Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor

Andrew R. Larsen1, Ren-Yuan Bai2, Jon H. Chung1, Alexandra Borodovsky2, Charles M. Rudin3, Gregory J. Riggins2, and Fred Bunz1

Abstract

The hedgehog (Hh) signaling pathway is activated in many types of cancer and therefore presents an attractive target for new anticancer agents. Here, we show that mebendazole, a benzamidazole with a long history of safe use against nematode infestations and hydatid disease, potently inhibited Hh signaling and slowed the growth of Hh-driven human medulloblastoma cells at clinically attainable concentrations. As an antiparasitic, mebendazole avidly binds nematode tubulin and causes inhibition of intestinal microtubule synthesis. In human cells, mebendazole suppressed the formation of the primary cilium, a microtubule-based organelle that functions as a signaling hub for Hh pathway activation. The inhibition of Hh signaling by mebendazole was unaffected by mutants in the gene that encodes human Smoothed (SMO), which are selectively propagated in cell clones that survive treatment with the Hh inhibitor vismodegib. Combination of vismodegib and mebendazole resulted in additive Hh signaling inhibition. Because mebendazole can be safely administered to adults and children at high doses over extended time periods, we propose that mebendazole could be rapidly repurposed and clinically tested as a prospective therapeutic agent for many tumors that are dependent on Hh signaling. Mol Cancer Ther; 14(1); 3–13. ©2014 AACR.

Introduction

Activation of the hedgehog (Hh) signaling pathway is required for developmental morphogenesis and is frequently observed in human cancers (1, 2). Canonical Hh signals are initiated by the interaction of Hh ligands with the receptor PTCH1. In the unbound state, PTCH1 prevents SMO activation in the primary cilium, an organelle required for the transduction of various chemical and mechanical signals (3). In the presence of ligand, PTCH1 disappears from the cilium and SMO activates downstream effectors, including the GLI family of transcription factors (4). Several types of cancer, including basal cell carcinoma and medulloblastoma, are frequently caused by germline or somatic mutations in PTCH1 or by less common alterations within the pathway that lead to constitutive signaling by SMO (1, 2). Alternative modes of Hh pathway activation in some of the most common types of cancer are suggested by the widespread presence of Hh ligands and evidence of elevated GLI activity in many tumors that lack pathway-activating mutations (5, 6).

SMO antagonism has proven to be an effective strategy for treating tumors with active Hh signaling (7). The first SMO antagonist to be approved for clinical use is vismodegib (Erivedge; also known as GDC-0449). Vismodegib has been used successfully for the treatment of locally advanced and metastatic basal cell carcinomas (8), and is currently being tested for use in adults and children with many diverse types of tumors, including medulloblastomas and gliomas, which are often refractory to conventional therapies (9). When used as a monotherapy, vismodegib is associated with adverse effects that include fatigue, vomiting, weight loss, decreased appetite, dysgeusia, dehydration, and muscle spasm (10). Such low-grade toxicities have contributed to treatment discontinuation and appear to be potentially problematic when vismodegib is combined with conventional agents (11). When used to treat a patient with metastatic medulloblastoma, vismodegib caused a response that was impressive but transient (12). Recurrent tumors in this patient were found to harbor a novel SMO mutation that caused drug resistance (13). Selection for SMO-mutant tumor cell populations can similarly be caused by vismodegib therapy in mouse models of medulloblastoma (13). Alternative strategies to inhibit Hh signaling have been explored for the prevention or treatment of such recurrent tumors (14).

Benzimidazoles approved by the U.S. Food and Drug Administration for the treatment of nematode infections have been reported to have antiproliferative effects in diverse types of cancer cells, including those derived from melanoma, non–small cell lung cancer, ovarian cancer, adenocarcinoma, and colorectal cancers (15–20). Case reports have documented responses of a metastatic adenocarcinoma carcinoma (21) and a metastatic colorectal carcinoma (22) to mebendazole (methyl N-[6-(benzyl)-1H-benzamidazol-2-yl] carbamate). Our group recently found that experimental brain tumors were highly sensitive to
benzimidazole therapy that was administered to a mouse colony for control of a pinworm infestation. Follow-up studies of this serendipitous observation showed that mebendazole inhibited the growth of glioma-derived neurospheres in vitro, and among the benzimidazoles most effectively entered the central nervous system and slowed the growth of orthotopically implanted gliomas, which are characteristic of resistant to standard modes of therapy (23).

The anticancer effect of mebendazole defies a simple explanation. Mebendazole and related compounds have been reported to cause growth arrest and induce apoptosis in cultured cancer cells at doses that have little effect on noncancer immortalized cells (15–17, 19, 20). It is unclear why such nonspecific antiproliferative effects would preferentially target tumor cells over the cells in normal renewing tissues. Like all benzimidazoles used for treatment of helminth infestations, mebendazole binds tubulin at a binding site also recognized by colchicine, and inhibits microtubule polymerization. The rate of dissociation of mebendazole from nematode tubulin is an order of magnitude lower than from human tubulin (24). Inhibition of microtubule formation in the gut of the nematode prevents the absorption of glucose and thereby leads to elimination of the parasite (25), whereas human cells and tissues are apparently minimally affected by the less avid mebendazole–tubulin interaction. Mebendazole is therefore well tolerated, even at high doses administered over lengthy time periods for treatment of cystic echinococcosis (26).

A growing body of evidence suggests that activated Hh signaling contributes to the diverse cancers that are preclinically responsive to mebendazole and structurally related benzimidazoles. Recent-ly, Hh signaling has been shown to be active in many gliomas (27, 28), while Hh ligands or markers of downstream pathway activity have been detected in melanomas, lung cancers, ovarian cancers, adrenocortical cancers, and colorectal cancers (5, 6, 29–32), which are all responsive to mebendazole (15–21). Notably, unbiased screens for novel Hh inhibitors have previously identified drugs that interact with microtubules, including vinblastine, vincristine, and paclitaxel (33). These drugs potently inhibit mitosis, are highly toxic, and therefore unsuitable for long-term therapy. The specific effects of these compounds on components of the Hh pathway have not been reported.

In this study, we evaluated the effect of mebendazole on the Hh pathway. Mebendazole treatment prevented the formation of the primary cilium, decreased expression of downstream Hh pathway effectors, and decreased the proliferation and survival of human medulloblastoma cells with constitutive Hh activation. Mebendazole inhibited the activation of SMO-mutant proteins that give rise to disease recurrence. A combination of mebendazole and vismodegib achieved additive inhibition of canonical Hh signaling. These results support the repurposing of mebendazole for use in the many types of cancers that are initiated or maintained by active Hh signaling, and suggest combinations of drugs that could facilitate the achievement of durable responses.

Materials and Methods

Cell lines and cell cultures

Cultures of 293T and hTERT-RPE1 cells and Smo–/– mouse embryo fibroblasts (MEF) were maintained in DMEM (Life Technologies) supplemented with 10% fetal bovine serum (FBS; HyClone) and penicillin/streptomycin. DAOY and CH1T1/T2 mouse fibroblast cells were grown in Eagle's MEM (Life Technologies) supplemented with 10% FBS and penicillin/streptomycin. NIH3T3 cells were grown in DMEM supplemented with 10% calf serum. Shh-Light2 cells (34) were grown in DMEM with 10% calf serum and 0.4 mg/mL geneticin and 0.15 mg/mL zeocin, both purchased from Life Technologies. All cell lines were obtained from the ATCC within 6 months of the beginning of the project and validated by the supplier, except for Smo–/– MEFs that were a gift from James Kim (University of Texas Southwestern Medical Center) and were not genetically authenticated upon their receipt in July 2013.

Orthotopic tumors

Syngeneic GL261 glioma tumors were grown intracranially in 4- to 6-week-old female nu/nu athymic mice (NCI-Fredrick) and treated with mebendazole as previously described (23). Each brain was snap-frozen after extraction and stored in liquid nitrogen until further analysis. Orthotopic medulloblastoma xenografts were generated in female athymic mice, 5 to 6 weeks of age (NCI). DAOY cells were infected with a lentivirus carrying a firefly luciferase CDNA (23) before implantation. For the implantation procedure, mice were anesthetized and 200,000 DAOY cells were injected through a burr hole drilled 1 mm lateral to the right of the sagittal suture and 1 mm posterior to the lambda at a depth of 2.5 mm below the dura, with the guidance of a stereotactic frame, at a rate of 1 μl/min. Treatment was initiated at 5 days after implantation, with a daily dose of mebendazole of 25 or 50 mg/kg delivered with 50% (v/v) sesame oil and PBS, by gavage. Intracranial luciferase activity was determined with a bioluminescence imager (Xenogen) following intraperitoneal injection of 2 mg o-luciferin potassium salt (Gold Biotechnology). Animals were scanned 15 m after injection for 1 m at a distance of 20 cm. Mice were euthanized when they exhibited signs of increased intracranial pressure. All animal protocols and procedures were performed under an approved protocol and in accordance with the Johns Hopkins Animal Care and Use Committee guidelines. For RNA preparation, each brain was thawed on ice before removing the right anterior cerebral cortex and the contralateral brain section. Each tissue sample was suspended in 1 mL of Trizol (Life Technologies) per 0.1 g of material, and the RNA fraction was purified according to the manufacturer’s recommendations.

Plasmids and cell transfections

ShhN-conditioned media was generated by transfection of pDNA3 ShhN (provided by Pao Tien Chuang, University of California San Francisco) into 293T cells. Control media was obtained from mock-transfected 293T cells. For localization of Shh, hTERT-RPE-1 cells grown in chamber slides (Nunc) were transfected with pDNA3 Smo–FLAG (provided by Chen Ming Fan, Carnegie Institute of Science). GL11 reporter assays were conducted by cotransfeting the firefly luciferase reporter pBV Luc 8XGII (provided by Craig Peacock, Cleveland Clinic) and TK-Renilla luciferase reporter pGL4 74 (Promega). Overexpression of Hh components was achieved by transient transfection of pHK-SmoM2 (35), pCMV5 hGLI1 FLAG (provided by Peter Zaphiropoulos, Karolinska Institute) and pCS2-MT hGLI2 FL (Addgene plasmid 17648; ref. 36). Mutant-Smo expression constructs were provided by James Kim. All transfections were performed with FuGENE HD (Promega).

GLI-reporter assays and drug treatment

Subconfluent Shh-Light2 cells were routinely incubated in low serum conditions (0.25% FBS, 5-mm HEPES), to optimize Hh
responsiveness, during a 48-hour period of drug treatment. For ShhN ligand stimulation, cells were incubated with ShhN-conditioned media or control media, diluted at 1:5, during the treatment period. Final DMSO concentration in all cultures was 1%. For experiments involving overexpression of Hh pathway components, cells were transfected 24 hours before low serum and drug treatment. Cell lysates were analyzed using the Dual-Luciferase Assay Reporter System (Promega). GLI-dependent luciferase was measured on a Victor3 V 1420 Multilabel Counter (PerkinElmer) and standardized against luciferase activity. The IC$_{50}$ was calculated by Prism 5 software package (GraphPad).

Cell proliferation, viability, and survival assays

Bromodeoxyuridine (BrdUrd) incorporation during DNA synthesis was measured using the Cell Proliferation ELISA Kit (Roche). Cell viability was measured with the CellTiter-Blue Cell Viability Assay Kit (Promega). Colorimetric signals were measured on a SpectraMax M5 (Molecular Devices). For each assay, the IC$_{50}$ was calculated with the Prism 5 software package (GraphPad). For assessment of clonogenic survival, cells were drug-treated under low serum conditions in 12-well plates. After 48 hours, cells were harvested in Trypsin–EDTA (Life Technologies), diluted at 1:4,000 in standard growth media, and seeded in 10-cm plates in triplicate. After 10 days of growth, plates were stained with 0.2% crystal violet in 50% MeOH and destained in water. Colonies containing more than 50 cells were scored. For the quantitation of apoptosis, cells were detached and stained with a fluorescent antibody directed against Annexin V with the Dead Cell Apoptosis Kit (Life Technologies). The fraction of stained cells was determined with a FACSAnia II flow cytometer (BD) in the Sidney Kimmel Comprehensive Cancer Center Flow Cytometry Core.

Immunoblotting and immunofluorescence

Proteins were separated on Bis-Tris gels (Life Technologies) and transferred onto Immunoblot-P nylon membranes (Millipore). Following overnight incubation with primary antibodies under standard conditions, blots were developed with horseradish peroxidase (HRP)-conjugated secondary antibodies and visualized by chemiluminescence (Amersham). Band intensities were quantified by Image Lab software and standardized to the intensity of the loading controls anti–α-tubulin or anti–β-actin. To assess tubulin polymerization, polymerized and unpolymerized tubulin fractions were separated on the basis of solubility as reported previously (37).

For analysis of primary cilia by immunofluorescence, cells were grown on poly-n-lysine (Sigma)—coated chamber slides (Nunc) and fixed in 0.4% paraformaldehyde at 37°C for 5 minutes, permeabilized in 0.5% Triton X-100 at 37°C for 2 minutes, washed in PBS, then sequentially incubated in 4% paraformaldehyde, 37°C for 5 minutes, and methanol, −20°C for 5 minutes, as previously described (38). Non-specific proteins were blocked with 2% bovine serum albumin in PBS for 30 minutes at room temperature. Slides were incubated with primary antibody in blocking buffer overnight at 4°C, then washed with PBS, and incubated with either biotinylated (Santa Cruz Biotechnology) or Alexa Fluor 594–conjugated (Life Technologies) secondary antibodies in blocking buffer for 20 minutes at room temperature. Cells were washed with PBS before adding an Alexa Fluor 488–streptavidin conjugate (Life Technologies). Nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI; Life Technologies). Stained cells were visualized with an Axiosimager Z1 (Carl Zeiss) and images were captured with Axiovision Rel 4.6 software.

The following primary antibodies were used: anti-GLI1 (C68H3; Cell Signaling Technology), anti–caspase-3 (9662; Cell Signaling Technology) anti-cleaved caspase-3 (D175; Cell Signaling Technology), anti–α-tubulin (TU-02; Santa Cruz Biotechnology), HRP-conjugated anti-β-actin (Santa Cruz Biotechnology), anti-acetylated α-tubulin (6-11 B-1; Sigma), anti-FLAG (anti-DYKDDDDK; Cell Signaling Technology).

Quantitative real time RT-PCR

RNA was isolated and purified with the TRizol reagent (Life Technologies), treated with DNase I (Thermo Scientific), and assayed by spectrophotometry. cDNA was synthesized with the Maxima First Strand cDNA Synthesis Kit (Thermo Scientific). Quantitative, real-time reverse transcription PCR (qRT-PCR) was performed using both Maxima Probe and Maxima SYBR Green qPCR Master Mixes (Thermo Scientific) with standard cycling conditions on a 7900HT Fast Real-Time PCR system (Applied Biosystems). Prime Time qPCR probes and primers were used to assay the mouse genes: Pchtl: probe (5′-ATCCGACCCCTGCAAG-CATCAGT-3′), forward primer (5′-TGTGTTGTCCTCGGTTG-3′), reverse primer (5′-AACACGCTTCACTGAAACCC-3′), GLI1: probe (5′-CTGGGACCCCTGCAATAAATGGTCTG-3′); forward primer (5′-CTTCTTGTCTGCTGCTGGTTTG-3′); reverse primer (5′-CTTCTGTGCTGCTGCTGGTTTG-3′); PTCH1: probe (5′-CCTTCACAGGATCTACCC-3′); forward primer (5′-AAGAGCTGACGATGCTGGAA-3′); reverse primer (5′-AAGAGCTGACGATGCTGGAA-3′); GLI1: forward primer (5′-CCACGGCGGCGGCGGGAGG-3′); reverse primer (5′-ACTGGCATTGCTGCGACTGTTACTG-3′), PTCH1: forward primer (5′-CCACAAGGCGCTCTTACA-3′); reverse primer (5′-CTGTAATTCGCCTCTTCTCC-3′); PTCH2: forward primer (5′-GAAGATTTAGCGAGCGATGG-3′); reverse primer (5′-GAAGATTTAGCGAGCGATGG-3′); GAPDH: forward primer (5′-CCGATACAGAGATGGGCA-3′); reverse primer (5′-ACAGCTCTTCACCTGGTGAAC-3′). All results were analyzed using SDS RQ Manager (Applied Biosystems).

Results

Inhibition of Hh signaling in vitro and in vivo

To directly assess the effect of mebendazole on canonical Hh signaling, we incubated the drug with murine Shh-Light2 cells, which have stably incorporated a GLI-activated reporter. The following primary antibodies were used: anti-GLI1 (C68H3; Cell Signaling Technology), anti–caspase-3 (9662; Cell Signaling Technology) anti-cleaved caspase-3 (D175; Cell Signaling Technology), anti–α-tubulin (TU-02; Santa Cruz Biotechnology), HRP-conjugated anti-β-actin (Santa Cruz Biotechnology), anti-acetylated α-tubulin (6-11 B-1; Sigma), anti-FLAG (anti-DYKDDDDK; Cell Signaling Technology).

Quantitative real time RT-PCR

RNA was isolated and purified with the TRizol reagent (Life Technologies), treated with DNase I (Thermo Scientific), and assayed by spectrophotometry. cDNA was synthesized with the Maxima First Strand cDNA Synthesis Kit (Thermo Scientific). Quantitative, real-time reverse transcription PCR (qRT-PCR) was performed using both Maxima Probe and Maxima SYBR Green qPCR Master Mixes (Thermo Scientific) with standard cycling conditions on a 7900HT Fast Real-Time PCR system (Applied Biosystems). Prime Time qPCR probes and primers were used to assay the mouse genes: Pchtl: probe (5′-ATCCGACCCCTGCAAG-CATCAGT-3′), forward primer (5′-TGTGTTGTCCTCGGTTG-3′), reverse primer (5′-AACACGCTTCACTGAAACCC-3′), GLI1: probe (5′-CTGGGACCCCTGCAATAAATGGTCTG-3′); forward primer (5′-CTTCTTGTCTGCTGCTGGTTTG-3′); reverse primer (5′-CTTCTGTGCTGCTGCTGGTTTG-3′); PTCH1: probe (5′-CCTTCACAGGATCTACCC-3′); forward primer (5′-CCACAAGGCGCTCTTACA-3′); reverse primer (5′-CTGTAATTCGCCTCTTCTCC-3′); PTCH2: forward primer (5′-GAAGATTTAGCGAGCGATGG-3′); reverse primer (5′-GAAGATTTAGCGAGCGATGG-3′); GAPDH: forward primer (5′-CCGATACAGAGATGGGCA-3′); reverse primer (5′-ACAGCTCTTCACCTGGTGAAC-3′). All results were analyzed using SDS RQ Manager (Applied Biosystems).

Results

Inhibition of Hh signaling in vitro and in vivo

To directly assess the effect of mebendazole on canonical Hh signaling, we incubated the drug with murine Shh-Light2 cells, which have stably incorporated a GLI-activated firefly luciferase (GLI-luc) reporter construct (34). Under low serum conditions that are optimal for Hh activation, addition of the amino-terminal signaling domain of the secreted sonic hedgehog ligand (ShhN) induced robust reporter activity that could be inhibited by mebendazole in the micromolar dose range (Fig. 1A). A similar degree of inhibition was observed in mouse C3H10T1/2 fibroblast cells transiently transfected with the GLI-luc reporter (Fig. 1B). Mebendazole was a considerably more potent inhibitor of Hh pathway activation than structurally related anthelmintic drugs (Fig. 1C), which in prior studies were less effective than mebendazole at inhibiting the growth of GL261 gliomas (23). The GL261 mouse tumor harbors a mutation in Pten (39); in humans, mutation of Pten defines a category of gliomas that are strongly associated with elevated Hh activity (28). We assessed endogenous GLI1 transcript levels in mebendazole-treated and control GL261
Mebendazole (MBZ) inhibits Hh signaling. A, Shh-Light2 cells maintained in low-serum conditions were incubated in ShhN-conditioned medium or control medium, in the presence of mebendazole at the indicated concentrations. The activity of the stably integrated Gli-luc reporter was measured after 48 hours of treatment. The effect on this assay of 0.2 μmol/L vismodegib (Vis) is indicated by the dashed line. B, C3H10T1/2 mouse fibroblasts were cotransfected with the Gli-luc and Renilla luciferase reporters. After 24 hours, mebendazole was added for an additional 48 hours in low-serum media before cell lysis and measurement of luciferase activity. The effect of 0.2 μmol/L vismodegib (Vis) is indicated by the dashed line. C, the effect of mebendazole on Gli-luc reporter activity in Shh-Light2 cells was compared with that of the structurally related benzamidizoles albendazole, fenbendazole, and tiabendazole. Treatment times and conditions were as in A. D, endogenous levels of Gli1 transcripts in syngeneic, GL261 gliomas and in normal brain tissue from the contralateral region were measured by qRT-PCR. E, Gli1 expression was measured by qRT-PCR in untreated and mebendazole-treated GL261 tumors. Each measurement was standardized to a parallel measurement from a contralateral brain section that did not contain tumor tissue. F, relative protein levels of Gli1 in three untreated and three mebendazole-treated GL261 tumors were assessed by immunoblot. Immortalized hTERT-RPE1 cells (G) or DAOY medulloblastoma cells (H) growing in low serum were treated with ShhN-conditioned or control medium for 48 hours. Mebendazole was included during this treatment period at the concentrations indicated. GLI1 and PTCH1 transcript levels were assessed by qRT-PCR.

tumors. Gli1 expression was significantly elevated in untreated tumors compared with nonaffected tissue from the contralateral side of the brain (Fig. 1D), suggesting a role for Hh signaling in the growth of these tumors. Gli1 transcript and protein expression in tumor tissues was decreased by mebendazole treatment (Fig. 1E and F).
To extend our analysis to human cells, we tested the effects of mebendazole on Hh-mediated gene expression in the immortalized human retinal pigment epithelial cell line hTERT-RPE1. Unlike the majority of human cancer cell lines, this noncancer cell line is responsive to ShhN (Fig. 1G). A concentration of 0.1 μmol/L mebendazole was sufficient to reduce ShhN-induced expression of endogenous GLI1 and PTCH1 to basal levels (Fig. 1G). Further Hh pathway inhibition was observed at higher mebendazole concentrations.

Using the same conditions, we assessed the effect of mebendazole on the human medulloblastoma cell line DAOY. In both the present and absence of ShhN ligand, there was partial reduction in GLI1 and PTCH1 transcripts at 0.1 μmol/L mebendazole and almost complete suppression at 1 μmol/L mebendazole, similar to the effect of 0.2 μmol/L vismodegib (Fig. 1H).

Figure 2.
Effect of mebendazole (MBZ) on Hh-signaling, growth, and survival of Hh-dependent medulloblastoma cells. Subconfluent DAOY cultures maintained under low-serum conditions were treated for 48 hours with mebendazole at varying concentrations. A, GLI1 expression was assayed by qRT-PCR. B, cell proliferation was assessed by measuring the incorporation of BrdUrd over 2 hours. C, cell survival was quantified by a clonogenic assay. D, the effect of mebendazole on cell viability was comparatively assessed by CellTiter-Blue in hTERT-RPE1 (blue) and DAOY (red). E, the expression of GLI1 protein and cleavage of caspase-3 was assessed by immunoblot in DAOY and hTERT-RPE1 cells treated with mebendazole for 12 hours, under low-serum conditions. α-Tubulin was probed as a loading control. F, representative nuclei from mebendazole-treated DAOY cells and untreated controls, stained with Hoechst 33258. Scale bar, 20 μm. G, Annexin V–stained cells were quantified by flow cytometry, after 24 hours of mebendazole treatment (1 μmol/L) under low-serum conditions. H, the proportion of Annexin V–positive cells after treatment with various concentrations of mebendazole, as in G.
Mebendazole (MBZ) suppresses the growth of medulloblastoma cells and Hh signaling in vivo. DAOY cells expressing firefly luciferase were grown as orthotopic xenograft tumors following injection into the cerebella of nude mice. After 5 days, mice were treated with 50 mg/kg mebendazole (n = 6) or mock-treated (Vehicle; n = 6). A, survival of mice with DAOY cell-derived orthotopic tumors. Median survival was 75 days in the control (Vehicle) group and 113 days in the mebendazole-treated group (P = 0.001). One mebendazole-treated mouse was euthanized after surviving 6 months without presenting any symptoms of lethal tumor growth. B, total RNA was harvested from representative tumors at the time of death. GLI1, PTCH1, and PTCH2 transcripts were quantified by qRT-PCR. C, tumor growth in live animals was quantified by bioluminescence imaging 5 days after implantation and again following 60 days of treatment. Representative images from the 60-day time point are shown at right.

Inhibition of Hh-dependent cell proliferation and survival, and tumor growth

We next assessed the effects of mebendazole on Hh-dependent cell proliferation and survival. DAOY cells have a gene expression profile consistent with a type II (Hh-subtype) medulloblastoma and accordingly exhibit elevated Hh signaling (40). In these cells, mebendazole caused a reduction in GLI1 expression with an IC50 = 516 ± 81 nmol/L (SEM; Fig. 2A). At similar concentrations, mebendazole markedly inhibited DAOY cell proliferation (Fig. 2B). Clonogenic survival was affected by mebendazole at a concentration as low as 100 nmol/L (Fig. 2C). The viability of DAOY cells, as assessed by a metabolic assay, was significantly impaired by mebendazole at concentrations approaching 1 µmol/L. In contrast, hTERT RPE-1 cells, which are Hh-responsive but not dependent on Hh signals for growth, were only modestly affected by this treatment (Fig. 2D). The expression of GLI1 protein was similarly reduced in both cell types by increasing concentrations of mebendazole, but only DAOY cells exhibited biochemical (Fig. 2E) and morphologic (Fig. 2F) evidence of apoptosis. Accordingly, a significant proportion of DAOY cells stained with Annexin V after mebendazole treatment (Fig. 2G), and this response was dose dependent (Fig. 2H).

When injected into the cerebella of nude mice to form orthotopic xenograft tumors, DAOY cells were responsive to 50 mg/kg mebendazole administered by daily gavage. Mebendazole treatment extended the median survival of tumor-bearing mice by 38 days (Fig. 3A). Levels of GLI1 and PTCH2 transcripts were reduced in the DAOY-derived tumors at the time of death (Fig. 3B), while bioluminescence imaging demonstrated a marked effect on tumor cell proliferation in asymptomatic mice (Fig. 3C). Treatment of mice harboring DAOY-derived orthotopic tumors with 25 mg/kg mebendazole caused an increased median survival of 19 days (Supplementary Fig. S1A) and similarly reduced tumor-specific expression of GLI1 and PTCH1 (Supplementary Fig. S1B). Notably, DAOY xenografts exhibit large cell morphology (40), which in naturally evolving tumors is associated with poor outcomes (41).

Inhibition of SMO via suppression of ciliogenesis

We next tested the ability of mebendazole to counteract Hh signaling induced by individual components of the pathway. NIH3T3 cells strongly activated the Glu-luc reporter in response to ShhN-conditioned medium; this upregulation of Hh activity was suppressed by mebendazole and by vismodegib (Fig. 4A). Hh signaling could also be strongly stimulated in these cells by transient overexpression of the Ptc1-resistant SmoM2-mutant protein (35), and by GLI1 or GLI2 (Fig. 4B). The stimulatory effect of SmoM2 on Glu-luc activation could be suppressed by mebendazole, whereas reporter activation by the downstream effectors GLI1 and GLI2 was resistant to mebendazole (Fig. 4C).

To assess the effect of mebendazole on upstream signaling by SMO, we examined the cellular localization of a Smo–FLAG fusion protein (42) by immunofluorescence. Under low-serum conditions that favor primary ciliom formation and robust SMO activation, Smo–FLAG was predominantly localized to the
Mebendazole (MBZ) inhibits activation of SMO. A, NIH3T3 fibroblasts cotransfected with Gli-luc and Renilla reporter plasmids were maintained in low-serum conditions for 48 hours in the presence of ShhN-conditioned or control media. During this period, mebendazole or vismodegib were added at the indicated concentrations. B, a direct comparison of Gli-luc activation in NIH3T3 cells 48 hours after treatment with ShhN ligand, or 72 hours after cotransfection with plasmids that drive exogenous expression of the Ptch1-resistant Smo-mutant SmoM2, GLI1, or GLI2 in low-serum media. C, mebendazole or vismodegib was added to SmoM2-, GLI1-, or GLI2-transfected NIH3T3 cells during 48 hours of incubation in low-serum conditions. The activation of a cotransfected Gli-luc reporter by each overexpressed gene, in the absence of drug treatment, was normalized to 100.

Figure 4.

Discussion

The development of new drugs for the treatment of cancers is a time consuming and expensive process. Unanticipated toxicities at all stages of development are a major cause of failure (43). Repurposing well-characterized compounds for new uses can minimize such uncertainty, save time and markedly reduce costs. There are over 4,000 unique molecular entities approved worldwide for human or veterinary use (44). Exploring new indications for this rich compound library is a particularly attractive strategy to find new treatments for rare and neglected diseases, for which there are few financial incentives to justify the traditional process of commercial drug discovery. Brain tumors are relatively rare, but highly lethal. The incidence of medulloblastoma, for example, is approximately 1.5 per million in the United States and the majority of these cases occur in children (45). Economic constraints and the unique vulnerability of pediatric patients are obstacles to the traditional drug discovery process. New strategies to treat such diseases will likely involve agents that are first approved for other purposes.
Mebendazole (MBZ) inhibits formation of primary cilia. A, a Smo-FLAG fusion protein was expressed in hTERT-RPE1 cells by transient transfection. After 48-hour incubation in low serum and treatment with 1 µmol/L mebendazole or vehicle, cells were fixed, permeabilized, and stained with antibodies directed against acetyl-α-tubulin (green) and FLAG (red). Nuclei were counterstained with DAPI. Scale bar, 10 μm. B, cilia were numerically assessed on individual cells (inset). Scale bar, 20 μm. C, the effects of mebendazole or 0.2 µmol/L vismodegib (red line) on the proportion of ciliated cells. D, hTERT-RPE1 cells were treated with mebendazole at the indicated concentrations or with 10 nmol/L paclitaxel (red line) for 48 hours under low-serum conditions. Polymerized and unpolymerized tubulin fractions were quantified by immunoblotting, normalized to the loading control β-actin, and expressed as the proportion of polymerized tubulin. E, GLI1 expression was assessed in DAOY cells that were incubated with mebendazole or 0.2 µmol/L vismodegib (red line) for 48 hours under the low-serum conditions that allow formation of the primary cilium (“Treat in low serum”), or that were first maintained in low serum for 20 hours before adding mebendazole for an additional 48 hours (“Preincubate in low serum”). F, cell viability was assessed by CellTiter-Blue after the treatments described in E.

Figure 5. Mebendazole (MBZ) inhibits formation of primary cilia.
The antimicrotubule agents identified in these screens are either highly toxic, or at early stages of characterization. Our data suggest that mebendazole might represent a simple path forward for this promising therapeutic strategy.

A burgeoning body of evidence suggests that Hh signaling is involved in the initiation and/or maintenance of a large proportion of human cancers (2, 5, 6, 29). The repurposing of mebendazole as an anticancer therapeutic will be guided by our rapidly growing understanding of the Hh pathway and how it contributes to tumor growth. It will be important to understand how mebendazole interacts with other agents, including other Hh inhibitors. In particular, the additive effect of mebendazole on vismodegib that we observed in vitro suggests a combinatorial strategy that could potentially alleviate the untoward effects associated with vismodegib and also suppress recurrence. Clinical trials will be the next step in exploring these new possibilities.

Figure 6. Additive effects of mebendazole (MBZ) and vismodegib against SMO signaling. Wild-type Smo or the Smo D477G mutant were expressed with the Gli-luc and Renilla luciferase reporters by cotransfection into Smo−/− MEFs. After 24 hours, cells were treated with vismodegib (A) or mebendazole (B) at the indicated concentrations, in the presence of ShhN-conditioned medium. C, the effects of 1 μmol/L mebendazole and 0.2 μmol/L vismodegib on Smo-dependent activation of the Gli-luc reporter were assessed against an expanded panel of Smo mutants. WT, wild-type Smo. D, the combined effects of vismodegib and mebendazole on relative Gli-luc activity were tested in Shh-Light2 cells under low-serum conditions with supplemental ShhN-media. The relative luciferase readout was normalized to 100 for each mebendazole concentration, so that the curves could be superimposed. The IC50 of vismodegib was unchanged by addition of mebendazole. E, a modification of the experiment shown in D, in which mebendazole was titrated into the Shh-Light2 Gli-luc assay along with fixed concentrations of vismodegib.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: A.R. Larsen, J.H. Chung, G.J. Riggins, F. Bunz
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A.R. Larsen, R.-Y. Bai, A. Borodovsky
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A.R. Larsen, J.H. Chung, F. Bunz
Writing, review, and/or revision of the manuscript: A.R. Larsen, J.H. Chung, C.M. Rudin, G.J. Riggins, F. Bunz
Study supervision: F. Bunz

Acknowledgments
The authors thank Dr. Verena Staedke for advice regarding the animal experiments.

Grant Support
This study was funded by grant 801CA157535 from the National Cancer Institute (Bethesda, MD) to F. Bunz. R.-Y. Bai, A. Borodovsky, and G.J. Riggins were supported by the Virginia and D.K. Ludwig Fund for Cancer Research. J.H. Chung was supported by the AACR-Fight ColonRectal Cancer Fellowship. G.J.
Riggins is supported by the Irving Sherman Professorship. The Johns Hopkins research core facilities were funded in part by Cancer Center grant P30CA069733 from the National Cancer Institute.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

advertisment in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 4, 2014; revised October 7, 2014; accepted October 27, 2014; published OnlineFirst November 5, 2014.

References

53. Barakat MT, Humelke IW, Scott MP. Kif3a is necessary for initiation and maintenance of medulloblastoma. Carcinogenesis 2013;34:1382–92.
54. Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 2005;8:7–12.
Molecular Cancer Therapeutics

Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor

Mol Cancer Ther 2015;14:3-13. Published OnlineFirst November 5, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0755-T

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/11/05/1535-7163.MCT-14-0755-T.DC1

Cited articles
This article cites 57 articles, 20 of which you can access for free at:
http://mct.aacrjournals.org/content/14/1/3.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/14/1/3.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.