, 5 × 10^5 cells were plated onto a 100-mm dish and transfected with 2.5 µg of pcDNA3.1–Pdcd4 plasmid (or 2.5 µg of pcDNA3.1 plasmid) using 7.5 µL of PolyJet DNA In Vitro Transfection Reagent (SignaGen Laboratories) according to the manufacturer’s protocol. For knockdown of p70S6K, 3.5 × 10^5 cells were seeded onto a 60-mm dish and transfected with 11 µL of 10 µmol/L p70S6K siRNA (or p70S6K2 siRNA; Santa Cruz Biotechnology), using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) according to the manufacturer’s protocol. After 48 hours, cells were collected for proliferation and Western blot analyses.

Cell proliferation and apoptosis assays

The effects of OSI-906 or the combination of OSI-906 and PF-4708671 on cell proliferation was determined with XTT and clonogenic assays. XTT assays were performed as described previously using the Cell Proliferation Kit II (XTT; Biotium, Inc.; ref. 28). For clonogenic assays, cells (1 × 10^3 cells/well) were seeded on a 6-well plate and subsequently treated with drugs as indicated in the legends of figures 4 and 5. After 1 week of incubation, cells were stained with 1% crystal violet, and the number of colonies was counted and recorded.

Apoptosis assays were performed using the Annexin V–FITC Apoptosis Kit (Biolegend). Briefly, 1 × 10^5 cells were washed with PBS twice and then resuspended in Annexin V–binding buffer. The cell suspension (100 µL) was subsequently added with 5 µL of Annexin V–FITC solution and 10 µL of propidium iodide solution. After incubation for 15 minutes at room temperature, 400 µL of Annexin V–binding buffer was added to the cell suspension and subsequently assayed for apoptotic cell distribution using a FacsCalibur cell analyzer (BD Biosciences).

Western blot analysis

Western blot analysis was performed as described previously (26). The following antibodies were used: Pdcd4 (1:2,500 dilutions), phospho-p70S6K1(Thr389), phospho-AKT(Ser473), p70S6K1 (1:500 dilutions), AKT, phospho-MDM2, phospho-S6, S6, phospho-4E-BP1(Thr37/46), 4E-BP1, casepase-3. The antibodies without specific dilution factor were used at 1:1,000 dilutions. Pdcd4 antibody was generated as described previously (26). The p70S6K2 antibodies were purchased from Thermo Fisher Scientific, cleaved caspase-3 antibody was purchased from Abcam, and the rest of the antibodies were purchased from Cell Signaling Technology. The band intensity of the target protein was quantified using VisionWork LS image acquisition and analysis software (IVVP).

In vivo xenograft study

Five- to 6-week-old female athymic nude mice (Hsd:Athymic Nude-Foxn1nu) were purchased from Harlan. Mice were maintained in the facility of University of Kentucky under specific pathogen-free conditions. Animal care procedures and experimental protocols were approved by the Institutional Animal Care and Use Committee based on guidelines from the NIH, Bethesda. All mice were fed with a commercial diet, given water ad libitum and subjected to a 12-hour light/12-hours dark cycle. HT29-L, HT29-P, and HCT116 cells (1 × 10^6 cells) in a logarithmic growth phase were harvested and resuspended in PBS. For each mouse, five million cells were injected s.c. into the flank using a 23-gauge needle. Mice were monitored daily for signs of toxicity and weighed twice weekly. Tumor size was evaluated every 3 days by caliper measurements. Tumor volume was calculated using the following formula: volume = length × width^2)/0.52. When tumors reached 150 to 300 mm^3, mice were randomly assigned to the following groups (5 mice/group). For injection of HT29-L and HT29-P cells, mice were treated with vehicle (25 mmol/L tartaric acid) or OSI-906 (30 mg/kg) for 12 days. For injection of HCT116 cells, mice were treated with (i) vehicle (25 mmol/L tartaric acid); (ii) OSI-906 alone (30 mg/kg); (iii) PF-4708671 alone (30 mg/kg); and (iv) PF-4708671 in combination with OSI-906. The effects of OSI-906 or the combination of OSI-906 and PF-4708671 on tumor growth were determined by caliper measurements and body weight measurement. Tumor volume and body weight were measured every 3 days by caliper measurements and body weight measurement. Tumor volume was calculated using the following formula: volume = length × width^2)/0.52. When tumors reached 150 to 300 mm^3, mice were randomly assigned to the following groups (5 mice/group). For injection of HT29-L and HT29-P cells, mice were treated with vehicle (25 mmol/L tartaric acid) or OSI-906 (30 mg/kg) for 12 days. For injection of HCT116 cells, mice were treated with (i) vehicle (25 mmol/L tartaric acid); (ii) OSI-906 alone (30 mg/kg); (iii) PF-4708671 alone (30 mg/kg); and (iv) PF-4708671 in combination with OSI-906.

Materials and Methods

Drug

OSI-906 and BMS-754807 were purchased from Chemie Tek. PF-4708671 was obtained from Selleckchem. All drugs were dissolved in DMSO at 10 mM and stored at −20°C for in vitro studies. For in vivo studies, both OSI-906 and PF-4708671 were dissolved in 25 mM tartaric acid.

Cell culture

The colon GEO and RKO cells were generously provided by Dr. Douglas Boyd (MD Anderson Cancer Center, Houston, TX), and the rest cell lines were purchased from the ATCC. GEO, HT29, RKO, and HCT116 cells were grown in McCoy’s medium. LoVo, SW480, SW620, and Colo205 cells were cultured in RPMI-1640 medium. Caco2 cells were cultured in Eagle’s Minimum Essential Medium. All medium was supplemented with 10% FBS, 2 mM L-glutamine, and 100 U/mL penicillin-streptomycin. HT29-shLacZ (HT29-L), HT29-shPdcd4 (HT29-P), GEO-shLacZ (GEO-L), and GEO-shPdcd4 (GEO-P) cells were generated as described previously (26). Cells were incubated at 37°C in a humidified atmosphere of 5% CO2 in air. All cell lines were not tested and authenticated by the authors.

In vivo xenograft study

Five- to 6-week-old female athymic nude mice (Hsd:Athymic Nude-Foxn1nu) were purchased from Harlan. Mice were maintained in the facility of University of Kentucky under specific pathogen-free conditions. Animal care procedures and experimental protocols were approved by the Institutional Animal Care and Use Committee based on guidelines from the NIH, Bethesda. All mice were fed with a commercial diet, given water ad libitum and subjected to a 12-hour light/12-hours dark cycle. HT29-L, HT29-P, and HCT116 cells (1 × 10^6 cells) in a logarithmic growth phase were harvested and resuspended in PBS. For each mouse, five million cells were injected s.c. into the flank using a 23-gauge needle. Mice were monitored daily for signs of toxicity and weighed twice weekly. Tumor size was evaluated every 3 days by caliper measurements. Tumor volume was calculated using the following formula: volume = length × width^2)/0.52. When tumors reached 150 to 300 mm^3, mice were randomly assigned to the following groups (5 mice/group). For injection of HT29-L and HT29-P cells, mice were treated with vehicle (25 mmol/L tartaric acid) or OSI-906 (30 mg/kg) for 12 days. For injection of HCT116 cells, mice were treated with (i) vehicle (25 mmol/L tartaric acid); (ii) OSI-906 alone (30 mg/kg); (iii) PF-4708671 alone (30 mg/kg); and (iv) PF-4708671 in combination with OSI-906.
alone (60 mg/kg); and (iv) OSI-906 (30 mg/kg) + PF-4708671 (60 mg/kg) and treated with drugs orally for 14 days. Vehicle and OSI-906 are given once per day and PF-4708671 is given once every other day. Twenty-four hours after the last treatment, the mice were sacrificed and the tumor weights were measured. It has been reported that treating mice with 25 to 75 mg/kg of OSI-906 per day significantly inhibits tumor growth without toxic effects (29). Thus, we chose the dose of OSI-906 at 30 mg/kg per day. The dosage of PF-4708671 at 60 mg/kg was chosen on the basis of the amount of PF-4708671 we used for in vitro study and the fact that the IC_{50} value of PF-4708671 is about twice that of the IC_{50} value of OSI-906 (29, 30). We treated mice with PF-4708671 every other day to reduce the potential toxicity. In fact, mice treated with OSI-906 (30 mg/kg), PF-4708671 (60 mg/kg), or OSI-906 (30 mg/kg) + PF-4708671 (60 mg/kg) for 14 days showed no evidence of toxicity, that is, body weight loss more than 15%, decreased food intake, or diarrhea.

Immunohistochemical analysis and TUNEL assay

The tissue samples were fixed with 4% neutral-buffered paraformaldehyde, embedded in paraffin, and sectioned into 4-μm slices. IHC analysis with Ki-67 antibody was carried out as described previously (25). The TUNEL assay was performed using the ApopTag Peroxidase *In Situ* Apoptosis Detection Kit (EMD Millipore) according to the manufacturer’s protocol. The apoptosis index and proliferation index were calculated as number of cells with positive TUNEL and Ki-67 staining per 500 cells counted × 100%, respectively.

Statistical analysis

For longitudinal tumor volume data, pairwise comparisons of interest were accomplished by linear mixed models on the log-transformed percentage of tumor volume with fixed effects of treatment group, time, and their interaction and random effects of intercept and slope. The log transformation was made on the percentage of tumor volume to improve the linearity assumption of the mean growth curve of the percentage of tumor volume. For tumor weight data, pairwise comparisons of interest were accomplished by two-sample *t* tests. Adjustment in *P* values due to multiple pairwise group comparisons was performed using the Holm procedure. Data are shown as the mean ± SD with at least four replicates (n ≥ 4) except semiquantification of Western blot analyses (n ≥ 2). Adjusted *P* values less than 0.05 were considered statistically significant. All statistical modeling and testing were performed by SAS version 9.3 and R version 3.0.1.

Results

The level of Pdcd4 expression correlates with the chemosensitivity to OSI-906 in colorectal cancer cells

To test whether Pdcd4 expression correlates with the sensitivity to OSI-906, an IGF-1R/IR inhibitor, we examined the Pdcd4 expression levels in four OSI-906–sensitive and four OSI-906–resistant colon cell lines. As shown in Fig. 1A, the Pdcd4 protein level in sensitive cells (HT29, Caco2, Colo205, and GEO) is much higher than in resistant cells (HCT116, SW480, and LoVo), implying that the Pdcd4 expression level correlates with the chemosensitivity to OSI-906 in colorectal cancer cells.

If Pdcd4 expression level is crucial for tumor cell sensitivity to OSI-906, altering the Pdcd4 level should affect the chemosensitivity to OSI-906 treatment. First, we overexpressed *pdcd4* cDNA in

![Figure 1. Expression level of Pdcd4 correlates with cell sensitivity to OSI-906. A. cell extracts from resistant (HCT116, RKO, SW480, and LoVo) and sensitive cells (HT29, Caco2, Colo205, and GEO) were analyzed with Western blot analysis to examine Pdcd4 expression level. B, overexpression of Pdcd4 in resistant cells enhances sensitivity to OSI-906. Cells were transfected with empty vector (SW480-C and HCT116-C) or *pdcd4* expression plasmid (SW480-Pdcd4 and HCT116-Pdcd4). After 48 hours, cells were plated onto 96-well plates and exposed to different concentrations of OSI-906. After 72 hours, the cell viability was determined using XTT. The absorbance at 0 nmol/L is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.05) versus control. C, knockdown of Pdcd4 in sensitive cells reduces sensitivity to OSI-906. Cells were transduced with lentiviral particles containing lacZ shRNA (HT29-L and GEO-L) or *pdcd4* shRNA (HT29-P and GEO-P). Cells were treated and assayed in B. The absorbance at 0 μmol/L is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.01) versus control. D, cells were plated onto 96-well plates and exposed to different concentrations of BMS-754807. After 72 hours, the cell viability was determined using XTT. The absorbance at 0 nmol/L is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.05) versus control. Each experiment was repeated at least twice. The representative data are shown.
OSI-906–resistant SW480 and HCT116 cells and treated cells with OSI-906 from 0 to 5 μmol/L for 72 hours. SW480 and HCT116 cells were chosen because of their low level of endogenous Pdcd4 (Fig. 1A). Overexpression of Pdcd4 enhanced the chemosensitivity of OSI-906 in SW480 and HCT116 cells (SW480-Pdcd4 and HCT116-Pdcd4) in both XTT assays (Fig. 1B) and clonogenic assays (Supplementary Fig. S1A). OSI-906 showed no significant effect on proliferation of cells expressing empty vector (SW480-C and HCT116-C). We also treated control and Pdcd4-overexpressing cells with OSI-906 at 5 μmol/L from 1 to 6 days. The Pdcd4-overexpressing cells treated with OSI-906 displayed slower proliferation than empty vector–expressing cells treated with OSI-906 (Supplementary Fig. S2). Next, we knocked down Pdcd4 expression in sensitive (HT29 and GEO) cells. Pdcd4 knockdown cells (HT29-P and GEO-P) exhibited resistance to OSI-906 comparing with control cells (HT29-L and GEO-L; Fig. 1C and Supplementary Fig. S1B). Pdcd4 knockdown cells were generated by transducing cells with lentiviral particles containing pdcd4 shRNA as described previously (26). These results suggest that the level of Pdcd4 expression is critical in sensitizing tumor cells to the antiproliferative effect of OSI-906.

We also evaluated whether Pdcd4 enhances cell sensitivity to another potent IGF-1R/IR inhibitor, BMS-754807 (31). As shown in Fig. 1D, BMS-754805 inhibits proliferation more efficiently in SW480 cells with Pdcd4 overexpression than in control cells. Conversely, knockdown of Pdcd4 in HT29 cells abolished the growth inhibitory effect of BMS-754807. These results further demonstrate that Pdcd4 enhances cell sensitivity to the IGF-1R inhibitor.

Tumors derived from Pdcd4 knockdown cells resist OSI-906

To further validate our *in vitro* results, we tested the efficacy of OSI-906 in inhibiting growth of tumors derived from HT29-L and HT29-P *in vivo*. As expected, OSI-906 (30 mg/kg, daily) dramatically inhibited tumor growth in mice injected with HT29-L (sensitive) cells (Fig. 2A, closed circle). However, OSI-906 did not significantly inhibit the growth of HT29-P (resistant) cells derived tumors (Fig. 2A, closed square) when compared with vehicle-treated mice (Fig. 2A, open square; *P = 0.639). The increased rate of tumor volume over time in HT29-L+OSI-906 is significantly slower than HT29-P+OSI-906 (*P = 0.045). In addition, treatment of OSI-906 for 12 days also showed significant decrease in tumor weight in HT29-L–derived tumors compared with vehicle-treated HT29-L–derived tumors (*P = 0.008) and OSI-906–treated HT29-P–derived tumors (*P < 0.001; Fig. 2B and C). These findings are consistent with the results observed *in vitro* with OSI-906 treatment, in which cells with low Pdcd4 level resist OSI-906 treatment.

Pdcd4 inhibits OSI-906–induced phosphorylation of p70S6K1 in colorectal cancer cells

To understand the mechanism by which Pdcd4 affects the chemosensitivity of OSI-906 in colorectal cancer cells, SW480 cells expressing empty vector (SW480-C) and Pdcd4 (SW480-Pdcd4) were treated with 5 μmol/L, the minimal IC\(_{50}\) value for the resistant cells (15), of OSI-906 for 0 to 72 hours. The OSI-906 efficiently inhibits AKT phosphorylation in all tested cells, indicating that the drug functions properly (Fig. 3A). Interestingly, p70S6K1 phosphorylation was increased in SW480-C, but not in SW480-Pdcd4 cells with OSI-906 treatment for 48 and 72 hours (Fig. 3A and Supplementary Fig. S3). The elevated p70S6K1 phosphorylation after OSI-906 treatment was also observed in parental SW480 and HCT116 cells (Fig. 3B and Supplementary Figs. S4 and S5). The increase in p70S6K1 phosphorylation in SW480-C cells correlates with the increase in phosphorylation of MDM2, a downstream target of p70S6K1 (32, 33). The activation of p70S6K1 is not likely through the feedback activation of AKT, because phosphorylation of AKT was inhibited after a 48- and 72-hour treatment of OSI-906. As seen in SW480 cells,
overexpression of pdcd4 cDNA in HCT116 cells also inhibited OSI-906–induced phosphorylation of p70S6K1 (Supplementary Fig. S6). To further confirm that Pdcd4 inhibits OSI-906–induced phosphorylation of p70S6K1, we treated HT29-L and HT29-P cells with 5 μmol/L of OSI-906. As shown in Fig. 3C and Supplementary Fig. S7, Pdcd4 knockdown increased phosphorylation of both p70S6K1 and MDM2 after OSI-906 treatment. The elevated p70S6K1 phosphorylation upon OSI-906 treatment when Pdcd4 is knocked down was also observed in GEO cells, another OSI-906–sensitive cell line (Supplementary Fig. S8). These data indicate that prolonged treatment of OSI-906 increased p70S6K1 phosphorylation in resistant cells, which can be reversed by Pdcd4.
Consistent with the increase in cell survival signal (phospho-p70S6K1 and phospho-MDM2), the level of cleaved caspase-3 was barely detectable in SW480-C cells treated with OSI-906 for 48 and 72 hours. However, the level of cleaved caspase-3 increased in SW480–Pdcd4 cells with same treatment (Fig. 3A, lanes 3 and 4 vs. 7 and 8, and Supplementary Fig. S3), suggesting that Pdcd4 inhibits phosphorylation of p70S6K1 leading to the increased apoptosis in response to OSI-906 treatment. Conversely, the cleaved caspase-3 level was barely detected in Pdcd4 knockdown cells (HT29-P) whereas it was increased in the control cells (HT29-L) after OSI-906 treatment for 48 and 72 hours (Fig. 3C, lanes 3 and 4 vs. 7 and 8, and Supplementary Fig. S7). To verify that Pdcd4 enhances the apoptosis induced by OSI-906 treatment, Annexin V assay was performed. As
shown in Fig. 3D, apoptosis increased approximately 12-fold in HCT116-pPdcd4 cells compared with that in control cells (HCT116-C) with OSI-906 treatment (20.25 vs. 1.76). Subjected to the same OSI-906 treatment, Pdcd4 knockdown (HT29-P) cells showed a slight decrease in apoptosis when compared with HT29-L cells (Fig. 3E, 15.53 vs. 11.38). These results suggest that Pdcd4 facilitates the apoptotic effects of OSI-906 treatment in cells.

Collectively, these findings indicate that colorectal cancer cells gain resistance to OSI-906, at least in part, through the activation of p70S6K1. These results also show that Pdcd4 inhibits OSI-906–induced p70S6K1 phosphorylation to render cells sensitive to OSI-906–induced apoptosis. We also noted that the total protein level of p70S6K1 was decreased in the Pdcd4-overexpressing cells, but increased in the Pdcd4 knockdown cells (Fig. 3A and C, and Supplementary Figs. S3, and S5–S8). Because Pdcd4 has been demonstrated to interact with translation initiation factor 4A (eIF4A) and inhibit protein translation (34–37), it needs to further investigate whether Pdcd4 regulates p70S6K1 translation.

Knockdown of p70S6K1 boosts the sensitivity to OSI-906 in colorectal cancer cells

The data presented above suggest that p70S6K1 is the key regulator for OSI-906 chemosensitivity in colorectal cancer cells. We thus knocked down p70S6K1 in HT29-P and SW480 cells. The p70S6K1 siRNA successfully knocked down approximately 50% of p70S6K1 in both HT29-P and SW480 cells (Fig. 4A). Knockdown of p70S6K1 slightly reduced cell proliferation in both HT29-P and SW480 cells (open circle vs. open square in Fig. 4B and C). However, p70S6K1 knockdown cells treated with OSI-906 (5 μmol/L) showed a significant reduction of proliferation in HT29-P and SW480 cells comparing with the scrambled siRNA transfected cells (closed circle vs. closed square in Fig. 4B and C). In contrast, successful knockdown of p70S6K1 in HT29-P and SW480 cells (Fig. 4D) showed no effect on proliferation in the presence or absence of OSI-906 (Fig. 4E and F). In addition, colony formation significantly decreased by OSI-906 treatment following transfection with s6k1 siRNA, but not s6k2 or scrambled siRNA (Fig. 4G). These results suggest that p70S6K1, but not p70S6K2, regulates the chemosensitivity of OSI-906 in colorectal cancer cells.

The combination of OSI-906 and PF-4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906–resistant colorectal cancer cells in vitro and in vivo

Because knockdown of p70S6K1 enhances cell sensitivity to OSI-906, we decided to test whether the combination of OSI-906 and a p70S6K1 inhibitor, PF-4708671, can efficiently inhibit the growth of OSI-906–resistant cells. We treated HCT116 cells with (i) vehicle (DMSO), (ii) OSI-906 (5 μmol/L), (iii) PF-4708671 (10 μmol/L), and (iv) OSI-906 (5 μmol/L) + PF-4708671 (10 μmol/L) for various amounts of time. As shown in Fig. 5A, HCT116 cells treated with OSI-906 alone (closed square) or PF-4708671 alone (open circle) slightly inhibited cell growth. In contrast, proliferation in HCT116 cells was significantly inhibited after a 2-day treatment with the combination of OSI-906 and PF-4708671 (closed circle). A similar result was also observed when SW480 cells were treated with the combination of OSI-906 and PF-4708671 (Fig. 5B). Colony formation also significantly reduced in OSI-906+PF-4708671–treated cells comparing with vehicle, OSI-906 alone, or PF-4708671 alone treated HCT116 or SW480 cells (Fig. 5C and D). OSI-906 and PF-4708671 efficiently inhibited phosphorylation of AKT and ribosomal protein S6, respectively, in both HCT116 and SW480 cells (Fig. 5E and Supplementary Figs. S9 and S10), indicating that both drugs function properly. It has been reported that PF-4708671 can inhibit the kinase activity of p70S6K1 as evidenced by decreased phosphorylation of ribosomal protein S6, even though p70S6K1 phosphorylation is increased (30). Cells treated with OSI-906+PF-4708671 reduced OSI-906–induced p70S6K1 activation and MDM-2 phosphorylation, and consequently increased in levels of cleaved caspase-3 (Fig. 5E and Supplementary Figs. S9 and S10). These findings further support the notion that inhibition of p70S6K1 overcomes the OSI-906 resistance in colorectal cancer cells.

To further validate the results of in vitro study, we used the most stringent model of HCT116 cells derived tumor xenograft model, to test the efficacy of the combination of OSI-906 and PF-4708671, on inhibiting tumor growth in vivo. The tumor growth rate in mice treated with the combination of OSI-906+PF-4708671 was significantly slower than that of OSI-906 alone (P = 0.0189) or PF-4708671 alone (P = 0.0165) treated mice (Fig. 6A, closed circle vs. closed square or open circle). The average tumor volume in the OSI-906+PF-4708671–treated mice was approximately 50% of that in mice treated with OSI-906 (P = 0.0056) or PF-4708671 alone (P < 0.001) at the end of a 15-day treatment (Fig. 6A). Similarly, the tumor weights from OSI-906+PF-4708671–treated mice (filled column) were approximately 50% of that in mice treated with OSI-906 alone (slashed column, P < 0.001) or PF-4708671 alone (gridded column, P < 0.001) (Fig. 6E and F). The apoptosis index and proliferation index of tumors from OSI-906+PF-4708671–treated mice were 197% and 76%, respectively (Fig. 6E and F). These findings suggest that the combination of OSI-906 and PF-4708671 overcomes the OSI-906 resistance and offers a feasible clinical testing for colorectal cancer treatment.

Discussion

In this study, we have shown that Pdcd4 expression level plays a key role in sensitizing colorectal cancer cells to OSI-906 treatment (Figs. 1 and 2). We also found that Pdcd4 enhances OSI-906 chemosensitivity through inhibition of p70S6K1 activation in colorectal cancer cells (Fig. 3). Knockdown or inhibition of p70S6K1 has significantly increased the efficacy of OSI-906 in inhibiting colorectal cancer cells growth in cultured cells and xenografts (Figs. 4–6). Thus, the combination of OSI-906 and the p70S6K1 inhibitor, PF-4708671, will inhibit growth of both OSI-906-sensitive and –resistant colorectal cancer cells. Results from our preclinical models offer a strong rationale for applying the combination of OSI-906 and p70S6K1 inhibitors, PF-4708671, to colorectal cancer therapeutics.
Our data suggested that the increased p70S6K1 phosphorylation in resistant cells (SW480 and HCT116) plays a critical role in OSI-906 resistance. The p70S6K, composed of p70S6K1 and p70S6K2 isoforms, is a serine/threonine kinase, which has been demonstrated to promote cell survival and protein translation (38, 39). It has been suggested that activation of p70S6K1 promotes cell survival through phosphorylation of MDM2 at Ser166 (33). Phosphorylation of MDM2 results in polyubiquitination and degradation of p53, and thereby inhibits p53-dependent apoptosis (40). In agreement with this scenario, resistant cells (SW480, HCT116, SW480-C, and HCT116-C) treated with OSI-906 for 48 and 72 hours showed increase in

Figure 5.
The combination of OSI-906 and PF-4708671 significantly inhibits the growth of resistant colorectal cancer cells. A and B, HCT116 (A) and SW480 (B) cells were treated with vehicle, OSI-906 (5 μmol/L) alone, PF-4708671 (10 μmol/L) alone, or OSI-906 (5 μmol/L) + PF-4708671 (10 μmol/L) for 0 to 6 days. Cell viability was determined using XTT. The absorbance at day 0 is designed as 100%. Results are expressed as mean ± SD (n = 4); *, significant difference (P < 0.001) versus vehicle, OSI-90 alone, or PF-4708671 alone. C and D, clonogenic assay. HCT116 (C) and SW480 (D) cells were treated with vehicle, OSI-906 (5 μmol/L) alone, PF-4708671 (10 μmol/L) alone, or OSI-906 (5 μmol/L) + PF-4708671 (10 μmol/L) for 7 days. Data, mean ± SD (n = 3); *, significant difference (P < 0.001). The representative images are shown at the bottom. E, Western blot analyses were performed using cell extracts from cells treated with vehicle, OSI-906 (5 μmol/L) alone, PF-4708671 (10 μmol/L) alone, or OSI-906 (5 μmol/L) + PF-4708671 (10 μmol/L) for 72 hours. Each experiment was repeated at least twice. The representative data are shown.
phosphorylation of p70S6K1, concomitant increase in phosphorylation of MDM2, and decrease in cleaved caspase-3 and apoptosis (Fig. 3 and Supplementary Figs. S3–S8). The OSI-906-induced phosphorylation of p70S6K1 and MDM2 was inhibited, and thereby cleaved caspase-3 and apoptosis was increased when Pdcd4 was overexpressed in the resistant cells. In addition to colorectal cancer cells, the elevation of phospho-p70S6K level was also observed in the IGF-1R

Figure 6.
The combination of OSI-906 and PF-4708671 significantly inhibits the growth of HCT116-derived tumor in nude mice. Nude mice (5 mice/group) were s.c. injected with HCT116 cells and treated with vehicle (25 mmol/L tartaric acid), OSI-906 (30 mg/kg) alone, PF-4708671 (60 mg/kg) alone, or OSI-906 (30 mg/kg) + PF-4708671 (60 mg/kg) for 15 days. A, tumor volumes were measured using calipers; *, significant difference (P < 0.001) versus vehicle or PF-4708671 alone after a 15-day treatment; #, significant difference (P < 0.01) versus OSI-906 alone after a 15-day treatment. B, image of tumors after a 15-day treatment. C, average tumor weight of each group after a 15-day treatment; *, significant difference (P < 0.001) versus vehicle, OSI-906 alone, or PF-4708671 alone. D, tumor sections were examined for DNA fragmentation (TUNEL) or stained with Ki-67 antibody. The representative images are shown. The brown color indicates the positively stained cells; scale bar, 50 μm. E and F, the apoptosis index (E) and proliferation index (F) were calculated as number of TUNEL- and Ki-67-positive cells per 500 cells counted, respectively. Two independent tumors were chosen with counting three areas each. The representative data are shown and expressed as the mean ± SD; *, significant difference (P < 0.005).
inhibitor–resistant breast MCF7 cells (41). These findings collectively suggest that OSI-906 resistance in colorectal cancer cells is at least partially contributed by activation of p70S6K1.

It has been reported that p70S6K1 is able to phosphorylate Pdc4 at Ser67 and subsequently leads to proteasome degradation of Pdc4 (42). Interestingly, our data also suggest that Pdc4 can regulate p70S6K1 phosphorylation because overexpression of Pdc4 in the resistant cells (SW480 and HCT116) inhibited phosphorylation of p70S6K1 induced by OSI-906 treatment, whereas knockdown of Pdc4 in the sensitive cells (HT29 and GEO) enhanced OSI-906–induced phosphorylation of p70S6K1 (Fig. 3 and Supplementary Figs. S3 and S6). These findings reveal a feedback mechanism of the regulation between Pdc4 and p70S6K1. We also noted that overexpression of Pdc4 decreased p70S6K1 protein levels (Fig. 3A and Supplementary Figs. S3 and S6) and knockdown of Pdc4 elevated p70S6K1 protein levels (Fig. 3C and Supplementary Figs. S7 and S8). Pdc4 has been demonstrated to bind with eIF4A and inhibit protein translation, which preferentially inhibits translation of mRNA possessing secondary structures at 5′ untranslated region (5′UTR) with free energy (ΔG) higher than –44.8 kcal/mol (34, 35, 37). The ΔG value of the partial 5′UTR in p70S6K1 is –82.30 kcal/mol (as calculated with the mfold program). It is, thus, possible that Pdc4 directly regulates the translation of p70S6K1, which needs further investigation.

The findings that knockdown or inhibition of p70S6K1 greatly enhanced the efficacy of OSI-906 in inhibiting the growth of colon tumor SW480 and HCT116 cells (Figs. 4 and 5), suggesting that combination targeting both IGF-IR and p70S6K1 is a promising strategy for colorectal cancer therapies. This concept was further supported by an HCT116 xenograft study in which the combination of OSI-906 and the p70S6K1 inhibitor PF-4708671 suppressed tumor growth significantly greater than either agent alone by the end of the 15-day study (Fig. 6). It is noteworthy that Pdc4 protein level also positively correlated with p70S6K1 activation (42). Elevation of Pdc4 has been demonstrated to bind with eIF4A and inhibit protein translation, which preferentially inhibits translation of mRNA possessing secondary structures at 5′UTR with free energy (ΔG) higher than –44.8 kcal/mol (34, 35, 37). The ΔG value of the partial 5′UTR in p70S6K1 is –82.30 kcal/mol (as calculated with the mfold program). It is, thus, possible that Pdc4 directly regulates the translation of p70S6K1, which needs further investigation.

The findings that knockdown or inhibition of p70S6K1 greatly enhanced the efficacy of OSI-906 in inhibiting the growth of colon tumor SW480 and HCT116 cells (Figs. 4 and 5), suggesting that combination targeting both IGF-IR and p70S6K1 is a promising strategy for colorectal cancer therapies. This concept was further supported by an HCT116 xenograft study in which the combination of OSI-906 and the p70S6K1 inhibitor PF-4708671 suppressed tumor growth significantly greater than either agent alone by the end of the 15-day study (Fig. 6). It is noteworthy that Pdc4 protein level also positively correlated with p70S6K1 activation (42). Elevation of Pdc4 has been demonstrated to inhibit AP-1 and β-catenin–dependent transcription (23, 26, 43). Thus, cells treated with PF-4708671 may inhibit p70S6K1 activity directly and inhibit AP-1 and β-catenin transcription indirectly through Pdc4. Because HCT116 cells are metastatic when cells were injected into nude mice (44), suppression of tumor growth in HCT116 xenograft by combined treatment of OSI-906 and PF-4708671 implies that this combination has a broad spectrum in inhibiting colorectal cancer, that is, inhibiting both primary and metastatic colon tumor growth. The efficacy of the combined treatment of OSI-906 and PF-4708671 in inhibiting metastatic colon tumor growth needs to be further studied.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: Q. Wang, H.-S. Yang
Development of methodology: Y. Zhang
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Y. Zhang, Q. Wang
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): I. Chen, H.-S. Yang
Writing, review, and/or revision of the manuscript: Y. Zhang, Q. Wang, H.-S. Yang
Study supervision: H.-S. Yang

Acknowledgments
The authors thank Jennifer Rogers for critical reading and editing the article.

Grant Support
This work was supported by NCI/NIH grant R01CA129015 and NCCR/NCATS grant U1TR000117 (to H.-S. Yang), and NCI/NIH center core support grant P30CA177558 (to L. Chen).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 1, 2014; revised December 15, 2014; accepted December 31, 2014; published OnlineFirst January 8, 2015.

References
Pdcd4 Enhances the Efficacy of OSI-906 in CRC

Molecular Cancer Therapeutics

Inhibition of p70S6K1 Activation by Pdcd4 Overcomes the Resistance to an IGF-1R/IR Inhibitor in Colon Carcinoma Cells

Yan Zhang, Qing Wang, Li Chen, et al.

Mol Cancer Ther 2015;14:799-809. Published OnlineFirst January 8, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0648

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/01/09/1535-7163.MCT-14-0648.DC1

Cited articles
This article cites 44 articles, 19 of which you can access for free at:
http://mct.aacrjournals.org/content/14/3/799.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/14/3/799.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://mct.aacrjournals.org/content/14/3/799.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.