Antitumor Activity of KW-2450 against Triple-Negative Breast Cancer by Inhibiting Aurora A and B Kinases

Kazuharu Kai1,2, Kimie Kondo1,2, Xiaoping Wang1,2, Xuemei Xie1,2, Mary K. Pitner1,2, Monica E. Reyes1,2, Angie M. Torres-Adorno1,2, Hiroko Masuda1,2, Gabriel N. Hortobagyi1,2, Chandra Bartholomeusz1,2, Hideyuki Saya3, Debu Tripathy1,2, Subrata Sen4, and Naoto T. Ueno1,2

Abstract

Currently, no targeted drug is available for triple-negative breast cancer (TNBC), an aggressive breast cancer that does not express estrogen receptor, progesterone receptor, or HER2. TNBC has high mitotic activity, and, because Aurora A and B mitotic kinases drive cell division and are overexpressed in tumors with a high mitotic index, we hypothesized that inhibiting Aurora A and B produces a significant antitumor effect in TNBC. We tested this hypothesis by determining the antitumor effects of KW-2450, a multikinase inhibitor of both Aurora A and B kinases. We observed significant inhibitory activities of KW-2450 on cell viability, apoptosis, colony formation in agar, and mammosphere formation in TNBC cells. The growth of TNBC xenografts was significantly inhibited with KW-2450. In cell-cycle analysis, KW-2450 induced tetraploid accumulation followed by apoptosis or surviving octaploid (8N) cells, depending on dose. These phenotypes resembled those of Aurora B knockdown and complete pharmaceutical inhibition of Aurora A. We demonstrated that 8N cells resulting from KW-2450 treatment depended on the activation of mitogen-activated protein kinase kinase (MEK) for their survival. When treated with the MEK inhibitor selumetinib combined with KW-2450, compared with KW-2450 alone, the 8N cell population was significantly reduced and apoptosis was increased. Indeed, this combination showed synergistic antitumor effect in SUM149 TNBC xenografts. Collectively, Aurora A and B inhibition had a significant antitumor effect against TNBC, and this antitumor effect was maximized by the combination of selumetinib with Aurora A and B inhibition. Mol Cancer Ther; 14(12); 2687–99. ©2015 AACR.

Introduction

Triple-negative breast cancer (TNBC), which is negative for estrogen receptor (ER), progesterone receptor, and HER2, is clinically and biologically distinct from the other breast cancer subtypes (e.g., ER+, HER2+ breast cancer; ref. 1, 2). From a clinical standpoint, TNBC is one of the most aggressive forms of breast cancer because of its early relapse behavior, high propensity for metastasis, and refractoriness to multiple anticancer drugs. Patients with TNBC cannot be treated with anti-estrogen agents (e.g., tamoxifen, aromatase inhibitors) or anti-HER2 agents (e.g., trastuzumab) because of the lack of expression of ER, progesterone receptor, and HER2. Currently, no molecularly targeted drug is available that has shown a benefit in TNBC (3); therefore, such a drug needs to be developed.

Aurora A and B are mitosis-related serine/threonine kinases that are overexpressed or genetically amplified in a significant percentage of various tumor types, including TNBC (4, 5). A growing number of studies support the development of Aurora A/B inhibitors as anticancer drugs (6–8). Physiologically, Aurora A plays a critical role in centromere duplication and maturation throughout the late G2 to mitotic phases; therefore, Aurora A inhibition delays initiation of mitosis, which in turn causes mitotic accumulation and activates the spindle assembly checkpoint (SAC; refs. 4, 9). In contrast, Aurora B secures the integrity of chromosome segregation at the SAC during metaphase. Between anaphase and telophase, Aurora B executes cytokinesis. Therefore, Aurora B inhibition causes inactivation of the SAC and accelerates mitotic-slippage by destabilizing the cytokinetic process (10–12). Thus, either Aurora A or Aurora B inhibition could evoke cell death at the SAC or after mitotic-slippage (e.g., at the postmitotic G1 checkpoint), respectively, in cancer cells (13, 14).

We previously revealed the tumor-suppressive functions of the SAC and postmitotic G1 checkpoint by using cancer cell lines and a transgenic mouse tumor model (15–17). In cultured cell line models, we showed that the SAC was indispensable to induce apoptosis of MCF7 cells with paclitaxel and that the SAC functioned independently from the G2 checkpoint (15); we further showed that the SAC induced mitotic cell death in p53-null...
HCT116 colon cancer cells treated with cisplatin (16). With use of a mouse mammary preneoplastic model, we showed that perturbation of Aurora A function (i.e., overexpressed Aurora A) activated the postmitotic G1 checkpoint and inhibited the transformation to lethal tumors (17). On the basis of these experimental findings, in addition to the clinical significance of Aurora A/B kinases (4–6), we reasoned that we could develop an Aurora A/B inhibitor against TNBC, exploiting the SAC and/or postmitotic G1 checkpoint of TNBC cells. To this end, in the present study, we used KW-2450, a multikinase inhibitor that exhibits more robust inhibitory activities against Aurora A and Aurora B, and tested its antitumor effects in vitro and in vivo (18).

We here show that KW-2450 induced cell death in vitro and produced antitumor effects in vivo in a type of TNBC cell lines (i.e., MDA-MB-468). In contrast, other TNBC cell lines (i.e., MDA-MB-231, SUM149 cells) were relatively resistant to KW-2450–induced cell death, escaping from the SAC and postmitotic G1 checkpoints, and interestingly entered into the octoploid (8N) phase. We were able to attribute these phenotypes to the inhibition of Aurora A and B. We further discovered that survival of the 8N cells depended on the activation of the mitogen-activated protein kinase (MEK) pathway and that these cells were, therefore, killed when treated with the MEK inhibitor selumetinib combined with KW-2450. We here propose Aurora A/B inhibition and Aurora A/B inhibition combined with MEK inhibition as promising therapeutic approaches in TNBC.

Materials and Methods

Cell lines

A panel of 11 phenotypically diverse human breast cancer cell lines (SUM149, SUM159, SUM190, MDA-MB-468, MDA-MB231, MCF7, KPL-4, BT-549, HCC70, T47D, and ZR75-1) and HCT116 colon cancer cell lines (which have either p53+/– or p53–/– genotype) were used. SUM149, SUM159, and SUM190 cells were maintained in Ham's F12 with 5% FBS, 1X Antibiotic-Antimycotic (AA), 1 µg/mL hydrocortisone, and 5 µg/mL insulin. The remaining cells were cultured in media as follows: MDA-MB-468, MDA-MB231, MCF7, and KPL-4 cells in DMEM/Nutrient Mixture F-12 (F12); BT-549, HCC70, T47D and ZR75-1 cells in RPMI-1640 medium; HCT116 p53+/– and HCT116 p53–/– colon cancer cells in McCoy’s 5A medium; all media were supplemented with 10% FBS and 1X AA. All materials were provided by Life Technologies.

SUM149, SUM159, and SUM190 were obtained from Asterand in 2011, 2012, and 2011; and authenticated in 2014, 2013, and 2014, respectively. MDA-MB-231, MDA-MB-468, and HCC70 were all obtained from the ATCC in 2008 and authenticated in 2014. MCF-7 was obtained from the ATCC in 2008 and authenticated in 2010. BT-549, T47D, and ZR75-1 were all obtained from the ATCC in 2008 but have not been authenticated yet. KPL4 was kindly provided by J. Kurashiki (Kawasaki Medical School, Kurashiki, Japan) in 2008 but not authenticated yet. HCT116 p53+/– and HCT116 p53–/– were kindly provided by Dr. G. A. Calin (MD Anderson, Houston, TX) under the material transfer agreement between Dr. B. Vogelstein (Ludwig Center at Johns Hopkins, Baltimore, MD) and N.T. Ueno in 2013 but not authenticated yet. All authentications were validated by the Characterized Cell Line Core Facility at MD Anderson Cancer Center by using a short tandem repeat method. For all cell lines, TP53 mutation status is available in Supplementary Table S1.

Drugs

KW-2450 was provided by Kyowa Hakko Kirin Co., Ltd. Selumetinib was purchased from ChemieTek. Paclitaxel was purchased from the cost facility for experimental supplies at The University of Texas MD Anderson Cancer Center.

Western blot analysis

Cell pellets were lysed as described previously (19). Primary antibodies that we used in this study were rabbit anti-phospho Aurora A (T288), rabbit anti–insulin-like growth factor-1 receptor (IGF-IR), rabbit anti–insulin receptor (InsR) β, rabbit anti–phospho-IGF-IR/InsR kinase (Thr202/Tyr204), rabbit anti–extracellular signal-regulated protein kinases (ERK), rabbit anti–phospho-ERKs, rabbit anti-c-Jun N-terminal kinases (JNK), rabbit anti–phospho-JNKs, rabbit anti–p38, and rabbit anti–phospho-p38 (all from Cell Signaling Technology), and mouse anti-Aurora A (BD Biosciences), rabbit anti-cyclin B1 (Santa Cruz Biotechnology), and mouse anti–β-actin Ab (diluted at 1: 5,000; Sigma-Aldrich). Antibodies were diluted at a ratio of 1:1,000, unless noted. Signals were detected with use of an Odyssey IR imaging system (LI-COR).

Immunofluorescence analysis and Aurora A assay

MDA-MB-468 cells were grown on 4-chamber slides (BD Biosciences) and treated with DMSO or KW-2450. For immunofluorescence staining, cells were stained with anti-Aurora A pT288 rabbit antibody (1:250) and anti-Aurora A kinase mouse monoclonal antibody (1:250), followed by anti-rabbit Alexa Fluor 488 and anti-mouse Alexa Fluor 594 secondary antibodies. DNA was counterstained with DAPI (VECTA STAIN). Fluorescently labeled cells were visualized with a Nikon IV 1000 fluorescence microscope, and images were captured with a digital camera (Nikon). For the Aurora A assay, kinase activities of Aurora A were determined by measuring pT288 fluorescent intensity (Alexa Fluor 488) in the mitotic cells that had bipolar Aurora A spots and presented as the value relative to Aurora A fluorescent intensity (Alexa Fluor 594). A concentration–inhibition curve was generated by calculating the Aurora A kinase activities in KW-2450–treated samples relative to the DMSO-treated control, and the IC50 value for inhibiting Aurora A kinase activity was determined by Prism5 software.

Cell-cycle, mitosis, and Aurora B assays

Cells were plated in 6-cm dishes, cultured for 1 to 2 days, and then treated with DMSO, KW-2450, or KW-2450 plus selumetinib. In each experiment, DMSO-treated cells were used as the control. Cell-cycle distribution was analyzed by a FACS as described previously (19, 20). For mitotic analysis, cells were stained with anti–phospho-histone H3 (pH3) conjugated with FITC, incubated with RNase (100 µg/mL), and stained with propidium iodide (PI; 25 µg/mL). For the Aurora B assay, 4N pH3* (FITC*) cells were quantified by FACS to measure the kinase activities of Aurora B in KW-2450 treatments (because histone H3 is a kinase substrate of Aurora B). A concentration–inhibition curve was generated, and the IC50 value for inhibiting Aurora B kinase activity was determined as in the Aurora A assay.

Growth inhibition assay in vitro

Cell viability was determined by a CellTiter-Blue Cell Viability Assay (Promega Corporation), which was performed according to the manufacturer’s instructions. Briefly, 1 to 2 days before...
treatment, cells were seeded into a 96-well plate at 2,000 cells per well. Cells were then treated with KW-2450 or selumetinib as a single or combinatory treatment for 72 hours. The viability of untreated cells was set as 100% in each experiment, and the percentage of viability in each drug concentration was calculated in reference to the untreated cells. The values of the percentage of inhibition and corresponding drug concentrations were incorporated into the Prism5 software, and IC_{50} were then calculated according to a sigmoidal algorithm.

siRNA transfection
MDA-MB-468 cells were transfected with a SMART pool (20 nmol/L final) of On-Target plus siRNAs (Fisher Thermo Scientific) to Aurora A, Aurora B, IGF-IR, or InsR with use of Lipofectamine RNAi Max reagent (Invitrogen). On-Target plus Non-Targeting siRNAs Pool was used as control siRNAs.

Annexin V assay
An Annexin V: PE Apoptosis Detection Kit 1 was purchased from Life Technologies, and procedures were followed according to the manufacturer’s instructions. We treated cells with KW-2450 or DMSO, collected floating cells in supernatants, and attached cells by trypsinization. After cells were washed with PBS, they were stained with anti-Annexin V conjugated with PE and then analyzed by FACS.

Reactive-oxygen species assay
A CellROX Green Reagent Kit for oxidative stress detection was purchased from Life Technologies, and procedures were followed according to the manufacturer’s instructions. TNBC cells were treated with KW-2450 or DMSO for 2 days and then incubated with CellROX Green Reagent (5 μmol/L final concentration) for 30 minutes. After the cells were incubated, we collected floating cells in supernatants and attached cells by trypsinization. After cells were washed with PBS, they were resuspended with PBS, stained with PI (0.5 μg/mL final concentration), and analyzed by FACS. To separate live cells from dead cells, PI− cells and PI+ cells were gated, respectively, and PI− cells (live cells) were used to determine reactive oxygen species (ROS) levels in living cells.

CD44+CD24− cancer stem cell assay
SUM149 and MDA-MB-231 cells were plated in 60-mm dishes, cultured for 1 to 2 days, and then treated with KW-2450 or DMSO. After 48 hours, floating and adherent cells were collected by trypsinization, washed with PBS, stained with anti–CD44-FITC and anti–CD24-PE (both antibodies were from Life Technologies), and then analyzed by FACS. Cellular aggregates were depleted by a proper gating strategy, and singlets were analyzed by FACS.

Colony formation in agar assay
Colony formation in the agar assay was performed as previously described (21). Briefly, TNBC cells (2 × 10^3/well) were compounded in 0.4% agar media, which contained KW-2450 or DMSO, and plated over a base layer of 0.8% agarose media in 6-well plates. After 3 weeks of incubation, plates were stained with piodonitrotetrazolium violet (1 mg/mL) for 24 hours at 37°C, and colony numbers were counted by using GelCount (OXFORD OPTRONIX).

Mammosphere-forming assay
The mammosphere-forming assay was performed as described previously (22). Cells were plated into 6-well low-attachment dishes at a density of 2,000 cells/mL. KW-2450 or DMSO was added when cells were plated. Cells were cultured for 4 or 5 days and then incubated with MTT (50–100 μg/mL) for 1 hour before the mammospheres were counted by GelCount.

Animal xenograft studies
All animal experiments were approved by the Institutional Animal Care and Use Committee at The University of Texas MD Anderson Cancer Center. A total volume of 0.2 mL of cell suspension containing 1 × 10^6 (for MDA-MB-468) or 4 × 10^6 (for SUM149) cells with 50% Matrigel were injected into the bottom right mammary fat pad of 6-week-old nu/nu mice. After 1 to 2 months, mice with well-established tumors (tumor volume, approximately 100 mm^3) were allocated into the following groups: vehicle (0.5% methylcellulose); 40 or 80 mg/kg of KW-2450; 50 or 100 mg/kg of selumetinib; KW-2450 (40 mg/kg) plus selumetinib (50 or 100 mg/kg); these agents were administered daily by oral gavage for 28 days. Tumor volume was determined twice a week by measuring the tumor diameter in two dimensions with a caliper. Volume (V) was determined by the following equation, for which L was tumor length and W was tumor width:

\[V = (L \times W^2) \times \pi / 6. \]

Tumor volumes at day 0 (the day that drug treatment commenced) were set as 1 (V_0), and then tumor volumes at each time point (V) were shown as the ratios to V_0 for each tumor (V/V_0). The values of V/V_0 were compared between the control and treated groups at each time point by the t test.

Combinatory drug treatment in vitro
In combinatory treatments with KW-2450, selumetinib were added at the double concentrations to those of KW-2450 at each concentration point (described as ×2 in Fig. 6B). Synergism between KW-2450 and selumetinib in terms of growth inhibition in vitro was determined by CalcuSyn software (BIOSOFT).

Statistical analyses
Statistical analyses were conducted by R software. Data were presented as means ± SEM. Means for all data were compared by an unpaired t test. P values of <0.05 were considered statistically significant.

Results
KW-2450 inhibits kinase activities of Aurora A, Aurora B, and IGF-IR at various concentrations
The chemical structure of KW-2450 is shown in Fig. 1A. We first tested KW-2450’s inhibitory activity against Aurora A kinase in cell-based assay. We measured the inhibitory effect of KW-2450 on Aurora A activity at various concentrations in MDA-MB-468 cells, which was probed with the antibody against Aurora A autophosphorylation on threonine-288 (pT288) (Fig. 1B). Threonine-288 is an autophosphorylation site of Aurora A, and thus a marker of Aurora A activity (4, 13). To accumulate the cells in the mitotic phase, we pretreated them with paclitaxel at 100 nmol/L as previously described (15) for 20 hours and then treated them with KW-2450 at various concentrations for 4 hours. In control cells (DMSO added to paclitaxel pretreatment), pT288 was detected only in mitotic cells and was localized to the spindle centers, likely representing centrosomes (4). Treatment with
KW-2450 at 0.2 and 1 μmol/L inhibited Aurora A autophosphorylation on T288 in MDA-MB-468 cells (Fig. 1B). Total Aurora A was still present with KW-2450 treatments at these concentrations, demonstrating that the decreased pT288 staining was due to inhibition of phosphorylation but not to Aurora A degradation. The concentration and inhibition curve was drawn to determine the potency of KW-2450 against Aurora A kinase activity in mitotic cells (Fig. 1D). Treatment with KW-2450 at 0.5 and 10 μmol/L reduced pHisH3+ cells, which is indicative of Aurora B inhibition in MDA-MB-468 cells (Fig. 1D). The concentration and inhibition curve was drawn to determine the potency of KW-2450 against Aurora B kinase activity by quantifying the decrease in pHisH3+ tetraploid cells in KW-2450-treated samples relative to the DMSO-treated controls. C and E, the points represent averages of eight (for C) and three (for E) replicate samples ± SEM (bars). The IC50s were determined by Prism5 software and are shown with 95% CIs.
cells, and 0.066 μmol/L (95% CI, 0.055–0.081 μmol/L) in MDA-MB-231 cells. KW-2450 was initially developed as a kinase inhibitor against IGF-IR and InsR. We evaluated the effect of KW-2450 on IGF-IR kinase activity by Western blotting for IGF-IR autophosphorylation (Tyr1135/1136), which is a functional marker of IGF-IR kinase activity in mammalian cells (Supplementary Fig. S1). In both MDA-MB-468 and SUM149 cells, which endogenously overexpressed IGF-IR, KW-2450 (0.002 μmol/L) reduced kinase activities of IGF-IR by about 25% compared with the DMSO control (which showed 100% activity). This indicates that KW-2450’s IC50 value for inhibiting IGF-IR in the cell-based assay was less than 0.002 μmol/L. Taken together, these data suggest that KW-2450 is able to inhibit Aurora A and B kinases at a higher concentration and IGF-IR kinase at a lower concentration.

KW-2450 shows in vitro antitumor effects in TNBC cells

The effects of KW-2450 on cell viability of TNBC cells were tested by the CellTiter-Blue Cell Viability Assay (Promega Corporation). Concentration–inhibition curves were drawn as shown in Fig. 2A, and IC50s were calculated among a panel of cell lines (Table 1). IC50 values for inhibiting cell viability in TNBC cells were almost the same as the IC50s for inhibiting Aurora A (IC50 = 0.22 μmol/L) and Aurora B (IC50 = 0.48 μmol/L). In contrast, KW-2450’s IC50 values for inhibiting cell viability in ER+ breast cancer cells were lower than those in TNBC cells (P = 0.011; Table 1).

Figure 2.
KW-2450 has in vitro antitumor activities against TNBC cells. A, growth inhibition assays of KW-2450 in vitro were performed using the CellTiter-Blue assay. The viabilities of TNBC cells treated with KW-2450 were determined in reference to the control treatment, and the concentration–inhibition curve was drawn. Each point represents an average ± SEM (bars) from quadruplicate. B, colony formation in agar assay in TNBC cells treated with KW-2450 or DMSO. Histogram depicts the percentage of colony formations of MDA-MB-231 or SUM149 cells treated with KW-2450 (0.05, 0.1, and 0.5 μmol/L) in relation to DMSO treatment, which was set at 100%. Representative images of colony formation in agar of SUM149 and MDA-MB-231 cells are shown at the bottom of histograms. C, mammosphere-forming assay in TNBC cells treated with KW-2450 or DMSO. Histogram depicts the percentage of mammosphere formation of SUM149 and MDA-MB-231 cells treated with KW-2450 (0.05, 0.1, and 0.5 μmol/L) in relation to DMSO treatment, which was set at 100%. Representative images of mammospheres of SUM149 and MDA-MB-231 cells are shown at the bottom of histograms (scale bar, 100 μm). B and C, error bars, SEM; *, P < 0.05; **, P < 0.01.
Samples were stained with oxidative stress reagent (GFP) and PI, and ROS accumulation was assessed by flow cytometry. The number of Annexin V+ cells undergoing apoptosis during treatment. The number of Annexin V+ cells substantially increased within 24 to 48 hours of KW-2450 treatment compared with the DMSO control, suggesting ongoing apoptosis (Fig. 3C).

ROS is a key mediator of apoptosis and accumulates in the cells by activation of mitochondrial pathways (26, 27). We quantified intracellular ROS levels among three types of TNBC cells treated with DMSO or KW-2450 (0.5 or 1 μmol/L). In MDA-MB-468 cells treated with KW-2450, we observed considerably higher accumulation of ROS compared with levels in the DMSO control (Fig. 3D and E). In contrast, in MDA-MB-231 cells and SUM149 cells treated with KW-2450, we noted less ROS accumulation than in MDA-MB-468 cells. These levels of ROS accumulation were proportional to the percentage of dead cells, with more dead MDA-MB-468 cells and fewer dead MDA-MB-231 and SUM149 cells, suggesting the biologic association between ROS accumulation and apoptotic outcome. We concluded that KW-2450 induced apoptosis presumably by using mitochondrial (or oxidative) pathways in TNBC cells.

KW-2450 induces apoptosis, senescence, or cell-cycle arrest at 8N in TNBC cells

To gain insight into how KW-2450 induces apoptosis in TNBC cells, we next analyzed the kinetics of the cell cycle associated with KW-2450 treatment (0.5 μmol/L) in MDA-MB-468 and MDA-MB-231 cells (Fig. 3F). We chose a concentration of 0.5 μmol/L because we had observed a difference in the rates of apoptosis between MDA-MB-468 cells and the other two cell types (i.e., MDA-MB-231 and SUM149 cells) at this concentration, which we thought could give us insight at a molecular level into the sensitivity to KW-2450. At 12 and 24 hours of KW-2450 treatment, we observed accumulation of 4N in both MDA-MB-468 and MDA-MB-231 cells (Fig. 3F). At 48 hours of treatment, we observed a significant amount of subG1 and a few 8N fractions in MDA-MB-468, which was the reciprocal to that observed in MDA-MB-231 cells. A few subG1 and a significant amount of 8N. What intrinsic factors in TNBC cells produced this difference in terms of the response to KW-2450? To answer this question, we focused on

Table 1. Growth inhibition (IC50, μmol/L) across various breast cancer cell lines by KW-2450

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Subtype</th>
<th>IC50 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB-468</td>
<td>TN</td>
<td>0.36 (0.31–0.41)</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>TN</td>
<td>0.49 (0.44–0.55)</td>
</tr>
<tr>
<td>SUM149</td>
<td>TN</td>
<td>0.30 (0.29–0.32)</td>
</tr>
<tr>
<td>SUM159</td>
<td>TN</td>
<td>0.38 (0.36–0.41)</td>
</tr>
<tr>
<td>BT-474</td>
<td>TN</td>
<td>0.52 (0.48–0.57)</td>
</tr>
<tr>
<td>HCC70</td>
<td>TN</td>
<td>0.27 (0.25–0.29)</td>
</tr>
<tr>
<td>SUM190</td>
<td>HER2+</td>
<td>0.22 (0.19–0.55)</td>
</tr>
<tr>
<td>KPL4</td>
<td>HER2+</td>
<td>0.67 (0.61–0.75)</td>
</tr>
<tr>
<td>T47D</td>
<td>ER−</td>
<td>0.26 (0.22–0.32)</td>
</tr>
<tr>
<td>ZR-75-1</td>
<td>ER−</td>
<td>0.11 (0.08–0.36)</td>
</tr>
<tr>
<td>MCF7</td>
<td>ER−</td>
<td>0.01 (0.006–0.027)</td>
</tr>
</tbody>
</table>

NOTE: IC50 values of the TN group were compared with those of the ER− group by the t test and the difference was statistically significant (P = 0.011).

We previously showed in TNBC and glioblastoma multiforme mouse models that cancer stem cells (CSC) have a quiescent trait and overexpress IGF-I, which was a key molecule for making CSCs quiescent in these models (20, 24). On the basis of these findings, we assumed that letting CSCs exit from the quiescent state and stay in mitosis by inhibiting IGF-IR and Aurora A/B may work as CSC-targeted therapy in TNBC. We therefore treated TNBC cells with KW-2450 at various concentrations and assessed anti-CSC activities of KW-2450 by the following assays: Colony formation in agar assay, mammosphere-forming assay, and CD44+ markers labeling assay (22, 24, 25). KW-2450 dose-dependently inhibited colony formation in agar and mammosphere-forming in vitro in SUM149 and MDA-MB-231 cells (Fig. 2B and C). The CD44+ in floating culture in SUM149 and MDA-MB-231 cells (Fig. 2B and C). The CD44+ and anti-CSC activities in in vitro cell assays.

KW-2450 induces 4N and 8N accumulations and apoptosis in TNBC cells

The effect of KW-2450 on the cell cycle was evaluated by FACS analysis (Fig. 3A). In all three TNBC cell types, KW-2450 dose-dependently induced tetraploid (4N), 8N, and subG1 (cell death) phases. It is known that Aurora A inhibition induces the delay in mitotic entry, which causes 4N, and that Aurora B inhibition induces mitotic-slippage, which causes 8N in mammalian cells (9, 10). Both of these outcomes, 4N or 8N, could cause cell death after all (13, 14). On the basis of this evidence, Aurora A and/or B could be primarily inhibited at higher concentrations of KW-2450 (0.5 and 1 μmol/L) in TNBC cells. Meanwhile, we tested the significance of inhibiting IGF-IR or InsR using siRNAs in these TNBC cells (Supplementary Fig. S2). Overall, KW-2450 showed antitumor and anti-CSC activities in in vitro cell assays.

Figure 3.

KW-2450 dose-dependently induces 4N, 8N accumulations, and apoptosis in TNBC cells. A, DNA profiles of TNBC cells treated with DMSO or KW-2450 at various concentrations for 48 hours. B, representative FACS dot plots of MDA-MB-468 cells treated with KW-2450 (0.5 μmol/L). C, line chart depicts the time-lapse percentage change in Annexin V+ cells in MDA-MB-468 cells treated with KW-2450 (0.5 μmol/L) or DMSO. D and E, ROS assay in TNBC cells treated with KW-2450 (0.5, 1 μmol/L) or DMSO for 48 hours. F and G, cell-cycle histograms derived from 0 to 72 hours of KW-2450 treatment (0.5 μmol/L) are shown, and, for 72 hours of KW-2450 treatments, the percentages of subG1 fraction (dead cells) are shown.

Aurora A and B Kinase Inhibition in Triple-Negative Breast Cancer

www.aacrjournals.org Mol Cancer Ther; 14(12) December 2015 2693

Published OnlineFirst October 6, 2015; DOI: 10.1158/1535-7163.MCT-15-0096

Downloaded from mct.aacrjournals.org on June 19, 2017. © 2015 American Association for Cancer Research.
cell-cycle checkpoints, which are the SAC and the post-mitotic G1 checkpoint. First, we abrogated the SAC function by knocking down Mad2 or BudR1, both which are indispensable functional components of the SAC, and treated with KW-2450 (0.5 μmol/L; Supplementary Fig. S4). Depletion of Mad2 or BudR1 did not reduce the amount of apoptotic cells caused by KW2450, suggesting that SAC activation is not responsible for cell death caused by KW-2450 in MDA-MB-468 cells.

Next, we focused on the checkpoint that occurs just after cells exit mitosis: the post-mitotic G1 checkpoint. At this checkpoint, p53 plays a crucial role in letting the cells undergo apoptosis or arrest. To test whether p53 determines the response to KW-2450 at the post-mitotic G1 checkpoint, we used p53 genotype-matched HCC116 colon cancer cells (p53+/+ vs. p53−/−; Supplementary Fig. S5). With KW-2450 treatment (0.5, 1 μmol/L), HCT116 (p53−/−) cells showed significant accumulation of 8N compared with HCT116 (p53+/+) cells, suggesting that abrogated p53 contributed to the 8N accumulation. We also treated MCF7 and ZR 75-1 breast cancer cells, which have wild-type p53, with KW-2450 and confirmed that neither cell type accumulated at the

Figure 4. Pharmacologic inhibition of Aurora A or siRNA knockdown of Aurora B induced 4N and apoptosis as seen in KW-2450 treatment. A and B, knockdown experiments with siRNAs that target Aurora A or B in MDA-MB-468 cells (A) and MDA-MB-231 cells (B). Left of A or B, knocked down efficiencies are shown by RT-PCR analyses using PCR primers that were designed to amplify the partial sequence of Aurora A or Aurora B gene. Right of A or B, representative histograms depict DNA profiles of MDA-MB-468 and MDA-MB-231 cells treated with siRNAs to Aurora A or to Aurora B for 48 or 72 hours. The DNA profiles treated with control siRNA are overlapped with the corresponding sample histogram and shown as gray lines. C–E, pharmacologic inhibitions of Aurora A with Aurora A-specific inhibitor MLN8054 in MDA-MB-468 cells. C, immunofluorescent images of MDA-MB-468 cells probed with antibodies to p-Aurora A (pT288) and pan-Aurora A. Nuclei were counterstained with DAPI; scale bar, 10 μm. D, histogram depicts the percentage of Aurora A kinase activities in MDA-MB-468 cells treated with DMSO or MLN8054 (0.05 and 0.1 μmol/L). E, cell-cycle histograms of MDA-MB-468 cells treated with DMSO or MLN8054 (0.05 and 0.1 μmol/L).
8N phase, even at higher concentrations of KW-2450 (0.5 and 1 μmol/L; Supplementary Fig. S6), suggesting again that p53 at post-mitotic G1 is a determinant of the 8N phenotype with KW-2450 treatment.

Independent of cell-cycle checkpoints, we also sought to determine whether senescence causes resistance to KW-2450 in TNBC cells, as reported by others (28, 29). We did not see significant senescence induction in any TNBC cells treated with 0.5 μmol/L KW-2450 for 5 days; however, we did see induction of senescence at higher concentrations (1, 4 μmol/L) and with longer exposure to KW-2450 (for 10 days; Supplementary Fig. S7). Collectively, 8N cells caused by KW-2450 (0.5 μmol/L) did not undergo apoptosis or senescence, thus arresting at the 8N phase as surviving cells.

Inhibition of Aurora A and B is responsible for 4N, 8N, and apoptosis caused by KW-2450

Next, by using MDA-MB-468 and MDA-MB-231 cells, we determined which inhibition against Aurora A or B was mainly responsible for 4N or 8N accumulation coupled with apoptosis. To this end, we performed knockdown experiments using siRNAs to Aurora A or B in MDA-MB-468 and MDA-MB-231 cells (Fig. 4). When Aurora B was knocked down in MDA-MB-468 and MDA-MB-231 cells, 4N accumulations were observed in both MDA-MB-468 and MDA-MB-231 cells and in a small fraction of 8N in MDA-MB-231 cells (Fig. 4A and B). Treatment with Aurora B siRNA also induced a substantial amount of cell death (subG1) in MDA-MB-468 cells but less in MDA-MB-231 cells, whose trend was similar to the one observed in KW-2450 treatment. In contrast, treatment with Aurora A siRNA did not cause significant changes in cell-cycle profiles of MDA-MB-468 and MDA-MB-231 cells. However, inhibition of Aurora A is known to cause 4N accumulation; we therefore further inhibited Aurora A kinase by using Aurora A–specific inhibitor MLN8054 in MDA-MB-468 cells (Fig. 4C–E). With use of 0.05 and 0.1 μmol/L MLN8054, Aurora A kinase activities were inhibited by about 30% and 0%, respectively (Fig. 4D), which caused accumulations of 4N and subG1 phases depending on the dose (Fig. 4E). Especially at 0.1 μmol/L MLN8054, which achieved complete inhibition of Aurora A, MLN8054 dramatically induced accumulation of 4N and subG1 phases. These data suggest that complete inhibition of Aurora A kinase does induce 4N and apoptosis in MDA-MB-468 cells.

In summary, using two types of TNBC cells, we showed that either specific inhibition of Aurora A or B could cause 4N and/or 8N accumulation and apoptosis in TNBC cells, depending on the type of cells. Therefore, we cannot conclude that inhibition of either Aurora A or AuroraB is responsible for these phenotypes caused by KW-2450, but presumably inhibition of either produces these results.

Figure 5. KW-2450 inhibits tumor growth of TNBC cells in vivo. A, line charts depict growth curves of MDA-MB-468 xenografts treated with vehicle or KW-2450 (80 mg/kg/d) for 4 weeks. The tumor volumes at day 0 (the date treatments commenced) were set to 1 to determine the relative volumes in each tumor during treatments. V/V0, volume at any treatment time point/volume at day 0. Each dot shows mean ± SEM. Volumes of tumors treated with KW-2450 were compared with vehicle control at each time point, and statistical differences are indicated with the following marks: *, P < 0.05; **, P < 0.01. B, hematoxylin and eosin-stained section of MDA-MB-468 xenografts treated with vehicle or KW-2450 (80 mg/kg). Boxed areas in left images are shown to the right; scale bars, 100 μm. C, apoptotic cells (brown) were detected by TUNEL assay in MDA-MB-468 tumor treated with KW-2450. Nuclei were counterstained with hematoxylin (purple). Shown are representative fields in vehicle-treated control (top) and KW-2450-treated tumor (bottom); scale bars, 100 μm.
Figure 6.
KW-2450 and selumetinib synergized in antitumor effect against TNBC in vitro and in vivo. A, Western blots for phosphorylated forms of MAPKs (i.e., ERKs, JNKs, p38 MAPK) in TNBC cells treated with various concentrations of KW-2450. Paired nonphosphorylated forms are also presented to show basic expressions of those kinases. The samples were collected at 24 hours (for SUM149) or 48 hours (for MDA-MB-231 and MDA-MB-468) of KW-2450 treatments. β-Actin is shown as a loading control at the bottom of each. B, line charts depict growth inhibition curves of MDA-MB-231 and SUM149 cells, treated with sequential doses of KW-2450, selumetinib, or KW-2450 plus selumetinib. The x-axis shows the dose series of KW-2450. At each dose, selumetinib was used with a double dose of KW-2450, described as \[\frac{C_2}{C_2}\] in parentheses next to selumetinib. For example, at the 1 \[\text{m}\] \[\text{mol/L}\] dose point for KW-2450, the dose is 2 \[\text{m}\] \[\text{mol/L}\] for selumetinib monotherapy and for combination with KW-2450. We applied CalcuSyn software to determine whether there is synergistic, additional, or antagonistic effects between these two drugs at 50%, 75%, and 90% of effective doses: ED50, ED75, and ED90, respectively. CI values from CalcuSyn are shown at the bottom of each bar chart. CI values \(<0.1\) indicate very strong synergism; 0.10 to 0.30, strong synergism; 0.30 to 0.70, synergism; 0.70 to 0.90, moderate to slight synergism; 0.90 to 1.10, nearly additive; \(>1.10\), antagonism. Asterisks indicate the dose points where we saw significant differences by the t test in both comparisons: combination versus KW-2450, combination versus selumetinib. (Continued on the following page.)
KW-2450 single treatment inhibits tumor growth of TNBC cells in vivo

We next evaluated in vivo antitumor activity of KW-2450 by using MDA-MB-468 tumors grown as xenografts in nude mice (Fig. 5). KW-2450 was administered orally at 80 mg/kg once a day for 28 days for MDA-MB-468 tumor-bearing mice. For control tumor-bearing mice, the same amount of vehicle was administered on the same schedule. From days 14 to 28, we observed significant tumor growth inhibition in MDA-MB-468 tumors treated with KW-2450 (80 mg/kg) compared with vehicle control (Fig. 5A). We monitored the body weights of MDA-MB-468 tumor-bearing mice during the treatments and observed that KW-2450-treated mice had 11.5% ± 4.9% (average ± SEM) more body weight at the end of the KW-2450 treatment compared with vehicle-treated mice, although this difference did not reach statistical significance (Supplementary Fig. S8).

We next examined the mitotic features of MDA-MB-468 tumors treated with KW-2450 (80 mg/kg) or vehicle (Fig. 5B). Tumors treated with KW-2450 had significantly more multinucleated cells than did vehicle-treated tumors, suggesting that 80 mg/kg of KW-2450 reached the pharmacodynamic level needed to inhibit Aurora A and/or B in these tumors. Accumulation of apoptotic cells was also observed in the MDA-MB-468 tumors treated with KW-2450, suggesting that 80 mg/kg of KW-2450 induced apoptosis by inhibiting Aurora A and/or B in vivo (Fig. 5C).

KW-2450 and MEK inhibitor synergize in inducing cell death in TNBC cells

We observed diverse susceptibilities to cell death among cultured TNBC cells treated with 0.5 μmol/L KW-2450 (Fig. 3A and F). As described above, abrogation of p53 can induce 8N accumulation under KW-2450 treatment, which is a resistance phenotype against KW-2450. Given TNBC cells frequently have mutated p53 (Supplementary Table S1), we need to overcome this resistance mechanism derived from abrogated p53 in TNBC cells. We focused on MAPKs (e.g., ERK1/2, p38 MAPK, JNKs), which are already targetable with existing kinase inhibitors. MAPKs could prevent cell death in KW-2450 treatment similar to the way in which these MAPK pathways respond to anticancer drugs [30–33]. We first examined the dose effect of KW-2450 on the activation of MAPK pathways by detecting the phosphorylation of ERK1/2, p38 MAPK, and JNKs (Fig. 6A). We observed activation in ERK1/2 as a result of dose escalation of KW-2450 but not in p38 MAPK or JNKs, suggesting that the activation of MEK1/2 (upstream kinases of ERK1/2) and of ERK1/2 may play a role in protecting TNBC cells treated with KW-2450. To test this hypothesis, we added the MEK1/2 inhibitor selumetinib [34, 35] to KW-2450 in SUM149 and MDA-MB-231 cells and evaluated its synergistic effects by using a cell viability assay and cell-cycle analysis (Fig. 6B and C). In testing various concentrations, we observed synergism between KW-2450 and selumetinib in terms of cell growth inhibition (Fig. 6B). This synergism was also observed in the cell-cycle analysis. We observed that selumetinib (1 μmol/L) plus KW-2450 (0.5 μmol/L) significantly increased subG1 populations in both MDA-MB-231 and SUM149 cells compared with KW-2450 alone (Fig. 6C). In parallel, 8N cells were significantly reduced with selumetinib plus KW-2450 compared with KW-2450 alone in both MDA-MB-231 and SUM149 cells. These findings suggest that activated ERK1/2 protects TNBC cells treated with KW-2450 from cell death at an 8N phase.

Finally, we tested whether this synergistic effect would be observed in vivo (Fig. 6D). To answer this question, we used SUM149 cells, which had shown relative resistance to cell death when treated with KW-2450 alone; cell death was induced in vitro, however, by adding selumetinib onto KW-2450. For treatment with selumetinib, either of 50 or 100 mg/kg per day of selumetinib was used for single and combination therapies with KW-2450 as previously described. For treatment with KW-2450, 80 or 40 mg/kg of KW-2450 was used for single and combination therapies (only with 40 mg/kg) with selumetinib. Every single-agent treatment showed significant growth inhibition compared with the vehicle-treated group from day 3 through day 28. Furthermore, either of the combination therapies showed significant growth inhibition compared with either matched single treatments throughout the treatment courses.

Discussion

In the present study, we concluded that Aurora A and B were primary targets of KW-2450 in the antitumor effects seen in TNBC. TNBC cell lines relatively resistant to KW-2450 underwent cell death when treated in a combination with the MEK inhibitor selumetinib.

Historically, the development of Aurora kinase inhibitors started with pan-Aurora kinase inhibitors such as VX-680, and several Aurora A/B kinase dual inhibitors followed [7, 8, 27, 36–38]. The development of Aurora A/B kinase inhibitors led to the recognition that inhibition of Aurora B kinase is mainly responsible for the antitumor effects of Aurora A/B dual kinase inhibitors [6]. KW-2450 is considered a dual Aurora A/B kinase inhibitor, with similar IC50 values against Aurora A and B kinases [39]. Consistent with previous studies of dual kinase inhibitors of Aurora A and B [14, 38], KW-2450 dose-dependently induced 4N, 8N, and apoptosis at various rates, depending on the type of
TNBC cells (Fig. 6E). However, at the highest concentrations (1.0 μmol/L), 8N became the dominant population in all TNBC cells, which is a sign that Aurora B inhibition overtook Aurora A inhibition. Moreover, we observed accumulations of mitotic cells (shown with pHisH3+ or increased cyclin B1), which is a well-known outcome of Aurora A inhibition, in MDA-MB-468 and SUM149 cells (Supplementary Fig. S9). Therefore, at 0.5 μmol/L KW-2450 we saw growth inhibition or apoptosis in TNBC cells (Figs. 2 and 3), and inhibition of both Aurora A and B could be contributing to these antitumor effects in vitro. Because specific inhibitors to Aurora A and B are under development, testing all of these compounds may reveal further molecular background into the diverse responses to KW-2450 treatment, such as 8N accumulation or apoptosis.

Our finding of the tumor inhibitory effects of KW-2450 according to the subtype of breast cancer was also of interest. We showed that IC50 values for inhibiting cell viability in TNBC were higher than those for ER+ breast cancer. This finding suggests two possibilities: (i) ER+ breast cancer cells are more sensitive to Aurora A and B inhibition than are TNBC cells, or (ii) targeted kinases other than Aurora A and B are responsible for these lower IC50 values in ER+ breast cancer. If the latter is the case, IGF-IR could be one such targeted kinase in ER+ breast cancer. In fact, in another study that tested IGF-IR inhibitor NVP-AEW541 for breast cancer cells, MCF7 cells showed the highest sensitivity to IGF-IR inhibition among several breast cancer cells, including TNBC cells, which is exactly the same trend that we saw in the present study. These findings, together with our data, suggest that IGF-IR could be a legitimate target in ER+ breast cancer but not in TNBC cells.

In contrast with our conclusion, several studies support targeting of the IGF-IR pathway in TNBC cells. Lee's group initially showed the prognostic significance of the IGF-IR gene signature to predict poor breast cancer prognosis (40), which was also correlated with the ER-negative subtype. They further developed this concept in a preclinical study. With use of BMS-754807, a dual IGF-IR/InsR inhibitor, they showed the antitumor effects of BMS-754807 in vitro and in vivo (41). BMS-754807 is a reversible inhibitor to both IGF-IR and InsR, which is very potent with the Ki value of <2 nmol/L. In an IGF-IR kinase inhibitory assay with BMS-754807, a concentration of 3 to 10 nmol/L was enough to reduce IGF-IR kinase activity by less than half of that of the DMSO-treated control, meaning that IC50 to inhibit IGF-IR kinase activity was less than 3 to 10 nmol/L, which is close to our value for KW-2450 (<2 nmol/L). Despite this potent inhibitory activity toward IGF-IR, the BMS-754807 IC50 values to inhibit cell growth in MDA-MB-468 and MDA-MB-231 cells were much higher than those of KW-2450 (IC50 of BMS-754807: 2.91 and 2.27 μmol/L for MDA-MB-468 and MDA-MB-231 cells, respectively). These facts suggest that BMS-754807 could be inhibiting not only IGF-IR but also other off-targets with IC50s. According to the original report of BMS-754807, the 51 top-ranked potential targets included all Aurora kinase family proteins (Aurora A, B, and C) and another mitotic kinase, PLK4. These findings, together with our data, suggest that IGF-IR and/or InsR inhibition may not be enough to inhibit the growth of TNBC cells and that other targets need to be identified. Among these potential targets, Aurora A and B kinases are the leading candidates to be inhibited to have antitumor effects in the context of TNBC.

In conclusion, we showed the antitumor effects of KW-2450, focusing on Aurora A and B kinase inhibition in TNBC, and discovered a novel combinatorial opportunity with Aurora A/B inhibitor and MEK inhibitor for those cells with less sensitivity to KW-2450 (Fig. 6E). In the future, we will need to answer the questions "how does the MEK/ERKs pathway get activated in response to Aurora A/B inhibition?" and "Why is there diversity in terms of the response to Aurora A/B inhibition (e.g., activation level of MEK)?" Delineating the molecular background and marker development in regard to this combinatory therapy is worth pursuing in TNBC, which currently does not have any molecularly targeted therapies in a standard care setting.

Disclosure of Potential Conflicts of Interest
N.T. Ueno reports receiving other commercial research support from Kyowa-Kirin. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions
Conception and design: K. Kai, X. Wang, X. Xie, N.T. Ueno
Development of methodology: K. Kai, N.T. Ueno
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K. Kai
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K. Kai, H. Masuda, S. Sen, N.T. Ueno
Writing, review, and/or revision of the manuscript: K. Kai, X. Wang, X. Xie, M.K. Pinner, M.E. Reyes, A.M. Torres-Adorno, H. Masuda, G.N. Hortobagyi, C. Bartholomeusz, D. Tripathy, S. Sen, N.T. Ueno
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K. Kai, K. Kondo, N.T. Ueno
Study supervision: K. Kai, G.N. Hortobagyi, H. Saya, N.T. Ueno

Acknowledgments
The authors thank Dr. Jangsoon Lee, Dionysios N. Giannoukos, and Panthi U. Sathveys for their help in animal experiments and Tamara K. Locke (The University of Texas MD Anderson Cancer Center) for her help in editing this article.

Grant Support
This research was supported by Kyowa Hakko Kirin Co., Ltd. (Tokyo, Japan; to N.T. Ueno) and in part by the U.S. NIH/National Cancer Institute under award number P30CA016672 (to R.A. DePinho) and by the Nellie B. Connally Breast Cancer Research Fund (to D. Tripathy). K. Kai was supported by the program “Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation” by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 2, 2015; revised August 24, 2015; accepted September 11, 2015; published OnlineFirst October 6, 2015.
www.aacrjournals.org Mol Cancer Ther; 14(12) December 2015

Aurora A and B Kinase Inhibition in Triple-Negative Breast Cancer

Molecular Cancer Therapeutics

Antitumor Activity of KW-2450 against Triple-Negative Breast Cancer by Inhibiting Aurora A and B Kinases

Kazuharu Kai, Kimie Kondo, Xiaoping Wang, et al.

Mol Cancer Ther 2015;14:2687-2699. Published OnlineFirst October 6, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-15-0096

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2015/10/06/1535-7163.MCT-15-0096.DC1

Cited articles
This article cites 39 articles, 19 of which you can access for free at:
http://mct.aacrjournals.org/content/14/12/2687.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.