Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer
Kazuhide Sato, Hiroyoshi Hanaoka, Rira Watanabe, Takahito Nakajima, Peter L. Choyke, and Hisataka Kobayashi

Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase-expressing ovarian cancer cell line (SKOV-3luc). An antibody–photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to NIR light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a three-dimensional (3D) spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these were assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT–induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the antitumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs. control in tumor volume changes at day 10, P = 0.0001; NIR-PIT vs. control in luciferase activity at day 4, P = 0.0237), and the peritoneal model (NIR-PIT vs. control in luciferase activity at day 7, P = 0.0037). NIR-PIT provided effective cell killing in this HER2-positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors. Mol Cancer Ther; 14(1): 141–50. ©2014 AACR.

Introduction
Ovarian carcinoma affected approximately 22,000 new patients in the United States in 2012 and resulted in approximately 14,000 deaths (1). Ovarian adenocarcinoma is responsible for at least 90% of all ovarian malignancies and it is the second most frequent gynecologic malignancy after cervical cancer. Despite various attempts to screen and detect ovarian carcinoma early, more than 85% of patients present at an advanced stage which commonly consists of nodal and intraperitoneal dissemination (2). While overall 5-year survival over the last 3 decades has improved from 37% to 46% with a combination of radical surgery and cytotoxic chemotherapy, ovarian cancer remains a major cause of morbidity and mortality for women throughout the world (2, 3). The reasons for this are complex but principally involve the inherent difficulty of safely removing all cancer implants from the peritoneum and the relatively rapid onset of chemoresistance in advanced stage ovarian cancer (4). Therefore, there is an urgent need for improved ovarian cancer therapies that are highly effective yet cause minimal damage to adjacent normal tissue (5).

The concept of using targeted light therapy is over three decades old (6). Because of the hydrophobicity of traditional photodynamic therapy (PDT) sensitizers, the pharmacokinetics of antibody-conjugated PDT agents limits its selective targeting ability. Therefore, PDT sensitizers targeting with antibodies was only successful in intratumoral or intraperitoneal preclinical models (7). The recognition that a hydrophilic phthalocyanine-based photosensitizer could be conjugated to an antibody and exposed to near infrared (NIR) light has led to a new method to treat tumors with light. This NIR photoimmunotherapy (NIR-PIT) differs from traditional PDT not only in the hydrophilicity of the photosensitizer, but also in its reliance on NIR light that has better tissue penetration than lower wavelength light. This new generation of antibody–photosensitizer conjugates (APC) demonstrates similar intravenous pharmacokinetics to naked antibodies, resulting in highly targeted tumor accumulation with minimal nontarget binding. When bound to targeted cells, APCs induce rapid, selective cytotoxicity after exposure to NIR light. Briefly, the photosensitizer, IRDye700DX, (IR700, a silica-phthalocyanine dye) is conjugated to a specific antibody customized to the expression profile of the tumor being treated. Then, the APC is activated by exposure to NIR light at 690 nm, killing only APC-bound target cells. In vitro studies have demonstrated that NIR-PIT is highly target cell-specific; therefore, non–target-expressing cells suffer no toxic effects (8). Recent data suggest that once the APC binds to the target cell and is exposed to NIR light, cell necrosis is rapid and irreversible due to structural damage to the cell membrane. For
instance, cell membrane rupture can be demonstrated within minutes of exposure to NIR light in targeted cells (8–12). However, so far, NIR-PIT is limited to tumors located relatively shallow from the surface that can be easily exposed to NIR light. In this study, we investigate the efficacy of NIR-PIT for treating disseminated peritoneal ovarian cancer in a mouse model.

Materials and Methods

Reagents
Water soluble, silicon-phthalocyanine derivative, IRDye 700DX NHS ester and IRDye 800CW (IR800) NHS ester were obtained from LI-COR Bioscience. Panitumumab, a fully humanized IgG2 mAb directed against EGFR, was purchased from Amgen. Trastuzumab, 95% humanized IgG1 mAb directed against HER2, was purchased from Genentech. All other chemicals were of reagent grade.

Synthesis of IR700-conjugated trastuzumab or panitumumab, and IR800-conjugated trastuzumab

Conjugation of dyes with monoclonal antibodies (mAb) was performed according to previous reports (8, 11, 13). Briefly, panitumumab or trastuzumab (1 mg, 6.8 nmol) was incubated with IR700 NHS ester (60.2 μg, 30.8 nmol) or IR800 NHS ester (35.9 μg, 30.8 nmol) in 0.1 mol/L Na2HPO4 (pH 8.6) at room temperature for 1 hour. The mixture was purified with a Sephadex G25 column (PD-10; GE Healthcare). The protein concentration was determined with Coomassie Plus protein assay kit (Thermo Fisher Scientific Inc) by measuring the absorption at 595 nm with spectroscopy (8453 Value System; Agilent Technologies). The concentration of IR700 or IR800 was measured respectively by fluorophore molecules conjugated to each mAb. The synthesis was controlled so that an average of four IR700 molecules or two IR800 molecules were bound to a single antibody. We performed SDS-PAGE as a quality control for each conjugate as previously reported (13). We abbreviate IR700 conjugated to trastuzumab as tra-IR700, to panitumumab as pan-IR700 and IR800 conjugated to trastuzumab as tra-IR800.

Cell culture
HER2 and luciferase-expressing SKOV3-luc-D3 cells were newly purchased from Caliper LifeSciences for this project in April 2014 and were not tested in our place. To evaluate specific cell killing by PIT, Balb/3T3 (purchased from ATCC in 2009 and frozen and stocked cells without passage were thawed in May 2014 for this project that were not tested in our place) cells stably transfected and expressing DsRed (3T3/DsRed) were used as negative controls (8). Cells were grown in RPMI1640 (Life Technologies) supplemented with 10% FBS and 1% penicillin/streptomycin (Life Technologies) in tissue culture flasks in a humidified incubator at 37°C at an atmosphere of 95% air and 5% CO2.

Spheroids culture
Spheroids were generated by the hanging drop method in which five thousand SKOV3-luc cells were suspended in 50 μL medium and were then dispensed into 96-well plates (3D Biomatrix Inc.) following the manufacturer’s instructions (9, 12).

Flow cytometry
Fluorescence from cells after incubation with pan-IR700 or tra-IR700 was measured using a flow cytometer (FACS Calibur, BD Biosciences) and CellQuest software (BD Biosciences). SKOV-luc cells (1 × 103) were incubated with each APC for 6 hours at 37°C. To validate the specific binding of the conjugated antibody, excess antibody (50 μg) was used to block 0.5 μg of dye–antibody conjugates (11).

Fluorescence microscopy
To detect the antigen-specific localization of IR700 conjugates, fluorescence microscopy was performed (IX61 or IX81; Olympus America). Ten thousand cells were seeded on cover glass-bottomed dishes and incubated for 24 hours. Tra-IR700 was then added to the culture medium at 10 μg/mL and incubated at 37°C for 6 hours. The cells were then washed with PBS; propidium iodide (PI, 1:2,000; Life Technologies) and Cytox Blue (1:500; Life Technologies), were used to detect dead cells. For spheroid evaluation, SYTO Blue42 (1:500; Life Technologies) was used to detect living cells within the spheroid. They were added into the media 30 minutes before the observation. The cells were then exposed to NIR light (2 J/cm2) and serial images were obtained. The filter was set to detect IR700 fluorescence with a 590 to 650 nm excitation filter, and a 665 to 740 nm band pass emission filter.

Three-dimensional (3D) reconstructions of the spheroids were obtained with a confocal laser microscope (LSM5 meta, Carl Zeiss) after incubation for 30 minutes with Hoechst 33342 (1:500; Life Technologies; ref. 14). Sections of spheroids were first fixed with 3.7% formaldehyde in PBS for 10 minutes at room temperature followed by embedding with OCT (SAKURA). Then, they were frozen at −80°C, and sliced at 10 μm with a cryotome (LEICA CM3050 S, Leica Microsystems; ref. 15). Analysis of the images was performed with ImageJ software (http://rsb.info.nih.gov/ij/).

In vitro NIR-PIT

One hundred thousand cells were seeded into 24-well plates or ten million cells were seeded onto a 10 cm dish and incubated for 24 hours. Medium was replaced with fresh culture medium containing 10 μg/mL of tra-IR700, which was incubated for 6 hours at 37°C. After washing with PBS, phenol red-free culture medium was added. Then, cells were irradiated with a NIR laser, which emits light at 685 to 695 nm wavelength (BWF5-690-8-600-0.37; B&W TEK INC.). The actual power density of mW/cm² was measured with an optical power meter (PM 100, Thorlabs).

Cytotoxicity/phototoxicity assay
The cytotoxic effects of NIR-PIT with tra-IR700 were determined by the luciferase activity and flow cytometric PI staining. For luciferase activity, 150 μg/mL of α-luciferin−containing media (Gold Biotechnology) was administered to PBS-washed cells 6 hours after PIT, and analyzed on a bioluminescence imaging (BLI) system (Photon Imager, Biospace Lab). We evaluated luciferase activity in vitro at varying times after PIT (1, 3, 6, 24 hours). For the flow cytometric assay, cells were trypsinized 6 hours after treatment and washed with PBS. PI was added to the cell suspension (final 2 μg/mL) and incubated at room temperature for 30 minutes, before flow cytometry.

Animal and tumor models
All in vivo procedures were conducted in compliance with the Guide for the Care and Use of Laboratory Animal Resources (1996), US National Research Council, and approved by the local Animal Care and Use Committee. Six- to 8-week-old female
homologous athymic nude mice were purchased from Charles River (NCl, Frederick, MD). During procedures, mice were anesthetized with isoflurane.

To determine tumor volume, three million SKOV-luc cells were injected subcutaneously in the right dorsum of the mice. The greatest longitudinal diameter (length) and the greatest transverse diameter (width) were measured with an external caliper. Tumor volumes based on caliper measurements were calculated by the following formula: tumor volume = length \times width^2 \times 0.5 (8, 11). Tumors reaching approximately 50 mm³ in volume were selected for further experiments.

For BLI, D-luciferin (15 mg/mL, 200 μL) was injected intraperitoneally and the mice were analyzed with a Photon Imager for luciferase activity at day 6. Mice were selected for further study based on tumor size and bioluminescence.

To evaluate the disseminated peritoneal ovarian cancer mouse model, five million SKOV-luc cells in PBS (total 300 μL) were injected into the peritoneal cavity. Twenty-seven days later, D-luciferin (15 mg/mL, 200 μL) was injected intraperitoneally and imaged with the Photon Imager for luciferase activity in the abdomen; mice with sufficient activity were selected for further study.

Characterization of the disseminated peritoneal ovarian cancer mouse model

Both the disseminated peritoneal model and the subcutaneous bilateral flank models received 100 μg of tra-IR700 or tra-IR800 intravenously. One day after injection, serial images were performed with a fluorescence imager (Pearl Imager, LI-COR Biosciences) for detecting IR700/IR800 fluorescence and with the Photon Imager for luciferase activity in the abdomen. Images of the mice were obtained with an iphone5 (Apple Inc.).

In vitro NIR-PIT

SKOV-luc right dorsum tumor xenografts were randomized into 4 groups of at least 10 animals per group for the following treatments: (i) no treatment (control); (ii) NIR light exposure at 100 J/cm²; (iii) 100 μg of tra-IR700 i.v., no NIR light exposure; (iv) 100 μg of tra-IR700 i.v., NIR light exposure at 100 J/cm² on day 1 after injection. These therapies were performed only once at day 4 after cell implantation. Mice were monitored daily, and tumors were measured three times a week until the tumor diameter reached 2 cm, whereupon the mouse was euthanized with carbon dioxide.

For fluorescence image and BLI, mice images were acquired over time with a fluorescence imager (Pearl Imager) for detecting IR700 fluorescence, and Photon Imager for BLI. For analyzing BLI, ROIs of similar size were placed over the entire tumor.

For evaluation of PIT effects in the disseminated peritoneal ovarian cancer mouse model, mice were randomized into 4 groups of 6 animals per group for the following treatments: (i) no treatment (control); (ii) only NIR light exposure at 100 J/cm²; (iii) 100 μg of tra-IR700 i.v., no NIR light exposure; and (iv) 100 μg of tra-IR700 i.v., NIR light exposure at 100 J/cm² on day 1 after injection transcutaneously. Serial fluorescence imaging and BLI were obtained.

Statistical analysis

Data are expressed as means ± SEM from a minimum of four experiments, unless otherwise indicated. Statistical analyses were carried out using a statistics program (GraphPad Prism, GraphPad Software). For multiple comparisons, a one-way ANOVA with a posttest (Kruskal–Wallis test with posttest) was used. P < 0.05 was considered to indicate a statistically significant difference.

Results

Confirmation of expression profile of SKOV-luc cells

The fluorescence signals obtained with pan-IR700 and tra-IR700 with SKOV-luc cells were evaluated by FACS. After 6-hour incubation with either pan-IR700 or tra-IR700, SKOV-luc cells showed higher brightness with tra-IR700 than pan-IR700 (Fig. 1A). These signals were completely blocked by the addition of excess trastuzumab or panitumumab, suggesting specific binding and validating that the addition of the luciferase gene had not altered the cell expression profile (16). These data suggested that HER2 was the preferable target for NIR-PIT due to its higher expression; therefore, we selected tra-IR700 as the experimental agent for all subsequent experiments.

Microscopy of the effects of NIR-PIT

Serial fluorescence microscopy of SKOV-luc cells was performed before and after NIR-PIT. After exposure to NIR light (2 J/cm²) cellular swelling, bleb formation, and rupture of the lysosome were observed (Fig. 1B). Time-lapse image analysis showed acute morphologic changes in the cell membrane (Supplementary Video S1) and fluorescence of PI indicating cell death (Supplementary Video S2). Most of these cellular changes were observed within 60 minutes after light exposure, indicating rapid induction of necrotic cell death after NIR-PIT. No significant changes were observed in EGFR-negative 3T3 cells after exposure to NIR light, suggesting NIR-PIT induced no damage in nontarget cells (Supplementary Fig. S1).

Evaluation of in vitro NIR-PIT effect

To quantitate the effect of in vitro NIR-PIT, we performed a cytotoxicity assay 6 hours after NIR light irradiation using PI staining and luciferase activity. On the basis of incorporation of PI, the cell death percentage increased in a light dose-dependent manner. No significant cytotoxicity was observed with NIR light exposure alone or with tra-IR700 alone (Fig. 1C). Luciferase activity showed significant decreases of relative light units (RLU) in NIR-PIT–treated cells (Fig. 1D). BLI also showed a decrease of luciferase activity in a light dose-dependent manner (Fig. 1E). NIR-PIT caused less cell death at 1 and 3 hours after light exposure than at 6 hours, suggesting NIR-PIT induced cytotoxicity in this cell line was slower to respond to NIR-PIT than other cell types which have been reported (Supplementary Fig. S2; refs. 9, 11). Collectively, these studies confirm that NIR-PIT causes necrotic cell death in a light dose-dependent manner, and NIR-PIT induced tumor cell death can be monitored by BLI.

Evaluation of NIR-PIT in a 3D spheroid

The efficacy of in vitro NIR-PIT was also examined in 3D spheroids composed of SKOV-luc cells. Compared with conventional monolayer cultures, 3D spheroids are superior models of tumors (11, 17, 18). Spheroids achieved a maximum size of approximately 700 μm diameter (Fig. 2A and B). 3D confocal microscopy indicated that the spheroids were spherical with an almost smooth surface (Fig. 2C). Frozen sections revealed that the cells were found evenly dispersed throughout the spheroid (Fig. 2D).
To visualize and quantify both single shot and repeated NIR-PIT in the 3D spheroid model, concurrent microscopy with multiple staining was performed (Fig. 2E and F). At 1 hour post-PIT, a physical swelling of the spheroid was observed (Fig. 2E). The outer layer of the spheroid was stained with PI, indicating cell death. Repeated NIR-PIT with repeated incubation with tra-IR700 every day led to the complete eradication of tumor cells within the spheroids (Fig. 2F). Decreasing numbers of cells with live-cell staining (SYTO) and increasing numbers of cells with dead-cell staining (PI) were demonstrated. Quantification with luciferase activity confirmed these results (Fig. 2G), suggesting that NIR-PIT could induce acute necrotic tumor killing effects not only in two-dimensional but also in 3D cell cultures, and repeated NIR-PIT was capable of killing all cells within the spheroid.

In vivo NIR-PIT reduces tumor volume and luciferase activity in flank xenograft model

After NIR-PIT, significant differences in tumor volume in the PIT group were detected compared with control groups (Supplementary Fig. S3). Tumor volume was reduced significantly in the...
PIT group compared with other control groups [(PIT group vs. control group at day 10: *, $P = 0.0001 < 0.001$; PIT group vs. light only group at day 10: *, $P = 0.009 < 0.01$; PIT group vs. intravenous-only group at day 10: *, $P = 0.0004 < 0.001$), Kruskal–Wallis test with posttest].

The NIR-PIT treatment effect was confirmed with BLI and fluorescence both of which decreased (Fig. 3A and B and Supplementary Fig. S4A). BLI of tumor in the control, light-only, and intravenous-only groups showed a gradual increase in RLU due to tumor growth (Fig. 3B and C). In contrast, luciferase activity gradually decreased up to 4 days after NIR-PIT to as low as 20.3 (Fig. 3B and C). At day 3, 4, and 7, quantitative analysis showed significant decreases of RLU in the PIT group [$n = 5$ mice in each group, (PIT group vs. light-only group at day 3: *,

Figure 2.
Characterization of NIR-PIT in 3D spheroids. A, representative image of SKOV-luc 3D spheroid. Bar, 100 μm. B, 3D spheroids grew to around 700 μm. C, 3D reconstruction image of 3D spheroid at day 7. Bar, 100 μm. D, frozen section of 3D spheroid. Cells accumulate within the core of the spheroid. Bar, 100 μm. E, 3D spheroid at day 2 and 7 after 6-hour incubation with tra-IR700, before and after irradiation of NIR light (2 J/cm²). Necrotic cell death was observed 1 hour after NIR light. Bar, 100 μm. F, 3D spheroid at day 7 treated by repeated NIR-PIT (2 J/cm²). Bar, 100 μm. SYTO staining was used for detection of living cells. The treatment regimen is shown above the images. G, luciferase activity in 3D spheroids gradually decreased after repeated NIR-PIT leading to complete killing of cells in the spheroid ($n = 10$).
Pit-PIT, tumors were approximately the same size and exhibited similar bioluminescence. C. Quantitative RLU showed a significant decrease in PIT-treated tumors (n = 5 mice in each group; PIT group vs. light-only group at day 3: **P = 0.0137 < 0.05; PIT group vs. control group at day 4: ***P = 0.0237 < 0.05; PIT group vs. light-only group at day 4: ***, P = 0.0385 < 0.05; PIT group vs. control group at day 7: ***, P = 0.0301 < 0.05; PIT group vs. light-only group at day 7: ***, P = 0.0255 < 0.05), Kruskal–Wallis test with posttest]. Taken together, dramatic decreases of tumor size and BLI after PIT indicates NIR-PIT induced massive cell death in the flank model, and correlation between real tumor size and BLI response to NIR-PIT.

Figure 3.
Evaluation of NIR-PIT by luciferase activity in flank model. A, the regimen of NIR-PIT is shown. Images were obtained at each time point as indicated. B, in vivo BLI and fluorescence imaging of tumor-bearing mice in response to NIR-PIT. Before NIR-PIT, tumors were approximately the same size and exhibited similar bioluminescence. C, quantitative RLU showed a significant decrease in PIT-treated tumors (n = 5 mice in each group; PIT group vs. light-only group at day 3: **P = 0.0137 < 0.05; PIT group vs. control group at day 4: ***P = 0.0237 < 0.05; PIT group vs. light-only group at day 4: ***, P = 0.0385 < 0.05; PIT group vs. control group at day 7: ***, P = 0.0301 < 0.05; PIT group vs. light-only group at day 7: ***, P = 0.0255 < 0.05), Kruskal–Wallis test with posttest]. Taken together, dramatic decreases of tumor size and BLI after PIT indicates NIR-PIT induced massive cell death in the flank model, and correlation between real tumor size and BLI response to NIR-PIT.
Characterization of the disseminated peritoneal ovarian cancer mouse model with fluorescence and BLI

To determine the natural history of the disseminated peritoneal ovarian cancer mouse model, serial fluorescence imaging and BLI were performed. The implanted tumors demonstrated high activity with fluorescence imaging based on IR700 or IR800, but also high activity on BLI, which colocalized with each other (Fig. 4). These data suggest that disseminated peritoneal ovarian cancer mouse model with SKOV-luc cells was successfully established; intravenous injection of agent could reach the disseminated tumors.

In vivo NIR-PIT effect on luciferase activity in disseminated peritoneal ovarian cancer mouse model

To monitor targeted tumor cell killing induced by NIR-PIT, BLI was used after NIR-PIT in the disseminated peritoneal model (Fig. 5A). IR700 fluorescence decreased after NIR light irradiation as previously reported (Fig. 5B and Supplementary Fig. S4B). Using BLI, the RLU in the abdomen gradually increased in control groups due to growing tumor. In contrast, the RLU in the abdomen decreased progressively up to 7 day in the treatment group, although it increased slightly at 14 day post-PIT (Fig. 5B and C). At 7 and 14 days, the luciferase activity of the tumor treated by NIR-PIT was significantly decreased (n = 6 mice in each group, (PIT group vs. control group at day 7: *, P = 0.0257 < 0.05; PIT group vs. control group at day 14: ***, P = 0.0174 < 0.05; PIT group vs. light-only group at day 14: ***, P = 0.0331 < 0.05; PIT group vs. intravenous-only group at day 14: ***, P = 0.0133 < 0.05), Kruskal–Wallis test with posttest). Thus, NIR-PIT caused significant targeted tumor cell killing effect in this disseminated peritoneal ovarian cancer mouse model.

Discussion

In spite of high initial response rates to standard first-line treatments for ovarian cancer using cytoreductive surgical debulking followed by platinum- or taxane-based chemotherapy, tumors eventually relapse and frequently acquire drug resistance in a large proportion of patients. In these patients, peritoneal tumor dissemination with ascites is a major cause of cancer-related morbidity and death (2, 3). Even with currently recommended chemotherapies, the outcome for patients with ovarian cancer with advanced stage is only 12% at 5 years (4, 19). Therefore, new-targeted therapies that potentially improve patient outcomes are under investigation by many groups (20–24). Among them, a clinical trial of traditional PDT for peritoneal metastases demonstrated no significant objective responses or long-term tumor control due to its lack of tumor selectivity (25). We believe NIR-PIT may address this issue by allowing the hydrophilic photosensitizer to be
brought in close proximity to the cell membrane by the conjugated antibody. This NIR-PIT is a promising candidate because the APC not only accumulated homogeneously in the disseminated peritoneal tumors after intravenous injection but also killed significant amounts of cancer in the peritoneal space after NIR light exposure. With this NIR-PIT, intraperitoneal injection of APC might be an alternative route of administration to treat the disseminated peritoneal tumors. APC can firstly bind to the surface of peritoneal disseminated tumors, then be absorbed through the peritoneum and recirculate within the tumor vessels. However, most peritoneally injected APCs will be taken up in the liver, where APCs are catabolized.
NIR-PIT for Disseminated Peritoneal Ovarian Cancer

After draining into the portal venous system after absorption through the peritoneum. Thus, there is a risk to lose a large amount of efficacy of the APC. Without systemic recirculation, APC can only reliably bind to cancer cells within 0.2 mm from the surface (26). Therefore, NIR-PIT with intravenous APC demonstrates more homogeneous microdistribution than intraperitoneal administration. Furthermore, not all tumors within the abdomen are within the peritoneum. For instance, the draining lymphatics commonly become occluded with malignancy and would not be well treated by intraperitoneal application alone.

BLI using firefly luciferase was used as a primary outcome measure in this study. It is a well-established method of determining in vivo viability (27), because the BLI reaction requires both oxygen and ATP to actively transport the substrate luciferin, and subsequently catalyze the photochemical reaction (28). Fluorescent proteins are a potential alternative for monitoring tumor growth in vivo (29) and would have better translatable potential into clinic because fluorescent proteins do not need additional injection of substrates. Fluorescence imaging using fluorescent proteins is better direct and stable method for longitudinal monitoring therapeutic effects of phototherapy (30) for days or weeks than the BLI, which is used in this study, because most of fluorescent proteins are stable in solution for days in vitro and fluoresced before fluorescent proteins are taken up and catabolized by macrophages in vivo (29). Therefore, fluorescence imaging has already been used for longitudinal monitoring of therapeutic effects of PIT (8). As NIR-PIT induced necrotic cell death leads to the release of ATP, BLI is an appropriate biomarker for NIR-PIT effects for designing preclinical experiments in mouse models (31–33). Therefore, in this study, we used BLI to monitor tumor cell death of both HER2-expressing subcutaneous tumor xenografts and disseminated peritoneal tumors, and successfully detected the dramatic decrease of BLI signals in response to NIR-PIT in both models. These data clearly demonstrate that NIR-PIT is a potential candidate for the treatment of disseminated peritoneal cancer, which expresses a target molecule.

There are several limitations to this study. First, not all ovarian cancers overexpress HER2, and therefore this particular target may not be ideal in other ovarian cancers. Therefore, we are currently investigating NIR-PIT against ovarian cancer by targeting mesothelin, which is reportedly another great target molecule expressing on ovarian cancers (34), and have been obtaining similar success (Supplementary Fig. S5). Fortunately, NIR-PIT has proven effective with almost all APCs with which it has been attempted and therefore, it is promising that the proper APC or combination of APCs could be found to treat a specific phenotype of ovarian cancer cell membrane expression (15). We were also unable to determine long-term side effects of NIR-PIT in this limited model. Short-term studies of the mice demonstrated no apparent adverse events after NIR-PIT. It is possible that sudden widespread cell necrosis could cause toxicity both acutely and delayed but none was observed in this model. In addition, it is clear that NIR-PIT alone will not be sufficient to treat disseminated intraperitoneal ovarian cancer, although the use of NIR light in to activate IR700 will produce deeper tissue penetration within larger masses than the shorter wavelengths of light needed for PDT photoactivation or other phototherapy using UV light irradiation (35). Therefore, we foresee NIR-PIT as an adjuvant to surgery with an initial debulking procedure followed by NIR-PIT to “mop up” residual disease. Furthermore, it is interesting to consider the possibility that systemic chemotherapy may be more effective after NIR-PIT and surgery than surgery alone. Previous studies have shown that NIR-PIT results in heightened deposition of systemically administered nanosized drugs within the treated tumor due to the preservation of tumor vessels with increased vascular permeability because intravenously administered APC specifically accumulated in cancer cells adjacent to tumor vessels. Therefore, current or future chemotherapies for ovarian cancer may benefit from prior treatment with NIR-PIT (13).

In conclusion, this study shows the feasibility of NIR-PIT for effectively treating disseminated peritoneal ovarian cancer in a mouse model. This treatment approach represents a new method of potentially treating ovarian cancer as an adjuvant to existing therapies such as surgery and chemotherapy.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: K. Sato, P.L. Choyke, H. Kobayashi Development of methodology: K. Sato, H. Kobayashi Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K. Sato, H. Hanaoka, T. Nakajima, H. Kobayashi Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K. Sato, T. Nakajima, P.L. Choyke, H. Kobayashi Writing, review, and/or revision of the manuscript: K. Sato, T. Nakajima, P.L. Choyke, H. Kobayashi Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K. Sato, H. Kobayashi Study supervision: H. Kobayashi

Grant Support
This work was supported by grants from the Intramural Research Program of the NIH, NCI, Center for Cancer Research. Kazuhide Sato is supported by a JSPS Research Fellowship for Japanese Biomedical and Behavioral Researchers at NIH.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 4, 2014; revised October 27, 2014; accepted November 7, 2014; published OnlineFirst November 21, 2014.
References

Molecular Cancer Therapeutics

Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer

Kazuhide Sato, Hirofumi Hanaoka, Rira Watanabe, et al.

Mol Cancer Ther 2015;14:141-150. Published OnlineFirst November 21, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0658

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/11/20/1535-7163.MCT-14-0658.DC1

Cited articles
This article cites 36 articles, 10 of which you can access for free at:
http://mct.aacrjournals.org/content/14/1/141.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/14/1/141.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.