Nuclear Epidermal Growth Factor Receptor Is a Functional Molecular Target in Triple-Negative Breast Cancer

Toni M. Brand1, Mari Iida1, Emily F. Dunn1, Neha Luthar1, Kellie T. Kostopoulos1, Kelsey L. Corrigan1, Matthew J. Wlekłinski1, David Yang2, Kari B. Wisinski3, Ravi Salgia4, and Deric L. Wheeler1

Abstract
Triple-negative breast cancer (TNBC) is a subclass of breast cancers (i.e., estrogen receptor–negative, progesterone receptor–negative, and HER2-negative) that have poor prognosis and very few identified molecular targets. Strikingly, a high percentage of TNBCs overexpresses the EGFR receptor (EGFR), yet EGFR inhibition has yielded little clinical benefit. Over the last decade, advances in EGFR biology have established that EGFR functions in two distinct signaling pathways: (i) classical membrane-bound signaling and (ii) nuclear signaling. Previous studies have demonstrated that nuclear EGFR (nEGFR) can enhance resistance to anti-EGFR therapies and is correlated with poor overall survival in breast cancer. On the basis of these findings, we hypothesized that nEGFR may promote intrinsic resistance to cetuximab in TNBC. To examine this question, a battery of TNBC cell lines and human tumors were screened and found to express nEGFR. Knockdown of EGFR expression demonstrated that TNBC cell lines retained dependency on EGFR for proliferation, yet all cell lines were resistant to cetuximab. Furthermore, Src Family Kinases (SFKs) influenced nEGFR translocation in TNBC cell lines and in vivo tumor models, where inhibition of SFK activity led to potent reductions in nEGFR expression. Inhibition of nEGFR translocation led to a subsequent accumulation of EGFR on the plasma membrane, which greatly enhanced sensitivity of TNBC cells to cetuximab. Collectively, these data suggest that targeting both the nEGFR signaling pathway, through the inhibition of its nuclear transport, and the classical EGFR signaling pathway with cetuximab may be a viable approach for the treatment of patients with TNBC.

Introduction
Approximately 15% to 20% of all breast cancers lack expression of the estrogen receptor, progesterone receptor, and HER2, and are thus considered to be triple-negative breast cancers (TNBC; refs. 1, 2). Although a high percentage of patients with TNBC initially respond to conventional chemotherapy, they tend to have a higher rate of relapse and worse prognosis as compared with other breast cancer subtypes (1, 2). In efforts to identify new molecular targets in TNBC, various groups have performed gene expression profiling studies and identified that the EGFR receptor (EGFR) is commonly overexpressed (3–6). Although inhibition of EGFR activity has yielded modest clinical success in TNBC, substantial gains in clinical response rates have not been achieved (7, 8). Thus, improving the efficacy of anti-EGFR therapy in TNBC is imperative.

Classically, EGFR functions as a plasma membrane-bound receptor tyrosine kinase that initiates growth and survival signals (9). However, studies over the last 15 years have identified that EGFR can be localized and function from intracellular organelles, one of which includes the nucleus (10, 11). Within the nucleus, EGFR can function as a cotranscription factor to regulate genes involved in tumor progression (10, 11), in addition to functioning as a nuclear kinase to enhance DNA replication and repair (12–14). These nuclear functions have been linked to three parameters of tumor biology: (i) inverse correlation with overall survival in numerous cancers (15–20), (ii) resistance to therapeutic agents including radiation (12, 21–24), chemotherapy (12, 13, 24), and anti-EGFR therapies gefitinib (25) and cetuximab (26), and (iii) enhanced tumor growth (27, 28). These findings suggest that tumors rely on two distinct compartments of EGFR signaling to sustain their oncogenic phenotype: (i) classical membrane-bound EGFR signaling, and (ii) nuclear EGFR (nEGFR) signaling.

Previous work from our laboratory has identified that non–small cell lung cancer (NSCLC) cells that have acquired resistance to cetuximab express increased nEGFR and Src Family Kinase (SFK) activity (26, 29). SFK inhibition blocked nEGFR translocation in cetuximab-resistant
cells, and led to an increase in plasma membrane EGFR expression and enhanced sensitivity to cetuximab (26, 30). Furthermore, the SFK-dependent phosphorylation site on EGFR, tyrosine 1101 (Y1101), was identified to play a critical role in initiating EGFR’s nuclear transport (30). These studies suggest that nEGFR is a critical molecular determinant for cetuximab resistance and that SFKs play an important role in regulating nEGFR translocation.

On the basis of these previous studies, we hypothesized that nEGFR may promote intrinsic resistance to cetuximab in TNBC. To examine this question, a battery of TNBC cell lines and human tumors were screened and found to express nEGFR. Although TNBC cell lines were notably resistant to cetuximab therapy, all lines retained dependency on EGFR for proliferation. Furthermore, SFKs influenced nEGFR transport in TNBC, where the overexpression of a negative regulator of Src decreased EGFR activity at tyrosine 1101 and inhibited nEGFR translocation. Interestingly, the creation of stable cell lines overexpressing each SFK demonstrated that all SFKs could promote nEGFR translocation. Treatment of TNBC cell lines and xenograft tumors with the anti-SFK therapeutic dasatinib inhibited nEGFR translocation, and enhanced surface level EGFR accumulation. Importantly, pretreatment of TNBC cell lines with dasatinib greatly enhanced the sensitivity of cetuximab-resistant TNBC cell lines to cetuximab. Collectively, our data suggest that abrogating the sensitivity of cetuximab-resistant TNBC cell lines to surface level EGFR accumulation. Importantly, pretreatment of TNBC cell lines with dasatinib greatly enhanced the sensitivity of cetuximab-resistant TNBC cell lines to cetuximab.

Materials and Methods

Cell lines

The human breast cancer cell lines SKBr3, BT474, BT549, MDAMB231 and MDAMB468, MCF-7, and the Chinese hamster ovary cell line CHOK1 were purchased from American Type Culture Collection in November 2010. SUM149, SUM229, and SUM159 were purchased from Asterand in November 2010. All cell lines were authenticated by the indicated source and not by our laboratory. All cell lines were maintained in their respective media (Mediatech Inc.) with 1% penicillin and streptomycin; SKBr3, BT549, and MDAMB231, Dulbecco’s Modified Eagle’s Medium with 10% FBS; BT474, RPMI-1640 with 10% FBS; SUM149, SUM229, and SUM159, F12K medium with 5% FBS, 1 µg/mL hydrocortisone and 5 µg/mL insulin; MDAMB468 and MCF-7, DMEM/F12K medium with 10% FBS; CHOK1 F12K medium with 10% FBS.

Antibodies, compounds, and TMAs

All antibodies were obtained from the following sources: EGFR (SC-03), pEGFR-1173 (SC-10168), HER2 (SC-284), SLAP (SC-1215), Histone H3 (SC-8654), horseradish peroxidase-conjugated goat-anti-rabbit immunoglobulin G (lgG), goat-anti-mouse lgG, donkey-anti-goat lgG, EGFR blocking peptide (SC-03 P) purchased from Santa Cruz Biotechnology Inc. SKF (CS2123), pSFK-Y419 (CS2101), pEGFR-Y1045 (CS2237), pEGFR-Y1068 (CS3777), pHER2-Y1221/1222 (CS2243), c-Cbl (CS2747), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; CS2118), calnexin (CS2679), and anti-Flag (CS8146) purchased from Cell Signaling Technology. pEGFR-Y1101 (ab76195) and EGFR (ab52894) purchased from Abcam. α-Tubulin purchased from Calbiochem. Dasatinib (BMS-354825, Sprycel) was purchased from LC Laboratories and cetuximab (C225, Erbitux) was purchased from University of Wisconsin Pharmacy (Madison, WI). EGF was purchased from Millipore. Two human TNBC tissue microarrays (TMA; #69571112B and #69572306) were purchased from TriStar Technology Group.

Cellular fractionation and immunoblotting analysis

Cellular fractionation and whole-cell lysis were performed and quantitated as previously described (26, 31). ECL chemiluminescence detection system was used to visualize proteins. α-Tubulin, calnexin, and Histone H3 were used as loading and purity controls, respectively.

Immunoprecipitation

Cells were processed for immunoprecipitation as previously described (31). Of note, 250 µg of protein and 2 µg of Src-like adaptor protein (SLAP) primary antibody were used for immunoprecipitation.

Plasmids constructs, transfection, and siRNA technology

The following vectors were kindly supplied: pcDNA3.0-caSrc, -wtSRC and -EGFR wild-type (WT) and –EGFRY1101F, Dr. J.Boerner (Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI); pcDNA3-SLAP, Dr. S. Roche (Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France); pTRE2pur-HA-Fyn, -Hck, and -Lck, Dr. P.S. Mischel (University of California, San Diego, La Jolla, CA). WT human pDONR223-FFR (Plasmid 23877) and pDONR223-Blk (Plasmid 23940) were purchased from Addgene. pQCXIP-YES and –LYN as previously described (30). All SFKs were subcloned into the PAC1/AGEI restriction sites of the pQCXIP expression vector (Clontech). Both transient and stable transfections were performed using Lipofectamine LTX and Opti-MEM I (Life Technology). Stable transfection was commenced 48 hours posttransfection via addition of 500 ng/mL puromycin to the growth media. Single cell clones were chosen for expansion and validation for specific SFK expression.

For siRNAs, cells were transfected with 30 nmol/L siEGFR (ON-TARGETplus, SMART pool #L-003114-00, Dharmacon) or siNon-targeting (NT; ON-TARGETplus Non-targeting Pool, D-001810, Dharmacon) using Lipofectamine RNAiMAX (Life Technology) according to the manufacturer’s instructions. Vehicle (Veh)-treated cells were treated with RNAiMAX only.

Cell proliferation assay

Crystal violet assay and Cell Counting Kit-8 (Dojindo Molecular Technologies) were performed as previously
described (26, 32). Cellular proliferation was measured 72 to 96 hours post siRNA and 96 hours post drug treatment.

Transmission electron microscopy

Cells were plated on glass cover slips at approximately 90% confluency. The pre-embedding labeling method was used for processing as previously described (33). Specifically, 0.8% Triton X-100 was used for permeabilization and 7 µg/mL of EGFR primary antibody was used (SC-03, Santa Cruz Biotechnology). Cells were silver enhanced for 1.5 hour. Cells were sectioned onto copper grids at approximately 90 nm slices.

Immunofluorescence

Cells were processed for immunofluorescence staining of EGFR as previously described (31). Primary antibody: EGFR (SC-03), 1:100. Secondary antibody (Life technologies): Allex Fluor 546 at 1:600 for 30 minutes to 1 hour. All cells were mounted with ProLong Gold Antifade Reagent with 4’, 6-diamidino-2-phenylindole (DAPI; Life Technologies). Confocal immunofluorescence microscopy was performed using an A1 Nikon confocal microscope (×600). Z-slices were taken at 150 nm slices.

Nuance imaging analysis

For image analysis, EGFR (ab52894, 1:50) and anti-E Cadherin antibody (NCH-38, Dako at 1:100 dilution) were used for immunofluorescence staining. Images were acquired on the Nuance Multispectral Imaging System (Caliper Life Sciences, ×200). A spectral library composed of the fluorescent spectrum of each fluorophore was constructed from vehicle treated cells stained with each fluorophore individually. Images were analyzed on the inForm Image Analysis Software (Caliper Life Sciences) as previously described (34) by pathologist D. Yang. Relative expression of EGFR in each compartment was expressed as a ratio of proportion of counts in the high intensity bins (bins 6–10) divided by the proportion of counts in the low intensity bins (bins 1–5).

Immunohistochemistry

Cells were processed for immunohistochemistry (IHC) as previously described (32). EGFR antibody (SC-03) was used at a 1:100 dilution. The nEGFR staining pattern was scored by pathologist (D. Yang) analysis at 5% increments by visual estimation at ×20 magnification. Cases with at least one replicate core containing at least 5% of tumor cells demonstrating strong nEGFR IHC protein expression were scored as nEGFR positive.

Flow cytometry

Cells were processed as previously described (26). Cells were analyzed using a FACSCalibur flow cytometer (BD Biosciences). Propidium iodide was added to each sample at a final concentration of 5 mg/mL. Histogram analysis was performed using FlowJo software (Tree Star Inc.).

Mouse xenograft model and tumor collection

Athymic nude mice (4–6-week-old females) were obtained from Harlan Laboratories. All animal procedures and maintenance were conducted in accordance with the institutional guidelines of the University of Wisconsin. Twelve mice were injected in the dorsal flank with 2 × 10⁶ MDAMB468 cells. Once tumors reached 100 mm³, mice were randomized into treatment groups: vehicle (sodium citrate monobasic buffer) or dasatinib (50 mg/kg/d). Mice were treated once daily for 4 days via oral gavage. Tumor volume measurements were evaluated by digital calipers and calculated by the formula (p/6 × (large diameter) × (small diameter)²). Tumors were collected, processed, and stained as previously described (32, 35).

Statistical analysis

Student t tests were used to evaluate the significance in proliferation rate between vehicle and siEGFR or drug-treated cells. Student t tests were also used to evaluate significance in nEGFR expression levels by Nuance imaging analysis between vehicle- and dasatinib-treated cells. Differences were considered statistically significant if *, P < 0.05. Pearson correlation coefficient and Manders’ overlap coefficient for colocalization were calculated using Nikon NIS-Elements software. Significance of strong interaction is considered for values ≥0.5 (36).

Results

TNBC cell lines and human tumors express nuclear localized EGFR

Six established TNBC cell lines were evaluated for EGFR expression (Fig. 1A). All cell lines expressed total and activated forms of EGFR, in which the autophosphorylation status of EGFR at tyrosine 1068, 1173, and 1045, as well as the SFK-specific phosphorylation site, tyrosine 1101, were evaluated. All TNBC cell lines expressed activated SFKs, as observed in previous studies (refs. 37, 38; Fig. 1A). Total and activated HER2 expression levels were low in all TNBC cell lines compared with HER2-positive cell lines SKBr3 and BT474.

Because TNBC cell lines expressed EGFR, we hypothesized that some cell lines may also express nEGFR. Variant levels of nEGFR expression were observed in TNBC cell lines by nuclear fractionation analysis (Fig. 1B). The harvested nuclear lysate was free from contaminating cytoplasmic and ER-associated proteins, as indicated by lack of α-tubulin and calnexin. The nuclear protein Histone H3 was used as a loading and nuclear protein purity control. In addition, confocal immunofluorescent microscopy indicated strong nEGFR immunofluorescent staining in MDAMB468, SUM229, and SUM149 cells (Fig. 1B) by merging DAPI and Alexa Fluor 546-labeled EGFR (white arrows, magnified image). Statistical significance of colocalization was analyzed by Pearson and Manders’ correlation coefficients (significance of a strong interaction is
For MDAMB468, SUM229, and SUM149, the Pearson coefficients were 0.52 ± 0.04, 0.58 ± 0.01, and 0.65 ± 0.02, and the Manders’ overlap coefficients were 0.70 ± 0.02, 0.78 ± 0.03, and 0.84 ± 0.01 (n = 50 cells). Although homogenous nEGFR staining was observed in SUM149 and SUM229 cells by immunofluorescence, nEGFR staining in MDAMB468 cells was more heterogeneous. Knockdown of EGFR using siRNA or preincubation of primary antibody with blocking peptides led to dramatic decreases in EGFR signal. There was no signal detected from cells.

Figure 1. TNBC cell lines and human tumors express nuclear localized EGFR. A, TNBC cells express total and activated forms of EGFR. Whole-cell lysate was harvested from six TNBC cell lines and two HER2-positive cell lines. α-Tubulin was used as a loading control. B, TNBC cells express nEGFR. Cell lines were harvested for nuclear proteins. α-Tubulin, calnexin, and Histone H3 were used as loading and purity controls, respectively. Confocal immunofluorescence (IF) microscopy depicts nEGFR expression. Merged images were magnified to depict nEGFR (confocal zoom, white arrows). A single Z-Slice image depicts overlap between blue and red signal (white dashed-line boxes). ×600 magnification. EGFR primary antibody specificity was validated with siEGFR and blocking peptides. C, immunogold labeling of nEGFR. TNBC cells were fixed and processed for transmission EM. CY, cytoplasm; NE, nuclear envelope; NUC, nucleus; NOS, nucleolus. Images were digitally zoomed to highlight gold particles in the nucleus (black arrows). D, human TNBC tumors express nEGFR. Immunohistochemical staining for EGFR was performed on a total of 74 TNBC patient tumor sections. Representative cases demonstrating nEGFR expression are depicted (black arrows).
incubated with secondary antibody only (data not shown). We further validated nEGFR expression using transmission electron microscopy (Fig. 1C). EGFR labeled with immunogold conjugated secondary antibodies indicated that EGFR was indeed localized in the nucleus, with localization in the nucleolus and around the nuclear envelope.

Given that nEGFR was expressed in established TNBC cell lines, we probed a human TMA containing 74 TNBC patient tumors for EGFR expression and localization. Pathologist analysis of tumors stained for EGFR via IHC indicated that 19% of the tumors expressed nEGFR (Fig. 1D). Interestingly, nEGFR was highly localized to the nucleolus in more than 5% of nEGFR-positive tumors. In addition, some tumor sections contained concentrated nEGFR, whereas other areas of the same tumor lacked nEGFR expression. There was no signal detected from cores stained with secondary antibody only (data not shown). Collectively, these data demonstrate that TNBC cell lines and human tumors express nEGFR.

TNBC cells are resistant to cetuximab therapy, but dependent on EGFR for proliferation

To determine the role of EGFR in TNBC proliferation, studies were performed to knock down EGFR expression in various TNBC cell lines using an EGFR-directed siRNA pool. Loss of EGFR expression led to a 25% to 50% reduction in cell proliferation when compared to cells treated with vehicle or NT siRNA (Fig. 2). Each cell line challenged with increasing doses of cetuximab (from 0.01 nmol/L to 100 nmol/L) demonstrated only minor reductions in proliferation. The cell lines MDAMB231 (Fig. 2B) and MDAMB468 (Fig. 2D) demonstrated a 15% reduction in proliferation upon treatment with 100 nmol/L of cetuximab, whereas the SUM159 (Fig. 2A), SUM229 (Fig. 2C), and SUM149 (Fig. 2E) were unaffected at this dose. In addition, TNBC cell lines treated with increasing doses of dasatinib (0.01–100 nmol/L) were relatively resistant to growth inhibition. These results indicate that TNBC cell lines depend on EGFR for proliferation but are relatively resistant to cetuximab.

SFKs mediate the nuclear translocation of EGFR in TNBC

Previous studies from our laboratory indicate that SFKs influence nEGFR translocation in lung cancer (26, 30). To investigate whether SFKs influence EGFR translocation from the plasma membrane to the nucleus in TNBC, constitutively active Src (caSrc) was overexpressed in SUM159, BT549, and MDAMB231 cells. The overexpression of caSrc, indicated by enhanced pSFK-Y419, led to increases in nEGFR expression (Fig. 3A). Next, a negative regulator of Src, SLAP (39), was overexpressed in SUM149, SUM229, and MDAMB468 cells. The overexpression of SLAP, indicated by the expression of the Flag tag, led to decreases in nEGFR levels (Fig. 3B). These studies indicate that modulation of SFK activity can influence nEGFR expression in TNBC cell lines.

Previous studies elucidating the functions of SLAP have identified that SLAP functions as an antagonist for Src-induced mitogenesis partly through the binding of Src substrates and effector molecules (39). Overexpression of SLAP resulted in its association with EGFR in three TNBC cell lines by communoprecipitation analysis (Fig. 3C). Immunoprecipitation with an IgG control yielded no signal (data not shown). Because EGFR deficient in tyrosine 1101 (Y1101) phosphorylation is hindered in nuclear translocation (Fig. 3C, Inset 1; ref. 30), we probed for phosphorylated EGFR at Y1101 post SLAP transfection. Indeed, TNBC cell lines overexpressing SLAP had decreased phosphorylation of EGFR at Y1101 (Fig. 3C), which correlated with decreased nEGFR (Fig. 3B). These data demonstrate that SFK phosphorylation of EGFR at Y1101 can influence nEGFR translocation in TNBC.

SFKs exhibit functional redundancy in their ability to influence nEGFR translocation

Previous reports suggest that the SFKs Yes and Lyn play a role in the nuclear translocation of EGFR (30). However, experiments in Fig. 3 indicated that caSrc and SLAP could influence nEGFR translocation in TNBC cells, suggesting that global increased activity of SFKs may influence nEGFR expression. To test this hypothesis, stable clones of individual SFKs (Src, Yes, Lyn, Lck, Hck, Fyn, Blk, and Fgr) were engineered in the breast cancer cell line MCF-7. One or two stable clones were chosen for each SFK for comparison with an empty vector stable cell line (Fig. 4A). The overexpression of each SFK led to the enhanced expression and nuclear translocation of EGFR. All cell lines were stimulated with 5 nmol/L EGF to promote the nuclear translocation of EGFR; however, a basal level of nEGFR was detected in nonstimulated SFK stable cells (data not shown). In addition, the stable overexpression of each SFK led to their increased activation, corresponding to a downregulation of the E3 ubiquitin ligase, c-Cbl (Fig. 4B). This result may explain why an increase in total EGFR was observed in Fig. 4A. Collectively, these data suggest that SFKs play functional redundant roles in promoting nEGFR translocation.

Therapeutic inhibition of SFKs can block nEGFR translocation in vitro and in vivo TNBC tumor models

Because the modulation of SFK activity influenced nEGFR, the SFK inhibitor dasatinib was utilized to determine whether it could abrogate EGFR translocation from the membrane to nucleus. Treatment of TNBC cells with dasatinib led to potent decreases in nEGFR levels (at 24 and 72 hours in SUM149 and SUM229, and at 72 hours in MDAMB468 cells; Fig. 5A). Analysis of whole-cell lysate indicated that EGFR activity on Y1101 was inhibited by dasatinib at both time points. In addition, dasatinib treatment led to subsequent increases in non-nEGFR levels (Fig. 5A). Nuance imaging and Inform software was further used to analyze nEGFR levels post-dasatinib treatment (Fig. 5B). Cells were stained for EGFR, E-Cadherin, and DAPI; E-Cadherin and DAPI were used to create a spectral
Figure 2. TNBC cell lines are dependent on EGFR for proliferation, but are intrinsically resistant to cetuximab and dasatinib. Cell lines were incubated with siEGFR, nontargeting (NT) siRNA, or vehicle for 72 to 96 hours before performing proliferation assays (A–E). Cells were treated with cetuximab or dasatinib at indicated doses for the same time course. Proliferation is plotted as a percentage of growth relative to vehicle-treated cells (n = 3). Whole-cell lysate was harvested from all cell lines at the same time point to confirm knockdown of EGFR. Data, mean ± SEM. **, P < 0.01.
library that segmented each cell into cytoplasm and nucleus as previously described (34). InForm software analysis of each cell line \((n = 2)\) demonstrated that dasatinib-treated cells trended toward less nEGFR staining as compared with vehicle-treated cells \((P < 0.08 \text{ at } 48 \text{ hours})\).

To further characterize the effect of dasatinib on non-nEGFR expression, surface level EGFR was analyzed by flow cytometry. TNBC cells treated with dasatinib for 24 hours contained 30% to 42% more plasma membrane-bound EGFR as compared with vehicle-treated cells (Fig. 5C). There was no additional increase in EGFR surface expression 72 hours posttreatment (data not shown). Together, these data suggest that EGFR accumulates on the plasma membrane when nEGFR translocation is blocked by dasatinib.
Figure 4. SFKs exhibit functional redundancy in their ability to influence nEGFR translocation. A, the stable overexpression of SFKs increase nEGFR expression. Eight different SFKs were stably overexpressed in the breast cancer cell line MCF-7. SFK stable clones or an empty vector stable cell line were stimulated with EGF (5 nmol/L, 45 minutes) to induce nEGFR translocation, before harvesting nonnuclear and nuclear proteins. GAPDH and Histone H3 were used as loading and purity controls, respectively. B, the stable overexpression of SFKs downregulate c-Cbl. Whole-cell lysate was harvested from SFK stable clones or an empty vector stable cell line. GAPDH was used as loading control.
Figure 5. Therapeutic inhibition of SFKs can block nEGFR translocation in TNBC cell lines and tumor models. A, dasatinib can inhibit nEGFR translocation and enhance nonnuclear EGFR levels. Cells were treated with vehicle or dasatinib (25 nmol/L) for 24 and 72 hours before harvesting whole cell, nonnuclear, and nuclear proteins. B, dasatinib can block nEGFR translocation measured by Nuance imaging analysis. Cells were treated with vehicle or dasatinib (50 nmol/L) for 24 and 48 hours before staining for EGFR, E-Cadherin, and DAPI. nEGFR fluorescence detected from dasatinib-treated cells was normalized to nEGFR fluorescence detected from vehicle-treated cells using InForm software (n = 2). C, dasatinib can enhance plasma membrane-bound EGFR levels measured by flow cytometry. Cells were treated with dasatinib (25 nmol/L) for 24 hours before EGFR surface level analysis. Surface level EGFR expression of dasatinib-treated cells was normalized to vehicle-treated cells (n = 3). Shaded histogram, vehicle-treated cells; nonshaded histograms, dasatinib-treated cells. IgG-treated cells are used as a control (dotted line). D and E, dasatinib can block nEGFR translocation in MDAMB468 xenograft tumors. Mice with established MDAMB468 tumors were treated with 50 mg/kg of dasatinib or vehicle once a day for 4 days. Tumors were analyzed by confocal immunofluorescence (IF; D) and IHC (E) for EGFR expression. IF, merged images were magnified to depict nEGFR (arrows) and non-nEGFR (triangle). >600 magnification for IF and >400 for IHC. Four tumors from vehicle (tumor # 1–8) or dasatinib-treated mice (tumor # 5–8) were harvested for protein and analyzed for the indicated proteins. Data, mean±SEM. **P < 0.01.
To investigate whether therapeutic inhibition of SFKs can abrogate nEGFR translocation in vivo, MDAMB468 cells were established as xenograft tumors in female athymic nude mice. Mice were randomized into two groups receiving 50 mg/kg of dasatinib or vehicle once daily for 4 days. Figure 5D represents confocal immunofluorescence analyses of representative tumor sections harvested from either vehicle- or dasatinib-treated mice stained for EGFR. EGFR was highly nuclear localized in tumors from vehicle-treated mice. However, tumors harvested from dasatinib-treated mice harbored much less nEGFR, with a noticeable increase in plasma membrane localized EGFR expression. Immunoblot analysis of harvested tumors validated that dasatinib inhibited SFK activity; one dasatinib-treated tumor (#5) contained less total EGFR expression. The inhibition of nEGFR translocation was also visualized by immunohistochemical staining of tumors harvested from dasatinib-treated mice (Fig. 5E). Interestingly, we found that dasatinib treatment of mice harboring colorectal tumors also contained less nEGFR expression within the tumor (Supplementary Fig. S1), suggesting that SFKs may influence nEGFR translocation in different tumor types. Collectively, these data indicate that SFK inhibition prevents nEGFR translocation and enhances membrane accumulation of EGFR in vivo.

SFK inhibition can sensitize TNBC cells to cetuximab growth inhibition

Because SFK inhibition enhanced plasma membrane-bound EGFR expression, we hypothesized that TNBC cells may become more sensitive to cetuximab upon pretreatment with dasatinib. To investigate this, we performed proliferation assays after pretreating TNBC cells with dasatinib or vehicle for 24 hours, the time point at which an increase in surface level EGFR was detected, and subsequently treating cells with increasing doses of cetuximab for an additional 72 hours (Fig. 6). All cell lines pretreated with vehicle and subsequently treated
with increasing doses of cetuximab demonstrated minor reductions in proliferation, consistent with data in Fig. 2. In addition, cells treated with 25 nmol/L dasatinib monotherapy did not exhibit significant inhibition of proliferation. However, TNBC cell lines that received dasatinib for 24 hours before cetuximab treatment demonstrated significant reductions in proliferation over a wide range of cetuximab doses (1–100 nmol/L). SUM149 and SUM229 cells demonstrated significant reductions in proliferation at low doses of cetuximab (1 nmol/L), whereas MDA MB 468 and MDA MB 231 cells exhibited proliferation inhibition at higher doses of cetuximab (10 and 100 nmol/L). Collectively, these data suggest that the blockade of nEGFR translocation via SFK inhibition can increase TNBC cell sensitivity to cetuximab.

Discussion

TNBC is a subset of breast cancers that commonly overexpress the EGFR (3–6). Unfortunately, clinical trials targeting EGFR with cetuximab have yielded minimal benefit in TNBC (7, 8), even with the addition of platinum-based chemotherapies (1, 5, 36). Thus, understanding why TNBCs are intrinsically resistant to cetuximab has become an important clinical question. Over the last decade, numerous studies have identified a role for nEGFR in resistance to anti-EGFR agents (25, 26). Previous studies from our laboratory demonstrated that NSCLC cell lines that had acquired resistance to cetuximab relied on nEGFR signaling to maintain their resistant phenotype (26). On the basis of these studies, we hypothesized that nEGFR may be a critical molecular determinant for cetuximab resistance in TNBC.

In the current study, nEGFR was detected in a panel of established TNBC cell lines and human tumors (Fig. 1). In prior studies, 38% of a 130 breast cancer patient cohort (15) and 40% of a 113 breast cancer patient cohort (19) stained positive for nEGFR, which was further correlated with worse overall survival. The heterogeneity observed in nEGFR expression in the current study of TNBC tumors highlights the importance of simultaneously targeting both nEGFR and non-nEGFR cell populations. Another interesting observation lies in the localization of EGFR in the nucleolus, functions that have yet to be investigated and may be playing important roles in TNBC pathogenesis. Collectively, the preclinical data presented in the current study suggest that nEGFR may be indicative of cetuximab-resistant tumors warranting further investigation for its role as a predictive marker for cetuximab response in TNBC.

Recent work from our laboratory has found that SFK-dependent phosphorylation of EGFR on Y1101 is a necessary and early event for EGFR translocation from the plasma membrane to the nucleus (30). The current study aimed to identify whether this mechanism of nuclear translocation was present in TNBC. We found that three TNBC cell lines (MDAMB468, SUM149, and SUM229) with the highest levels of phosphorylated Y1101 also expressed the highest levels of nEGFR (Fig. 1A and B). In addition, inhibition of SFK activity led to decreased phosphorylation of EGFR on Y1101 and reduced nEGFR levels (Figs. 3C and 5A and B). Interestingly, Fig. 5C indicates that surface level EGFR was enhanced within 24 hours of dasatinib treatment, even though a decrease in nEGFR expression was more prominent at later time points posttreatment (Fig. 5A and B); this suggests that the rate of nEGFR export, via its nuclear export sequence (28), varies between cell lines. Collectively, these data suggest that SFK phosphorylation of EGFR on Y1101 may be a critical step for EGFR nuclear translocation in TNBC.

SFKs consist of 11 intracellular tyrosine kinases that are differentially expressed in a variety of cancers (40). In the current study, eight individual SFKs were stably overexpressed, and found to function similarly in their ability to influence (i) the steady state expression of total EGFR, (ii) nEGFR translocation, and (iii) degradation of c-Cbl (Fig. 4). These data suggest that SFKs exhibit functional redundancy in their ability to influence nEGFR translocation, and thus the use of broad-spectrum SFK inhibitors, such as dasatinib, may be highly beneficial in nEGFR-positive cancers.

In the current study, SFK inhibition of nEGFR translocation led to an accumulation of plasma membrane-bound EGFR and sensitization to cetuximab therapy (Figs. 5 and 6). Recent studies support our findings, where antitumorigenic effects of both cetuximab and dasatinib dual treatment with chemotherapy (41) and the use of noncompetitive monoclonal antibodies degrading the EGFR (42) have been documented in TNBC. In addition, a recent report demonstrated that targeting PCNA, a nEGFR substrate, could delay TNBC tumor growth (43). In the current study, sensitization to cetuximab was observed after pretreatment of TNBC cells with dasatinib for 24 hours, the time point at which EGFR accumulation was detected on the plasma membrane due to the inhibition of nEGFR translocation. We speculate that the inhibition of nEGFR translocation drives TNBC cells to rely solely on classical membrane-bound EGFR signaling for sustained proliferation and survival signals; thus, TNBC cells become sensitized to cetuximab because cetuximab can abrogate classical EGFR signaling pathways. Previous studies in EGFR expressing NSCLC and HNSCC cell lines support this, where cell lines that lacked nEGFR expression were found to be more sensitive to cetuximab monotherapy (26, 30). Currently, the growth inhibitory effect of cetuximab and dasatinib therapy is being accessed in vivo TNBC models in our laboratory, a critical step for the movement of this proposed drug combination into clinical trials. Collectively, the data presented herein indicate that the dual targeting of both nEGFR and plasma membrane-bound EGFR is necessary for the complete inhibition of EGFR’s oncogenic functions, a therapeutic strategy that can be readily translated for the treatment of nEGFR expressing TNBC patients.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
nEGFR Is a Functional Molecular Target in TNBC

Authors' Contributions
Conception and design: T.M. Brand, M. Iida, R. Salgia, D.L. Wheeler
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): T.M. Brand, M. Iida, E.F. Dunn, N. Luthar, K.T. Kostopoulos, K.L. Corrigan, D. Yang, K.B. Wisinski, R. Salgia, D.L. Wheeler
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): T.M. Brand, M. Iida, K.T. Kostopoulos, R. Salgia, D.L. Wheeler
Writing, review, and/or revision of the manuscript: T.M. Brand, M. Iida, E.F. Dunn, N. Luthar, R. Salgia, D.L. Wheeler
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): T.M. Brand, M. Iida, E.F. Dunn, N. Luthar, K.T. Kostopoulos, K.L. Corrigan, D. Yang, D.L. Wheeler

Acknowledgments
The authors thank Drs. Roche, Mischel, and Boerner for kindly sharing their expression vectors, Lance Rodenkirch and the Keck Laboratory for Biological Imaging for their expertise in confocal microscopy, and Ben August and Amanda Thoma for their training and expertise in electron microscopy.

References

Molecular Cancer Therapeutics

Nuclear Epidermal Growth Factor Receptor Is a Functional Molecular Target in Triple-Negative Breast Cancer

Toni M. Brand, Mari Iida, Emily F. Dunn, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-13-1021

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/03/14/1535-7163.MCT-13-1021.DC1

Cited articles
This article cites 43 articles, 14 of which you can access for free at:
http://mct.aacrjournals.org/content/13/5/1356.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.