Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor

Andrew R. Larsen1, Ren-Yuan Bai2, Jon H. Chung1, Alexandra Borodovsky2, Charles M. Rudin3, Gregory J. Riggins2, and Fred Bunz1

Abstract

The hedgehog (Hh) signaling pathway is activated in many types of cancer and therefore presents an attractive target for new anticancer agents. Here, we show that mebendazole, a benzimidazole with a long history of safe use against nematode infestations and hydatid disease, potently inhibited Hh signaling and slowed the growth of Hh-driven human medulloblastoma cells at clinically attainable concentrations. As an antiparasitic, mebendazole avidly binds nematode tubulin and causes inhibition of intestinal microtubule synthesis. In human cells, mebendazole suppressed the formation of the primary cilium, a microtubule-based organelle that functions as a signaling hub for Hh pathway activation. The inhibition of Hh signaling by mebendazole was unaffected by mutants in the gene that encodes human Smooth muscle cell Actin (SMO), which are selectively propagated in cell clones that survive treatment with the Hh inhibitor vismodegib. Combination of vismodegib and mebendazole resulted in additive Hh signaling inhibition. Because mebendazole can be safely administered to adults and children at high doses over extended time periods, we propose that mebendazole could be rapidly repurposed and clinically tested as a prospective therapeutic agent for many tumors that are dependent on Hh signaling. Mol Cancer Ther; 14(1); 3–13. ©2014 AACR.

Introduction

Activation of the hedgehog (Hh) signaling pathway is required for developmental morphogenesis and is frequently observed in human cancers (1, 2). Canonical Hh signals are initiated by the interaction of Hh ligands with the receptor PTCH1. In the unbound state, PTCH1 prevents SMO activation in the primary cilium, an organelle required for the transduction of various chemical and mechanical signals (3). In the presence of ligand, PTCH1 disappears from the cilium and SMO activates downstream effectors, including the GLI family of transcription factors (4). Several types of cancer, including basal cell carcinoma and medulloblastoma, are frequently caused by germline or somatic mutations in PTCH1 or by less common alterations within the pathway that lead to constitutive signaling by SMO (1, 2). Alternative modes of Hh pathway activation in some of the most common types of cancer are suggested by the widespread presence of Hh ligands and evidence of elevated GLI activity in many tumors that lack pathway-activating mutations (5, 6).

SMO antagonism has proven to be an effective strategy for treating tumors with active Hh signaling (7). The first SMO antagonist to be approved for clinical use is vismodegib (Erivedge; also known as GDC-0449). Vismodegib has been used successfully for the treatment of locally advanced and metastatic basal cell carcinomas (8), and is currently being tested for use in adults and children with many diverse types of tumors, including medulloblastomas and gliomas, which are often refractory to conventional therapies (9). When used as a monotherapy, vismodegib is associated with adverse effects that include fatigue, vomiting, weight loss, decreased appetite, dysgeusia, dehydration, and muscle spasm (10). Such low-grade toxicities have contributed to treatment discontinuation and appear to be potentially problematic when vismodegib is combined with conventional agents (11). When used to treat a patient with metastatic medulloblastoma, vismodegib caused a response that was impressive but transient (12). Recurrent tumors in this patient were found to harbor a novel SMO mutation that caused drug resistance (13).

Selection for SMO-mutant tumor cell populations can similarly be caused by vismodegib therapy in mouse models of medulloblastoma (13). Alternative strategies to inhibit Hh signaling have been explored for the prevention or treatment of such recurrent tumors (14).

Benzimidazoles approved by the U.S. Food and Drug Administration for the treatment of nematode infections have been reported to have antiproliferative effects in diverse types of cancer cells, including those derived from melanoma, non–small cell lung cancer, ovarian cancer, adrenocortical carcinoma, and colorectal cancers (15–20). Case reports have documented responses of a metastatic adrenocortical carcinoma (21) and a metastatic colorectal carcinoma (22) to mebendazole (methyl N-[6-(benzoyl)-1H-benzamidazol-2-yl] carbamate). Our group recently found that experimental brain tumors were highly sensitive to
benzimidazole therapy that was administered to a mouse colony for control of a pinworm infestation. Follow-up studies of this serendipitous observation showed that mebendazole inhibited the growth of glia-derived neurospheres in vitro, and among the benzimidazoles most effectively entered the central nervous system and slowed the growth of orthotopically implanted gliomas, which are characteristically resistant to standard modes of therapy (23).

The anticancer effect of mebendazole defies a simple explanation. Mebendazole and related compounds have been reported to cause growth arrest and induce apoptosis in cultured cancer cells at doses that have little effect on noncancer immortalized cells (15–17, 19, 20). It is unclear why such nonspecific antiproliferative effects would preferentially target tumor cells over the cells in normal renewing tissues. Like all benzimidazoles used for treatment of helminth infestations, mebendazole binds tubulin at a binding site also recognized by colchicine, and inhibits microtubule polymerization. The rate of dissociation of mebendazole from nematode tubulin is an order of magnitude lower than from human tubulin (24). Inhibition of microtubule formation in the gut of the nematode prevents the absorption of glucose and thereby leads to elimination of the parasite (25), whereas human cells and tissues are apparently minimally affected by the less avid mebendazole–tubulin interaction. Mebendazole is therefore well tolerated, even at high doses administered over lengthy time periods for treatment of cystic echinococcosis (26).

A growing body of evidence suggests that activated Hh signaling contributes to the diverse cancers that are preclinically responsive to mebendazole and structurally related benzimidazoles. Recently, Hh signaling has been shown to be active in many gliomas (27, 28), while Hh ligands or markers of downstream pathway activity have been detected in melanomas, lung cancers, ovarian cancers, tumors of the right anterior cerebral cortex and the contralateral brain, genetically authenticated upon their receipt in July 2013.

Orthotopic tumors
Syngeneic GL261 glioma tumors were grown intracranially in 4- to 6-week-old female nu/nu athymic mice (NCl-Frederick) and treated with mebendazole as previously described (23). Each brain was snap-frozen after extraction and stored in liquid nitrogen until further analysis. Orthotopic medulloblastoma xenografts were generated in female athymic mice, 5 to 6 weeks of age (NCl). DAoY cells were infected with a lentivirus carrying a firefly luciferase cdna (23) before implantation. For the implantation procedure, mice were anesthetized and 200,000 DAoY cells were injected through a burr hole drilled 1 mm lateral to the right of the sagittal suture and 1 mm posterior to the lambda at a depth of 2.5 mm below the dura, with the guidance of a stereotactic frame, at a rate of 1 µl/min. Treatment was initiated at 5 days after implantation, with a daily dose of mebendazole of 25 or 50 mg/kg delivered with 50% (v/v) sesame oil and PBS, by gavage. Intracranial luciferase activity was determined with a bioluminescence imager (Xenogen) following intraperitoneal injection of 2 mg o-luciferin potassium salt (Gold Biotechnology). Animals were scanned 15 m after injection for 1 m at a distance of 20 cm. Mice were euthanized when they exhibited signs of increased intracranial pressure. All animal protocols and procedures were performed under an approved protocol and in accordance with the Johns Hopkins Animal Care and Use Committee guidelines. For RNA preparation, each brain was thawed on ice before removing the right anterior cerebral cortex and the contralateral brain section. Each tissue sample was suspended in 1 mL of TRIzol (Life Technologies) per 0.1 g of material, and the RNA fraction was purified according to the manufacturer’s recommendations.

Plasmids and cell transfections
ShhN-conditioned media was generated by transfection of pcDNA3 ShhN (provided by Pao Tien Chuang, University of California San Francisco) into 293T cells. Control media was obtained from mock-transfected 293T cells. For localization of SMO, hTERT RPE-1 cells grown in chamber slides (Nunc) were transfected with pcDNA3 ShhN-conditioned media. Overexpression of Shh-Light2 cells were routinely incubated in low serum conditions (0.25% FBS, 5-mm HEPES). to optimize Shh

Materials and Methods
Cell lines and cell cultures
Cultures of 293T and hTERT-RPE1 cells and SMO-/− mouse embryo fibroblasts (MEF) were maintained in DMEM (Life Technologies) supplemented with 10% fetal bovine serum (FBS; Hyclone) and penicillin/streptomycin. DAoY and CH110T1/2 mouse fibroblast cells were grown in Eagle’s MEM (Life Technologies) supplemented with 10% FBS and penicillin/streptomycin. NIH3T3 cells were grown in DMEM supplemented with 10% calf serum. Shh-Light2 cells (34) were grown in DMEM with 10% calf serum and 0.5 mg/mL geneticin and 0.15 mg/mL zeocin, both purchased from Life Technologies. All cell lines were obtained from the ATCC within 6 months of the beginning of the project and validated by the supplier, except for SMO−/− MEFs that were a gift from James Kim (University of Texas Southwestern Medical Center) and were genetically authenticated upon their receipt in July 2013.

Gli-reporter assays and drug treatment
Subconfluent Shh-Light2 cells were routinely incubated in low serum conditions (0.25% FBS, 5-mm HEPES). to optimize Shh
responsiveness, during a 48-hour period of drug treatment. For ShhN ligand stimulation, cells were incubated with ShhN-conditioned media or control media, diluted at 1:5, during the treatment period. Final DMSO concentration in all cultures was 1%. For experiments involving overexpression of Hh pathway components, cells were transfected 24 hours before low serum and drug treatment. Cell lysates were analyzed using the Dual-Luciferase Assay Reporter System (Promega). GLI-dependent luciferase was measured on a Victor3 V 1420 Multilabel Counter (PerkinElmer) and standardized against Renilla luciferase activity. The

IC$_{50}$ was calculated by Prism 5 software package (GraphPad).

Cell proliferation, viability, and survival assays

Bromodeoxyuridine (BrdUrd) incorporation during DNA synthesis was measured using the Cell Proliferation ELISA Kit (Roche). Cell viability was measured with the CellTiter-Blue Cell Viability Assay Kit (Promega). Colorimetric signals were measured on a SpectraMax M5 (Molecular Devices). For each assay, the IC$_{50}$ was calculated with the Prism 5 software package (GraphPad). For assessment of clonogenic survival, cells were drug-treated under low serum conditions in 12-well plates. After 48 hours, cells were harvested in trypsin–EDTA (Life Technologies), diluted at 1:4,000 in standard growth media, and seeded in 10-cm plates in triplicate. After 10 days of growth, plates were stained with 0.2% crystal violet in 50% MeOH and destained in water. Colonies containing more than 50 cells were scored. For the quantitation of apoptosis, cells were detached and stained with a fluorescent antibody directed against Annexin V with the Dead Cell Apoptosis Kit (Life Technologies). The fraction of stained cells was determined with a FACSAria II flow cytometer (BD) in the Sidney Kimmel Comprehensive Cancer Center Flow Cytometry Core.

Immunoblotting and immunofluorescence

Proteins were separated on Bis–Tris gels (Life Technologies) and transferred onto Immobilon-P nylon membranes (Millipore). Following overnight incubation with primary antibodies under standard conditions, blots were developed with horseradish peroxidase (HRP)–conjugated secondary antibodies and visualized by chemiluminescence (Amersham). Band intensities were quantified by Image Lab software and standardized to the intensity of the loading controls anti–α-tubulin or anti–β-actin.

To assess tubulin polymerization, polymerized and depolymerized tubulin fractions were separated on the basis of solubility as reported previously (37).

For analysis of primary cilia by immunofluorescence, cells were grown on poly-γ-lysine (Sigma)–coated chamber slides (Nunc) and fixed in 0.4% paraformaldehyde at 37°C for 5 minutes, permeabilized in 0.5% Triton X-100 at 37°C for 2 minutes, washed in PBS, and then sequentially incubated in 4% paraformaldehyde, 37°C for 5 minutes, and methanol, –20°C for 5 minutes, as previously described (38). Nonspecific proteins were blocked with 2% bovine serum albumin in PBS for 30 minutes at room temperature. Slides were incubated with primary antibody in blocking buffer overnight at 4°C, then washed with PBS, and incubated with either biotinylated (Santa Cruz Biotechnology) or Alexa Fluor 594–conjugated (Life Technologies) secondary antibodies in blocking buffer for 20 minutes at room temperature. Cells were washed with PBS before adding an Alexa Fluor 488–streptavidin conjugate (Life Technologies). Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI; Life Technologies).

Stained cells were visualized with an AxioImager Z1 (Carl Zeiss) and images were captured with Axiovision Rel 4.6 software.

The following primary antibodies were used: anti–GLI1 (C66H3; Cell Signaling Technology), anti–caspase-3 (9662; Cell Signaling Technology), anti–cleaved caspase-3 (D175; Cell Signaling Technology), anti–α-tubulin (TU02; Santa Cruz Biotechnology), HRP-conjugated anti–β-actin (Santa Cruz Biotechnology), anti–acyethylated α-tubulin (6–11 B-1; Sigma), anti–FLAG (anti–DYKDDDDK; Cell Signaling Technology).

Quantitative real time RT-PCR

RNA was isolated and purified with the TRizol reagent (Life Technologies), treated with DNase I (Thermo Scientific), and assayed by spectrophotometry. cDNA was synthesized with the Maxima First Strand cDNA Synthesis Kit (Thermo Scientific). Quantitative, real-time reverse transcription PCR (qRT-PCR) was performed using both Maxima Probe and Maxima SYBR Green qPCR Master Mixes (Thermo Scientific) with standard cycling conditions on a 7900HT Fast Real-Time PCR system (Applied Biosystems). Prime Time qPCR probes and primers were used to assay the mouse genes: Pch1: probe (5’-ATTCGACCCCTGGCAAG-CATCAG-3’), forward primer (5’TGGTGCTCTCCCGTTCGG-3’), reverse primer (5’-AACCAGTCATGAAAGCC-3’); Gli1: probe (5’-CTGGGACCTGGATACAAAGTTCG-3’); forward primer (5’-CTCTTCTGTTGCTGCTTTTG-3’); reverse primer (5’-TCTTGTGTAATTTGACTGAACTCCG-3’); Ripl9: probe (5’-CTTCTCAAGA-GATACCGGGAATCCAAG-3’); forward primer (5’-AGAGTTGAGG- GATCATGAGAA-3’); reverse primer (5’-TGAATACATXIGCGGC- GTCAATCT-3’). Human transcripts were analyzed with SYBR green. Gli1: forward primer (5’-CCACCGGCGCCGGCGGAGAAG-3’); reverse primer (5’-ACTGCTATGGTCGAGGCGCTTACG-3’); Ptc1: forward primer (5’-CCACAGAAGCGCTCCTACA-3’); reverse primer (5’-CTGTAATTTCGCCCCTTCC-3’); Ptch2: forward primer (5’-GGAATGATTGGAGCGGATGATTGA-3’); reverse primer (5’-CCACCGGCGCCGGCGGAGAAG-3’); GAPDH: forward primer (5’-TTCAGGACGATGTTGATCTTACAATT-3’); reverse primer (5’-AGCCCTTCCATCGTTGATTTGAC-3’). All results were analyzed using SDS RQ Manager (Applied Biosystems).

Results

Inhibition of Hh signaling in vitro and in vivo

To directly assess the effect of mebendazole on canonical Hh signaling, we incubated the drug with murine Shh-Light2 cells, which have stably incorporated a GLI-activated luciferase construct (34). Under low serum conditions that are optimal for Hh activation, addition of the Hh-specific antagonist cyclopamine (ShhN) induced robust reporter activity that could be inhibited by mebendazole at micromolar concentrations (23). The GL261 mouse tumor harbors a mutation in PtEN (39); in humans, mutation of PTEN defines a category of gliomas that are strongly associated with elevated Hh activity (28). We assessed endogenous Gli1 transcript levels in mebendazole-treated and control GL261 glioma cells.
Mebendazole (MBZ) inhibits Hh signaling. A, Shh-Light2 cells maintained in low-serum conditions were incubated in ShhN-conditioned medium or control medium, in the presence of mebendazole at the indicated concentrations. The activity of the stably integrated Gli-luc reporter was measured after 48 hours of treatment. The effect on this assay of 0.2 μmol/L vismodegib (Vis) is indicated by the dashed line. B, C3H10T1/2 mouse fibroblasts were cotransfected with the Gli-luc and Renilla luciferase reporters. After 24 hours, mebendazole was added for an additional 48 hours in low-serum media before cell lysis and measurement of luciferase activity. The effect of 0.2 μmol/L vismodegib (Vis) is indicated by the dashed line. C, the effect of mebendazole on Gli-luc reporter activity in Shh-Light2 cells was compared with that of the structurally related benzimidazoles albendazole, fenbendazole, and tiabendazole. Treatment times and conditions were as in A. D, endogenous levels of Gli1 transcripts in syngeneic, GL261 gliomas and in normal brain tissue from the contralateral region were measured by qRT-PCR. E, Gli1 expression was measured by qRT-PCR in untreated and mebendazole-treated GL261 tumors. Each measurement was standardized to a parallel measurement from a contralateral brain section that did not contain tumor tissue. F, relative protein levels of Gli1 in three untreated and three mebendazole-treated GL261 tumors were assessed by immunoblot. Immortalized hTERT-RPE1 cells (G) or DAOY medulloblastoma cells (H) growing in low serum were treated with ShhN-conditioned or control medium for 48 hours. Mebendazole was included during this treatment period at the concentrations indicated. GLI1 and PTCH1 transcript levels were assessed by qRT-PCR.

tumors. Gli1 expression was significantly elevated in untreated tumors compared with nonaffected tissue from the contralateral side of the brain (Fig. 1D), suggesting a role for Hh signaling in the growth of these tumors. Gli1 transcript and protein expression in tumor tissues was decreased by mebendazole treatment (Fig. 1E and F).
To extend our analysis to human cells, we tested the effects of mebendazole on Hh-mediated gene expression in the immortalized human retinal pigment epithelial cell line hTERT-RPE1. Unlike the majority of human cancer cell lines, this noncancer cell line is responsive to ShhN (Fig. 1G). A concentration of 0.1 μmol/L mebendazole was sufficient to reduce ShhN-induced expression of endogenous GLI1 and PTCH1 to basal levels (Fig. 1G). Further Hh pathway inhibition was observed at higher mebendazole concentrations.

Using the same conditions, we assessed the effect of mebendazole on the human medulloblastoma cell line DAOY. In both the presence and absence of ShhN ligand, there was partial reduction in GLI1 and PTCH1 transcripts at 0.1 μmol/L mebendazole and almost complete suppression at 1 μmol/L mebendazole, similar to the effect of 0.2 μmol/L vismodegib (Fig. 1H).

Figure 2.
Effect of mebendazole (MBZ) on Hh-signaling, growth, and survival of Hh-dependent medulloblastoma cells. Subconfluent DAOY cultures maintained under low-serum conditions were treated for 48 hours with mebendazole at varying concentrations. A, GLI1 expression was assayed by qRT-PCR. B, cell proliferation was assessed by measuring the incorporation of BrdUrd over 2 hours. C, cell survival was quantified by a clonogenic assay. D, the effect of mebendazole on cell viability was comparatively assessed by CellTiter-Blue in hTERT-RPE1 (blue) and DAOY (red). E, the expression of GLI1 protein and cleavage of caspase-3 was assessed by immunoblot in DAOY and hTERT-RPE1 cells treated with mebendazole for 12 hours, under low-serum conditions. α-Tubulin was probed as a loading control. F, representative nuclei from mebendazole-treated DAOY cells and untreated controls, stained with Hoechst 33258. Scale bar, 20 μm. G, Annexin V-stained cells were quantified by flow cytometry, after 24 hours of mebendazole treatment (1 μmol/L) under low-serum conditions. H, the proportion of Annexin V-positive cells after treatment with various concentrations of mebendazole, as in G.
IC50 mebendazole caused a reduction in and accordingly exhibit elevated Hh signaling (40). In these cells, pro cell proliferation and survival. DAOY cells have a gene expression tumor growth

Inhibition of Hh-dependent cell proliferation and survival, and tumor growth

We next assessed the effects of mebendazole on Hh-dependent cell proliferation and survival. DAOY cells have a gene expression profile consistent with a type II (Hh-subtype) medulloblastoma and accordingly exhibit elevated Hh signaling (40). In these cells, mebendazole caused a reduction in GLI1 expression with an IC50 = 516 ± 81 nmol/L (SEM; Fig. 2A). At similar concentrations, mebendazole markedly inhibited DAOY cell proliferation (Fig. 2B). Clonogenic survival was affected by mebendazole at a concentration as low as 100 nmol/L (Fig. 2C). The viability of DAOY cells, as assessed by a metabolic assay, was significantly impaired by mebendazole at concentrations approaching 1 μmol/L. In contrast, hTERT RPE-1 cells, which are Hh-responsive but not dependent on Hh signals for growth, were only modestly affected by this treatment (Fig. 2D). The expression of GLI1 protein was similarly reduced in both cell types by increasing concentrations of mebendazole, but only DAOY cells exhibited biochemical (Fig. 2E) and morphologic (Fig. 2F) evidence of apoptosis. Accordingly, a significant proportion of DAOY cells stained with Annexin V after mebendazole treatment (Fig. 2G), and this response was dose dependent (Fig. 2H).

When injected into the cerebella of nude mice to form orthotopic xenograft tumors, DAOY cells were responsive to 50 mg/kg mebendazole administered by daily gavage. Mebendazole treatment extended the median survival of tumor-bearing mice by 38 days (Fig. 3A). Levels of GLI1 and PTCH2 transcripts were reduced in the DAOY-derived tumors at the time of death (Fig. 3B), while bioluminescence imaging demonstrated a marked effect on tumor cell proliferation in asymptomatic mice (Fig. 3C). Treatment of mice harboring DAOY-derived orthotopic tumors with 25 mg/kg mebendazole caused an increased median survival of 19 days (Supplementary Fig. S1A) and similarly reduced tumor-specific expression of GLI1 and PTCH1 (Supplementary Fig. S1B). Notably, DAOY xenografts exhibit large cell morphology (40), which in naturally evolving tumors is associated with poor outcomes (41).

Inhibition of SMO via suppression of ciliogenesis

We next tested the ability of mebendazole to counteract Hh signaling induced by individual components of the pathway. NIH3T3 cells strongly activated the Gli-luc reporter in response to ShhN-conditioned medium; this upregulation of Hh activity was suppressed by mebendazole and by vismodegib (Fig. 4A). Hh signaling could also be strongly stimulated in these cells by transient overexpression of the Ptch1-resistant SmoM2-mutant protein (35), and by GLI1 or GLI2 (Fig. 4B). The stimulatory effect of SmoM2 on Gli-luc activation could be suppressed by mebendazole, whereas reporter activation by the downstream effectors GLI1 and GLI2 was resistant to mebendazole (Fig. 4C).

To assess the effect of mebendazole on upstream signaling by SMO, we examined the cellular localization of a Smo–FLAG fusion protein (42) by immunofluorescence. Under low-serum conditions that favor primary cilium formation and robust SMO activation, Smo–FLAG was predominantly localized to the
primary cilia (Fig. 5A). Mebendazole-treated cells exhibited a notable paucity of primary cilia, and in nonciliated cells Smo-FLAG was distributed throughout the cytoplasm (Fig. 5A). The suppressive effect of mebendazole on ciliogenesis was quantified in larger cell populations (Fig. 5B and C). The proportion of ciliated cells decreased in response to mebendazole within a concentration range that also inhibited the polymerization of human α-tubulin in vitro (Fig. 5D). We next tested whether allowing primary cilia to pre-form before mebendazole addition could alter the effect of mebendazole on pathway activity. Temporally separating serum starvation from mebendazole administration partially restored GLI1 expression (Fig. 5E) and viability (Fig. 5F) in mebendazole-sensitive DAOY cells.

Distinct modes of Hh-pathway inhibition by vismodegib and mebendazole

As mebendazole exerts an indirect effect on SMO, we reasoned that mebendazole might inhibit the activity of mutant SMO proteins that have been found to confer vismodegib resistance. To test this idea, we assayed the ability of mebendazole to inhibit Gli-luc activity by wild-type and vismodegib-resistant mutant Smo proteins exogenously expressed in Smo−/− MEFs. Gli-luc activity was induced by ShhN ligand in the presence of either wild-type Smo or the Smo D477G mutant. This mutation was originally found in a vismodegib-resistant allograft derived from a mouse medulloblastoma and corresponds to an equivalent mutation found in a patient with recurrent disease (13). Activation of Gli-luc by Smo D477G was completely resistant to inhibition by vismodegib (Fig. 6A). In contrast, both wild-type and mutant Smo could be functionally suppressed by mebendazole (Fig. 6B). Analysis of an expanded panel of all described vismodegib-resistant Smo mutants (14) confirmed that the inhibitory effects of mebendazole were unaffected by the vismodegib-selected alterations in Smo (Fig. 6C). When used in combination, vismodegib and mebendazole additively suppressed the Gli-luc signal (Fig. 6D and E), a result that is consistent with two independent modes of pathway inhibition.

Discussion

The development of new drugs for the treatment of cancers is a time consuming and expensive process. Unanticipated toxicities at all stages of development are a major cause of failure (43). Repurposing well-characterized compounds for new uses can minimize such uncertainty, save time and markedly reduce costs. There are over 4,000 unique molecular entities approved worldwide for human or veterinary use (44). Exploring new indications for this rich compound library is a particularly attractive strategy to find new treatments for rare and neglected diseases, for which there are few financial incentives to justify the traditional process of commercial drug discovery. Brain tumors are relatively rare, but highly lethal. The incidence of medulloblastoma, for example, is approximately 1.5 per million in the United States and the majority of these cases occur in children (45). Economic constraints and the unique vulnerability of pediatric patients are obstacles to the traditional drug discovery process. New strategies to treat such diseases will likely involve agents that are first approved for other purposes.
Mebendazole (MBZ) inhibits formation of primary cilia. A, a Smo
Figure 5.

Larsen et al.

Mebendazole was developed in 1968 for use against a broad
spectrum of gastrointestinal helminth pathogens, and remains
among the most widely used agents in infected adults, includ-
ing pregnant women, and children (46). Doses as high as 200
mg/kg/d have been safely and effectively administered for up
to 48 weeks for the treatment of internal hydatid cysts (47, 48).
Although systemic absorption is low, serum levels of meben-
dazole peak 1 to 3 hours after intake, at reported levels that
range from 0.3 to 1.6 μmol/L (48, 49). We observed significant
levels of Hh pathway inhibition within this dose range. The
only significant side effect of these high, chronic doses is
bone marrow suppression, which has been observed in fewer
than 5% of patients. Case reports suggest that this adverse
effect is associated with increased therapeutic effect, and is
therefore probably caused by higher blood levels of meben-
dazole in these patients. In supportive clinical settings, this
untoward effect could be straightforwardly monitored and
was reversible upon cessation of treatment (50).

We show here that the low-avidity binding of mebendazole
to human tubulin can inhibit the assembly of the primary
cilium, a tubulin-based structure. Hh pathway components are
concentrated in the primary cilium (4, 51), and mutations in
murine genes necessary for cilium formation cause phenotypes
consistent with deficiencies in Hh signaling (52). In mice,
primary cilia are dispensable for the growth of fibroblasts and
other cell types, but essential for the ongoing proliferation
of cultured medulloblastoma cells and the growth of estab-
lished tumors (53). The differences in mebendazole sensitivity
that we observed between human medulloblastoma cells and
immortalized cells (Fig. 2D and E) are consistent with these
dependencies.

The efficiency with which mebendazole can inhibit the for-
mation of the primary cilium suggests that this anti-Hh effect
might account for much of its activity against brain tumors and
other tumor types thus far tested. Effects on other targets may
also be relevant. For example, signals arising from the Wnt
signaling pathway and platelet-derived growth factor (PDGF)
ligands travel through the primary cilium (3). However, the
developmental abnormalities that arise in mutant mice deficient
for ciliogenesis most clearly overlap with those caused by Hh
signaling defects (3). Beyond the primary cilium, microtubule
assembly plays a fundamental role in cell division. Our results
cannot rule out effects of mebendazole on the mitotic spindle as
a cause of cytotoxicity. However, this type of antiproliferative
activity would not be highly specific for cancer cells. Indeed,
motic spindle checkpoint defects that are found in many
cancers have been proposed to confer relative resistance to
microtubule inhibitors (54). Interestingly, mebendazole-treated
xenografts have been found to exhibit reduced vascularity (17).
VEGF-A has accordingly been proposed as a target of benzimid-
azole therapy (18). Inhibition of Hh activation potently stimu-
lates angiogenesis by the paracrine induction of VEGF-A and
other angiogenic factors (55), and could therefore account for
these seemingly disparate observations.

The central role of the primary cilium in Hh pathway acti-
vation suggests that interfering with cilia formation should be
an effective strategy for targeting Hh-driven tumors. The inhib-
itory effect of microtubule inhibitors on Hh signaling has been
demonstrated by unbiased screens that have identified such
agents indirectly, as inhibitors of GLI activity, or by direct
inhibition of cilia formation and function (33, 56, 57). Thus

Figure 5. Mebendazole (MBZ) inhibits formation of primary cilia. A, a Smo–FLAG fusion
protein was expressed in hTERT-RPE1 cells by transient transfection. After
48-hour incubation in low serum and treatment with 1 μmol/L mebendazole
or vehicle, cells were fixed, permeabilized, and stained with antibodies
directed against acetyl-α-tubulin (green) and FLAG (red). Nuclei were
counterstained with DAPI. Scale bar, 10 μm. B, cilia were numerically assessed
by acetyl-α-tubulin staining in hTERT-RPE1 cells maintained in low-serum
conditions and treated with mebendazole. Primary cilia (indicated by arrows)
could be visualized on individual cells (inset). Scale bar, 20 μm. C, the effects
of mebendazole or 0.2 μmol/L vismodegib (red line) on the proportion of
ciliated cells. D, hTERT-RPE1 cells were treated with mebendazole at the
indicated concentrations or with 10 nmol/L paclitaxel (red line) for 48 hours
under low-serum conditions. Polymerized and unpolymerized tubulin
fractions were quantified by immunoblotting, normalized to the loading
control β-actin, and expressed as the proportion of polymerized tubulin
compared with the combined polymerized and unpolymerized tubulin. E, GLI1
expression was assessed in DAOY cells that were incubated with mebendazole
for 48 hours under the low-serum conditions that allow
formation of the primary cilium (“Treat in low serum”), or that were first
maintained in low serum for 20 hours before adding mebendazole for an
additional 48 hours (“Preincubate in low serum”). F, cell viability was assessed
by CellTiter-Blue after the treatments described in E.
far, the antimicrotubule agents identified in these screens are either highly toxic, or at early stages of characterization. Our data suggest that mebendazole might represent a simple path forward for this promising therapeutic strategy.

A burgeoning body of evidence suggests that Hh signaling is involved in the initiation and/or maintenance of a large proportion of human cancers (2, 5, 6, 29). The repurposing of mebendazole as an anticancer therapeutic will be guided by our rapidly growing understanding of the Hh pathway and how it contributes to tumor growth. It will be important to understand how mebendazole interacts with other agents, including other Hh inhibitors. In particular, the additive effect of mebendazole on vismodegib that we observed in vitro suggests a combinatorial strategy that could potentially alleviate the untoward effects associated with vismodegib and also suppress recurrence. Clinical trials will be the next step in exploring these new possibilities.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Figure 6.
Additive effects of mebendazole (MBZ) and vismodegib against SMO signaling. Wild-type Smo or the Smo D477G mutant were expressed with the Gli-luc and Renilla luciferase reporters by cotransfection into Smo−/−MEFs. After 24 hours, cells were treated with vismodegib (A) or mebendazole (B) at the indicated concentrations, in the presence of ShhN-conditioned medium. C, the effects of 1 μmol/L mebendazole and 0.2 μmol/L vismodegib on Smo-dependent activation of the Gli-luc reporter were assessed against an expanded panel of Smo mutants. WT, wild-type Smo. D, the combined effects of vismodegib and mebendazole on relative Gli-luc activity were tested in Shh-Light2 cells under low-serum conditions with supplemental ShhN-media. The relative luciferase readout was normalized to 100 for each mebendazole concentration, so that the curves could be superimposed. The IC50 of vismodegib was unchanged by addition of mebendazole. E, a modification of the experiment shown in D, in which mebendazole was titrated into the Shh-Light2 Gli-luc assay along with fixed concentrations of vismodegib.

Authors’ Contributions

Conception and design: A.R. Larsen, J.H. Chung, G.J. Riggins, F. Bunz Development of methodology: A.R. Larsen, J.H. Chung, C.M. Rudin, F. Bunz Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A.R. Larsen, R.-Y. Bai, A. Borodovsky Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A.R. Larsen, J.H. Chung, F. Bunz Writing, review, and/or revision of the manuscript: A.R. Larsen, J.H. Chung, C.M. Rudin, G.J. Riggins, F. Bunz Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A.R. Larsen Study supervision: F. Bunz

Acknowledgments

The authors thank Dr. Verena Staedke for advice regarding the animal experiments.

Grant Support

This study was funded by grant R01CA157535 from the National Cancer Institute (Bethesda, MD) to F. Bunz. R.-Y. Bai, A. Borodovsky, and G.J. Riggins were supported by the Virginia and D.K. Ludwig Fund for Cancer Research. J.H. Chung was supported by the AACR-Fight Colorectal Cancer Fellowship. G.J.

www.aacrjournals.org Mol Cancer Ther; 14(1) January 2015 11

Downloaded from mct.aacrjournals.org on May 3, 2017. © 2015 American Association for Cancer Research.
Riggins is supported by the Irving Sherman Professorship. The Johns Hopkins research core facilities were funded in part by Cancer Center grant P30CA06973 from the National Cancer Institute.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 4, 2014; revised October 7, 2014; accepted October 27, 2014; published OnlineFirst November 5, 2014.

References

54. Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 2005;8:7–12.
Molecular Cancer Therapeutics

Repurposing the Antihelmintic Mebendazole as a Hedgehog Inhibitor

Mol Cancer Ther 2015;14:3-13. Published OnlineFirst November 5, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0755-T

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/11/05/1535-7163.MCT-14-0755-T.DC1

Cited articles
This article cites 57 articles, 24 of which you can access for free at:
http://mct.aacrjournals.org/content/14/1/3.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/14/1/3.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.