Axl Kinase as a Key Target for Oncology: Focus on Small Molecule Inhibitors
Clémence Feneyrolles, Aurélie Spelinhauer, Léa Guiet, Bénédicte Fauvel, Bénédicte Daydé-Cazals, Pierre Warnault, Gwénaël Chevè, and Aziz Yasri

DIRECT INHIBITION OF CHOLINE KINASE BY A NEAR-INFRARED FLUORESCENT CARBOCYANINE
Sean P. Arlauckas, Anatoliy V. Popov, and Edward J. Delikatny

SELECTIVE RELEASE OF A CYCLOPAMINE GLUCURONIDE PRODRUG TOWARD STEM-LIKE CANCER CELL INHIBITION IN GLIOBLASTOMA
Anaïs Balbous, Brigitte Renoux, Ulrich Cortes, Serge Milin, Karline Guilloteau, Thibaut Legigan, Pierre Rivet, Odile Boissonnade, Sébastien Martin, Caroline Tripan, Michel Wager, René Jean Bensadoun, Sébastien Papot, and Lucie Karayan-Tapon

TRANSLATIONAL EXPOSURE–EFFICACY MODELING TO OPTIMIZE THE DOSE AND SCHEDULE OF TAXANES COMBINED WITH THE INVESTIGATIONAL AURORA A KINASE INHIBITOR MLN8237 (ALISERTIB)

ANTIPROLIFERATIVE EFFECTS OF CDK4/6 INHIBITION IN CDK4-AMPLIFIED HUMAN LIPOSARCOMA IN VITRO AND IN VIVO
Yi-Xiang Zhang, Ewa Sicinska, Jeffrey T. Czaplinski, Stephen P. Remillard, Samuel Moss, Yuchuan Wang, Christopher Brain, Alice Loo, Eric L. Snyder, George D. Demetri, Sun Kyu Kim, Andrew L. Kung, and Jeffrey A. Ecsedy

EPCAM-SELECTIVE ELIMINATION OF CARCINOMA CELLS BY A NOVEL MAP-BASED CYTOLYTIC FUSION PROTEIN
Dmitrij Hristodorov, Manal Amoury, Radoslav Mladenov, Judith Niesen, Katharina Arens, Nina Berges, Lea Hein, Stefano Di Fiore, Anh-Tuan Pham, Michael Huhn, Wijnand Helfrich, Rainer Fischer, Theo Thepen, and Stefan Barth

QUINACRINE OVERCOMES RESISTANCE TO ERLOTINIB BY INHIBITING FACT, NF-κB, AND CELL-CYCLE PROGRESSION IN NON–SMALL CELL LUNG CANCER
Josephine Kam Tai Dermawan, Katerina Gurova, John Pink, Afshin Dowlati, Sarmsitha De, Goutham Narla, Neelesh Sharma, and George R. Stark

ACTIVATION OF Nrf2 PATHWAYS CORRELATES WITH RESISTANCE OF NSCLC CELL LINES TO CBP501 IN VITRO
Naoki Mine, Sayaka Yamamoto, Donald W. Kufe, Daniel D. Von Hoff, and Takumi Kawabe

PHARMACOGENETIC PREDICTORS OF OUTCOME IN PATIENTS WITH STAGE II AND III COLON CANCER TREATED WITH OXALIPLATIN AND FLUOROPYRIMIDINE-BASED ADJUVANT CHEMOTHERAPY
Ana Custodio, Juan Moreno-Rubio, Jorge Aparicio, Javier Gallego-Plazas, Ricardo Yaya, Joan Maurel, Nuria Rodríguez-Salas, Emilio Burgos, David Ramos, Ana Calatrava, Encarna Andrade, Esther Díaz-López, Antonio Sánchez, Rosario Madero, Paloma Cejas, and Jaime Feliu

EPIDERMAL GROWTH FACTOR–LIKE DOMAIN 7 PREDICTS RESPONSE TO FIRST-LINE CHEMOTHERAPY AND BEVACLIZUMAB IN PATIENTS WITH METASTATIC COLORECTAL CANCER
Torben Frostrup Hansen, Boje Schnack Nielsen, Flemming Brandt Sørensen, Anders Johnsson, and Anders Jakobsen
CORRECTIONS

2246 Correction: Birinapant (TL32711), a Bivalent SMAC Mimetic, Targets TRAF2-Associated cIAPs, Abrogates TNF-Induced NF-κB Activation, and Is Active in Patient-Derived Xenograft Models

2248 Correction: Driven to Death: Inhibition of Farnesylation Increases Ras Activity in Osteosarcoma and Promotes Growth Arrest and Cell Death

ABOUT THE COVER

To elucidate the potential mode of action of MAP-based cytolytic fusion proteins in living cells, colocalization assays were performed using EGFR⁺ A549 cells transfected with a SNAP-tagged tubulin DNA construct. Expressed SNAP-tagged tubulin molecules were labeled with SNAP-Cell TMR-Star (green). EGF-MAPf151 was used as a representative for MAP-based CFPs. MAPf151 was detected using mouse–anti-human Tau and goat–anti-mouse Alexa Fluor 647 antibodies (red). DAPI was used to counterstain the nucleus (blue). Using confocal fluorescence microscopy and a tubulin polymerization assay, it could be shown that MAP colocalized with and stabilized microtubules. For more details, see article by Hristodorov and colleagues on page 2194.
Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/13/9

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.