p53 is a critical tumor suppressor and is the most frequently inactivated gene in human cancer. Inhibition of the interaction of p53 with its negative regulator MDM2 represents a promising clinical strategy to treat p53 wild-type tumors. AMG 232 is a potential best-in-class inhibitor of the MDM2–p53 interaction and is currently in clinical trials. We characterized the activity of AMG 232 and its effect on p53 signaling in several preclinical tumor models. AMG 232 binds the MDM2 protein with picomolar affinity and robustly induces p53 activity, leading to cell-cycle arrest and inhibition of tumor cell proliferation. AMG 232 treatment inhibited the in vivo growth of several tumor xenografts and led to complete and durable regression of MDM2-amplified SJSA-1 tumors via growth arrest and induction of apoptosis. Therapeutic combination studies of AMG 232 with chemotherapies that induce DNA damage and p53 activity resulted in significantly superior antitumor efficacy and regression, and markedly increased activation of p53 signaling in tumors. These preclinical data support the further evaluation of AMG 232 in clinical trials as both a monotherapy and in combination with standard-of-care cytotoxic agents. Mol Cancer Ther; 14(3); 649–58. © 2015 AACR.
HCT116 p53−/− cells were obtained from Bert Vogelstein. KS-1 and SNG-M were purchased from the Japanese Collection of Research Bioresources (HSRBB) and used within 6 months. G-401, G-361, Ls174T cells (purchased from ATCC), EOL-1 cells (purchased from DSMZ) and KP-4 cells (purchased from HSRBB) were used after 6 months of purchase.

Surface plasmon resonance spectroscopy binding assay (Biacore)
As previously described in ref. (10).

Cell proliferation assays
Bromodeoxyuridine (BrdUrd) for HCT116 and ACHN cell assays, and EdU for SJSA-1 cell assay. As previously described in ref. (10).

p21 IC50 cell assay
As previously described in ref. (10).

Immunoblot analysis
Tumor cells were treated with DMSO (0.1%) or AMG 232 (0.1, 1, or 10 μmol/L). After 24 hours, protein lysates were collected, electrophoresed, and transferred to polyvinylidene difluoride membranes (Life Technologies). Primary antibodies: p53 (DO-1; Calbiochem), MDM2 (BD Pharmingen), p21 (R&D Systems), PUMA (Abcam), or β-actin–HRP (Sigma).

Cell viability assay (72 hours)
Cell lines were plated in 96- or 384-well plates at optimum initial seeding densities to ensure that cells did not reach confluence by the end of the assay. The cells were treated with DMSO control or AMG 232 at various concentrations for 72 hours. CellTiter-Glo Luminescent Cell Viability (Promega) or ATPLite assay (cat no. DGD150) following the manufacturer’s instructions. The qRT-PCR reactions were assayed on the Applied Biosystems Prism 7900HT instrument and the data were analyzed with Applied Biosystems SDS2.2 software. The SDS2.2 software calculated the p21 and GAPDH copy number in each of the tumor samples. The copy number of p21 was normalized to the copy number of the GAPDH, and the fold increase of normalized p21 levels were calculated relative to vehicle control for each sample. For MIC-1, plasma was collected at the time of sacrifice and MIC-1 was detected using R&D Quantikine Human MIC-1 Immunoassay (cat no. DG1D150) following the manufacturer’s instructions. The ELISA assay was read using a SpectraMax M5 microplate reader using Softmax pro v4 (Molecular Devices).

Xenograft studies
SJSA-1 cells (5 × 10^6 cells with Matrigel at a ratio of 2:1), NCI-H460 cells (5 × 10^6 cells with Matrigel at a ratio of 2:1), A375sq2 (5 × 10^6 cells with Matrigel at a ratio of 2:1), or HCT116 (2 × 10^6 cells) were injected subcutaneously in the flank of female athymic nude mice (n = 10/group). Tumor dimensions were assessed twice weekly with a Pro-Max electronic digital caliper (Sylvac) and tumor volume was calculated using the formula: length × width × height and expressed as mm³. Data are expressed as mean ± SEM. Body weight was recorded twice weekly to assess tolerability (data not shown). Analysis of p21 mRNA at the end of the xenograft studies was performed as described for the p21 pharmacodynamic assay.

Detection of BrdUrd and cleaved caspase-3 in xenografts
Tumors were harvested 6 hours after the last treatment, formalin fixed, and processed into paraffin. Two hours before harvest, mice were intraperitoneally injected with BrdUrd (50 mg/kg). Tumor sections were immunostained for either BrdUrd or cleaved capase-3 using commercial antibodies and counterstained with hematoxylin. Sections were scanned at ×20 via the Aperio Digital Scanner and positive nuclear densities were determined using Visionmorph image analysis software.

Statistical analysis
For in vitro AMG 232 dose–response efficacy studies, repeated-measures ANOVA (RMANOVA) followed by the Dunnett post hoc test for multiple comparisons was used to evaluate statistical
significance of observed differences. For the combination studies, RMANOVA followed by the Dunnett post hoc test was used to compare the combination treatments with single-agent treatments. The in vivo pharmacodynamic and mechanism of action experiments were analyzed with ANOVA (Kruskall–Wallis) followed by the Dunnett post hoc test. All statistical analyses were performed using JMP software v8 interfaced with SAS v9.1 (SAS Institute, Inc.).

Results

AMG 232 potently inhibits the MDM2–p53 interaction

AMG 232 was discovered via optimization of AM-8553, our previously described piperidinone inhibitor of MDM2 (10). Further investigation into the N-alkyl substituent of this series led to the discovery of AMG 232 (Supplementary Fig. S1A), which inhibits significantly improved biochemical and cell-based potencies, and in vivo properties (12). Based upon X-ray co crystall structures of related molecules (12), a model of AMG 232 bound to MDM2 was developed. The model shows that the m-chlorophenol, the p-chlorophenol, and C-linked isopropyl fragments of AMG 232 bind to the Leu 26(p13), Trp 23(p13), and Phe 19(p13) pockets of MDM2, respectively (Supplementary Fig. S1B). The carboxylic acid forms a salt bridge with His 96 and the isopropyl sulfone forms a novel interaction with the glycine shelf region of MDM2. As previously reported (12), AMG 232 inhibited the p53–MDM2 interaction in a cell-free homogeneous time resolved fluorescence (HTRF)-binding assay with an IC_{50} of 0.6±0.4 nmol/L. Consistent with these data, Biacore assays revealed that AMG 232 binds to MDM2 with a K_{D} of 0.045 nmol/L. To understand the relative biochemical potencies of AMG 232 compared with other recently described MDM2 inhibitors, a head-to-head Biacore assay was conducted with RG7112, SAR299155, and RG7388 (9, 11, 14). AMG 232 was the most potent inhibitor in this assay (Table 1). AMG 232 induces p53 signaling and inhibits tumor cell proliferation

Activation of p53 signaling was determined by measuring induction of p21 mRNA, a direct transcriptional target of p53, in three p53 wild-type tumor cell lines (SISA-1, HCT116, and ACHN). AMG 232 treatment caused robust p21 mRNA induction between 9.76- and 34.9-fold with IC_{50} values ranging from 12.8 to 46.8 nmol/L (Table 2). Similarly, cell proliferation assays demonstrated that AMG 232 treatment potently inhibited prolifera-

Table 2. Comparison of cell biochemistry from MDM2 inhibitors

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Biacore K_{D} (nmol/L)</th>
<th>Potency shift from AMG 232</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG7112</td>
<td>2.9</td>
<td>-64.4</td>
</tr>
<tr>
<td>SAR299155</td>
<td>2.7</td>
<td>-60</td>
</tr>
<tr>
<td>RG7388</td>
<td>0.15</td>
<td>-3.3</td>
</tr>
<tr>
<td>AMG 232</td>
<td>0.045</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3. Comparison of cell biochemistry in an SISA-1 proliferation assay

<table>
<thead>
<tr>
<th>Compound name</th>
<th>SISA-1 proliferation IC_{50} (mol/L)*</th>
<th>Potency shift from AMG 232</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGM097</td>
<td>931 (n = 1)</td>
<td>-102.3</td>
</tr>
<tr>
<td>RG7112</td>
<td>590.2 ± 210.0 (n = 15)</td>
<td>-64.9</td>
</tr>
<tr>
<td>SAR299155</td>
<td>242.2 ± 24.6 (n = 4)</td>
<td>-23.5</td>
</tr>
<tr>
<td>RG7388</td>
<td>45.4 ± 5.9 (n = 2)</td>
<td>-5.0</td>
</tr>
<tr>
<td>AMG 232</td>
<td>9.1 ± 2.9 (n = 69)</td>
<td>—</td>
</tr>
</tbody>
</table>

AMG 232 Regresses Tumors and Enhances Chemotherapy Efficacy
SJSA-1 and HCT116 tumors. Tumors treated with vehicle served as a negative control and indicated the baseline mRNA levels. AMG 232 treatment resulted in time- and dose-dependent induction of p21 mRNA in SJSA-1 tumors (Fig. 2B, top). p21 levels peaked at 4 hours after dose, and achieved maximal induction of approximately 30-fold over control in the 75 mg/kg group. In the 10 and 25 mg/kg groups, p21 levels were significantly elevated from 1 to 8 hours after dose, and returned to baseline levels by 24 hours. However, in the 75 mg/kg group, p21 levels remained significantly elevated out to 24 hours after dose. Similar effects were observed on MDM2 and PUMA expression in SJSA-1 tumors, where AMG 232 treatment caused a >10-fold induction of these p53 targets after 4 hours (75 mg/kg group; Fig. 2B, bottom), and sustained elevation out to 24 hours after dose. AMG 232 treatment also caused a dose-dependent induction of p21, MDM2, and PUMA mRNA in HCT116 tumors (Fig. 2C). At 6 hours after dose, AMG 232 treatment of HCT116 tumor-bearing mice caused induction of p21 and MDM2 transcript levels by approximately 13-fold and approximately 4-fold over control (100 and 15 mg/kg, respectively). PUMA expression was also significantly elevated in HCT116 tumors, but the magnitude of PUMA induction (4-fold in 100 mg/kg group) was less than the other p53 targets, and less than PUMA induction observed in SJSA-1 tumors. For an additional pharmacodynamic readout of p53 pathway activity, we measured the secreted protein MIC-1 (human specific) in the plasma of AMG 232-treated, HCT116 tumor-bearing mice. MIC-1 protein was elevated by 6-fold (100 mg/kg) and 3-fold (15 mg/kg) after 6 hours of AMG 232 treatment (Fig. 2D). Taken together, the induction of p21, MDM2, PUMA, and MIC-1 indicated on-mechanism activation of the p53 pathway by AMG 232 treatment.

AMG 232 potently inhibits growth of tumor xenografts in mice

We evaluated the antitumor activity of AMG 232 in xenograft models representing different genetic backgrounds and various tumor types. All tumor cell lines utilized in xenograft models harbored wild-type p53. Daily oral administration of AMG 232 resulted in significant tumor growth inhibition (TGI) across all models (Fig. 3A, C, E, and G). SJSA-1, an MDM2 amplified osteosarcoma model, was the most sensitive to AMG 232 treatment with an ED50 of 9.1 mg/kg. In the highest dose group of 75 mg/kg, 10 of 10 tumors completely regressed and were undetectable after 10 days of treatment. AMG 232 treatment was stopped in this group after day 25, and mice were observed for an additional 50 days. There was no detectable SJSA-1 tumor regrowth in any of the mice. Additional xenograft
models demonstrated a range of *in vivo* antitumor activity of AMG 232. In the HCT116 colorectal cancer model (KRAS mutant), the highest dose of AMG 232 resulted in 86% TGI compared with control, and the ED$_{50}$ was 31 mg/kg (Fig. 3C). AMG 232 treatment in an A375sq2 BRAF-mutant melanoma model resulted in 97% TGI, with an ED$_{50}$ of 18 mg/kg (Fig. 3E). The NCI-H460 non–small cell lung cancer model was the least sensitive, where AMG 232 treatment resulted in 60% TGI at the highest dose, with an ED$_{50}$ of 78 mg/kg (Fig. 3G). There was no body weight loss in any of the AMG 232 xenograft studies (Supplementary Fig. S3). To note, AMG 232 displays approximately 40-fold less biochemical potency on murine MDM2 compared with human MDM2 (data not shown).

Tumors were harvested at the end of each xenograft study to determine the effect of AMG 232 treatment on p53 pathway activity. AMG 232 treatment resulted in a dose- and time-dependent induction of p21 mRNA compared with vehicle-treated tumors (Fig. 3B, D, F, and H). The level of p21 induction within each tumor model related to the degree of TGI, where p21 levels were highest in tumors whose growth was most inhibited. However, the maximum p21 induction level varied across tumor models.

AMG 232 blocks DNA synthesis and induces apoptosis *in vivo* To further understand the mechanism whereby AMG 232 caused inhibition of tumor growth *in vivo*, we assessed the effect of AMG 232 treatment on cell cycle and apoptosis. Incorporation of BrdUrd and cleavage of caspase-3 were examined by IHC in the SJSA-1 and HCT116 xenografts, representing, respectively, a model that regresses and a model that undergoes cytostasis after AMG 232 treatment (Fig. 3A and C). Tumor-
bearing mice were treated daily with AMG 232 or vehicle control, and tumors were harvested 6 hours after one dose (day 1) or four doses (day 4). In the SJSA-1 tumors, there was a significant decrease in BrdUrd incorporation after one dose, and a marked decrease (88%) after 4 days of dosing (Fig. 4A and B), demonstrating a robust inhibition of the cell cycle by AMG 232. Concomitantly, increased cleaved caspase-3 staining was observed after one dose, which was further increased by day 4 when a marked 12-fold induction of cleaved caspase-3 was observed (Fig. 4C and D). In HCT116 tumors, there was no

- Figure 3.
 AMG 232 treatment inhibits tumor growth in vivo in a broad range of tumor models. For each xenograft model, the left panel shows the effect of AMG 232 treatment on tumor growth over time (n = 10/group), and the right panel is the effect on p21 mRNA induction in tumors taken at the end of the study (at 1, 2, 4, 8, or 24 hours. n = 2/time point). Treatment began when tumors reached approximately 200 mm³, and all groups were treated daily by oral gavage. Data, mean ± SEM. *, P < 0.001; **, P < 0.005; ***, P < 0.05 compared with vehicle control group. A and B, SJSA-1. C and D, HCT116. E and F, A375sq2. G and H, NCI-H460.
detectable effect on the cell cycle after one dose (6 hours); however, by day 4, AMG 232 treatment caused a 96% decrease in BrdUrd incorporation (Fig. 4E and F). There was a moderate increase in cleaved caspase-3 staining in HCT116 tumors after one dose, but this effect reversed and after 4 days of AMG 232 treatment cleaved caspase-3 levels were slightly less than control tumors (Fig. 4G and H). Taken together, AMG 232 treatment resulted in marked reductions in BrdUrd incorporation in both tumor models, reflecting a robust arrest of the cell cycle.

Apoptosis was induced more dramatically in the SJSA-1 tumor model compared with HCT116, consistent with the observations of tumor regression and cytostasis, respectively, after AMG 232 treatment (Fig. 3A and B).

AMG 232 potentiates the antitumor activity of p53-inducing cytotoxics in vivo

We investigated combination treatment of AMG 232 with several standards of care where there was clear biologic rationale to support an interaction in the p53 pathway. Cytotoxic agents that induce DNA damage and p53 activation were evaluated in relevant tumor models. We first tested the combination of AMG 232 with platinum-containing agents in the non–small cell lung cancer model NCI-H460, which is moderately resistant to AMG 232 treatment alone (Fig. 3G). AMG 232 was dosed at its maximally effective dose (100 mg/kg) in this model and was combined with the MTD of cisplatin (5 mg/kg) in mice. Although both agents inhibited tumor...
growth compared with vehicle control, the combination treatment resulted in synergistic antitumor efficacy and caused tumor stasis (Fig. 5A). Similarly, we combined AMG 232 (100 mg/kg) with carboplatin at two different doses (50 and 100 mg/kg). In each case, the combination of AMG 232 with carboplatin resulted in superior antitumor efficacy (Fig. 5C).
Notably, the combination with the lower dose of carboplatin (50 mg/kg) resulted in similar antitumor efficacy compared with the combination with the higher dose of carboplatin (100 mg/kg), consistent with a synergistic effect. To determine the effect of combination treatment on p53 pathway activity, tumors were harvested at the end of the studies for p21 analysis. In the AMG 232-cisplatin study, AMG 232 alone induced p21 over time, and p21 levels returned to baseline by 24 hours (Fig. 5B). Cisplatin alone induced p21 minimally (2.5-fold). However, in the AMG 232–cisplatin combination, p21 levels were elevated more than 10-fold, which was sustained across the full 24 hours. Similarly, in the AMG 232–carboplatin combination study, the amplitude and duration of p21 induction in the combination treatments were markedly higher than either of the single-agent treatments (Fig. 5D), with a peak of >60-fold induction of p21 in the higher dose combination group. Of note, the last cisplatin and carboplatin doses were administered 4 days before the end of the study and tumor harvest, indicating a prolonged and sustained combination effect on p53 pathway activation.

We tested the combination of AMG 232 with doxorubicin in the SIS1-1 sarcoma model. The SIS1-1 model is sensitive to AMG 232 treatment alone (Fig. 3A), therefore a suboptimal dose (15 mg/kg) of AMG 232 was used for this combination. As single agents, both dose levels of doxorubicin and AMG 232 alone inhibited tumor growth compared with the control group (Fig. 3E). In combination, AMG 232 plus doxorubicin resulted in superior antitumor efficacy, with the higher dose combination (doxorubicin 10 mg/kg) resulting in tumor regression. Induction of p21 by doxorubicin treatment alone (10 mg/kg) was approximately 5-fold. AMG 232 treatment alone resulted in peak p21 induction of approximately 20-fold. However, p21 levels were elevated approximately 40-fold in the higher dose combination treatment group (Fig. 5F), indicating that p53 pathway activation was highest in tumors that regressed. Furthermore, the increased p21 induction in this combination group was prolonged 6 days after the final dose of doxorubicin.

We also evaluated the combination of AMG 232 with irinotecan (aka, CPT-11) in the HCT116 colorectal carcinoma model. The combination treatment resulted in significantly improved antitumor efficacy compared with the single agents (Fig. 5G). Similarly, p21 levels were induced higher and for a longer duration after combination treatment (Fig. 5H) compared with the single-agent treatments. There was no significant body weight loss in any of the combination studies (Supplementary Fig. S3).

Discussion

Herein, we have characterized the *in vitro* and *in vivo* attributes of AMG 232, the most potent MDM2 inhibitor described to date. AMG 232 binds to MDM2 with picomolar affinity (Kᵦ 0.045 nmol/L) and inhibits the MDM2–p53 interaction in a biochemical cell-free assay with an IC₅₀ of 0.6 nmol/L. Treatment of tumor cells with AMG 232 *in vitro* resulted in robust activation of the p53 pathway leading to inhibition of proliferation. Tumor cells underwent growth arrest, and this was related to induction of p21, a direct transcriptional target of p53 and a mediator of cell-cycle arrest. AMG 232 treatment also resulted in stabilization of p53 protein and increased levels of MDM2, p21, and PUMA proteins in p53 wild-type cells. In a broad panel of tumor cell lines, AMG 232 treatment inhibited the growth of p53 wild-type cells in a 3-day viability assay, whereas there was no significant effect on p53-mutant tumor cells (Fig. 1A). This suggests that the antiproliferative response to AMG 232 is dependent on p53. However, we did not investigate the possible role of other p53 family members (e.g., p73) in this study. The maximum antitumor effect of AMG 232 treatment varied across the p53 wild-type cells with some cell lines undergoing complete cell killing whereas others were cytostatic (Fig. 1B). This observation is consistent with other reports, suggesting that the propensity of tumor cells to undergo apoptosis after MDM2 inhibition varies across cell lines (9).

Pharmacodynamic assays revealed that AMG 232 caused potent activation of p53 signaling *in vivo*. The exceptional *in vivo* properties of AMG 232 led to significant induction of p21, MDM2, and PUMA expression for 24 hours after a single dose (Fig. 2B). Induction of p21 occurred in SIS1-1 cells, which undergo complete cell killing *in vitro*, as well as in HCT116 cells that reflect a growth-arrest phenotype. This suggests that cell-cycle arrest via p21 activity occurs as an initial response to MDM2 inhibition independent of the ultimate outcome of inhibition of proliferation and/or apoptosis. PUMA induction was more pronounced in SIS1-1 tumors compared with HCT116 tumors, consistent with their apoptotic versus growth-arrest phenotypes, respectively.

AMG 232 demonstrated antitumor activity *in vivo* in a variety of tumor types with different genetic backgrounds. The MDM2-amplified SIS1-1 model was the most sensitive to AMG 232 treatment, which caused complete tumor regression and no evidence of tumor regrowth after cessation of treatment. AMG 232 was also effective at inhibiting tumor growth in models that harbor mutations in MAPK signaling pathways (e.g., KRAS-mutant HCT116 and BRAF-mutant A375), indicating that restoration of p53 tumor-suppressive function is broadly effective in tumors that are p53 wild-type. Tumor regression was not observed in all models, indicating that some tumor cells are more resistant to undergoing apoptosis after MDM2 inhibition. In *in vivo* mechanisms of action studies assessing cell-cycle progression (BrdUrd) and cell death (cleaved caspase-3) demonstrated that AMG 232 induced rapid cell-cycle arrest in both SIS1-1 and HCT116 tumors, but marked induction of apoptosis was observed only in the SIS1-1 line.

Given the high genetic diversity of tumors and frequent emergence of resistance to targeted and cytotoxic agents in the clinic, MDM2 inhibitors will likely be combined with other therapies to achieve better clinical responses. To that end, we evaluated combination treatment with several cytotoxic agents where there was mechanistic rationale for an antitumor interaction with MDM2 inhibition. Cisplatin and carboplatin are platinum-based chemotherapeutics that bind and cross-link DNA, causing inhibition of DNA repair and synthesis (16). They are standards of care for various cancers, including lung and ovarian carcinomas. Doxorubicin is an anthracycline that intercalates DNA and blocks the progression of topoisomerase-2, inhibiting DNA replication (17). It is used to treat a wide range of cancers, including hematologic malignancies and sarcomas. Irinotecan (aka CPT-11) is a topoisomerase-1 inhibitor and leads to DNA fragmentation and inhibition of replication, and is primarily used to treat colorectal carcinomas (17). The mechanism of tumor cell death by DNA-damaging cytotoxic drugs like these is largely mediated by induction of
evaluated in clinical trials. AMG 232 is currently being tested alone, and in combination with standard-of-care therapies after the last doses of chemotherapies. The data presented here support the investigation of AMG 232 treatment alone, and in combination with standard-of-care agents, in patients with cancer. AMG 232 is currently being evaluated in clinical trials.

Disclosure of Potential Conflicts of Interest
J.D. Oliner has immediate family members with ownership interest (including patents) in Amgen. A. Coxon has ownership interest in Amgen Inc. stock. No potential conflicts of interest were disclosed by the other authors.

References
The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents

Jude Canon, Tao Osgood, Steven H. Olson, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0710

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/01/09/1535-7163.MCT-14-0710.DC1

Cited articles
This article cites 17 articles, 5 of which you can access for free at:
http://mct.aacrjournals.org/content/14/3/649.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/14/3/649.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.