Table of Contents

March 2014 • Volume 13 • Number 3

Molecular Cancer Therapeutics

Highlights of This Issue 555

HYPOTHESIS/COMMENTARY

557 Advances in the Diagnosis and Treatment of Non–Small Cell Lung Cancer
Rathi N. Pillai and Suresh S. Ramalingam

SMALL MOLECULE THERAPEUTICS

565 A Novel Small-Molecule Inhibitor of Mcl-1 Blocks Pancreatic Cancer Growth In Vitro and In Vivo
Fardokht Abulwerdi, Chenzhong Liao, Meilan Liu, Asfar S. Azmi, Amro Aboukameel, Ahmed S.A. Mady, Thippeswamy Gulappa, Tomasz Cierpicki, Scott Owens, Tao Zhang, Duxin Sun, Jeanne A. Stuckey, Ramzi M. Mohammad, and Zaneta Nikolovska-Coleska

576 Combined MET Inhibition and Topoisomerase I Inhibition Block Cell Growth of Small Cell Lung Cancer
Cleo E. Rolle, Rajani Kanteti, Mosmi Surati, Suvobrote Nandi, Immanuel Dhanasingh, Soheil Yala, Maria Tretiakova, Qudsia Arif, Todd Hembrough, Toni M. Brand, Deric L. Wheeler, Aliya N. Husain, Everett E. Vokes, Ajit Bharti, and Ravi Salgia

585 The Fatty Acid Synthase Inhibitor Orlistat Reduces the Growth and Metastasis of Orthotopic Tongue Oral Squamous Cell Carcinomas

596 The AMPK Inhibitor Compound C Is a Potent AMPK-Independent Antiglioma Agent
Xiaona Liu, Rishi Raj Chhipa, Ichiro Nakano, and Biplab Dasgupta

606 Disruption of STAT3 by Niclosamide Reverses Radioresistance of Human Lung Cancer
Shuo You, Rui Li, Dongkyoo Park, Maohua Xie, Gabriel L. Sica, Ya Cao, Zhi-Qiang Xiao, and Xingming Deng

617 TPCA-1 Is a Direct Dual Inhibitor of STAT3 and NF-κB and Regresses Mutant EGFR-Associated Human Non–Small Cell Lung Cancers
Jing Nan, Yuping Du, Xing Chen, Qifeng Bai, Yuxin Wang, Xinxin Zhang, Ning Zhu, Jing Zhang, Jianwen Hou, Qin Wang, and Jinbo Yang

LARGE MOLECULE THERAPEUTICS

643 Immunoglobulin Fc Domain Fusion to TRAIL Significantly Prolongs Its Plasma Half-Life and Enhances Its Antitumor Activity
Haizhen Wang, Jennifer S. Davis, and Xiangwei Wu

651 Enhancement of the Tumor Penetration of Monoclonal Antibody by Fusion of a Neuropilin-Targeting Peptide Improves the Antitumor Efficacy
Tae-Hwan Shin, Eun-Sil Sung, Ye-Jin Kim, Ki-Su Kim, Se-Ho Kim, Seok-Ki Kim, Young-Don Lee, and Yong-Sung Kim

CANCER BIOLOGY AND SIGNAL TRANSDUCTION

662 Dinaciclib (SCH727965) Inhibits the Unfolded Protein Response through a CDK1- and 5-Dependent Mechanism
Tri K. Nguyen and Steven Grant

675 XPO1 (CRM1) Inhibition Represses STAT3 Activation to Drive a Survivin-Dependent Oncogenic Switch in Triple-Negative Breast Cancer
Yan Cheng, Michael P. Holloway, Kevin Nguyen, Dilara McAuley, Yosef Landesman, Michael G. Kauffman, Sharon Shacham, and Rachel A. Altura

687 CBP-Mediated FOXO-1 Acetylation Inhibits Pancreatic Tumor Growth by Targeting SirT
Kartick C. Pramanik, Neel M. Fofaria, Parul Gupta, and Sanjay K. Srivastava
Synuclein γ Compromises Spindle Assembly Checkpoint and Renders Resistance to Antimicrotubule Drugs

Masitinib Antagonizes ATP-Binding Cassette Subfamily C Member 10–Mediated Paclitaxel Resistance: A Preclinical Study

Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition

Mutant Ras Elevates Dependence on Serum Lipids and Creates a Synthetic Lethality for Rapamycin

microRNAs miR-27a and miR-27b Directly Regulate Liver Dihydropyrimidine Dehydrogenase Expression through Two Conserved Binding Sites

Cancer-Associated CD43 Glycoforms as Target of Immunotherapy

Sorafenib Inhibits ABCG2 and Overcomes Irinotecan Resistance—Letter

Sorafenib Inhibits ABCG2 and Overcomes Irinotecan Resistance—Response

ABOUT THE COVER

STAT3 and NF-κB signaling pathways are often simultaneously activated in neoplastic cells and play important roles in tumorogenesis and drug sensitivity. TPCA-1, a previously found antagonist of IKKs, blocks STAT3 anchoring to upstream tyrosine kinase and inhibits STAT3 activation induced by cytokines and c-Src. Molecular modeling indicates that TPCA-1 is well docked into SH2 domain of STAT3 and formed hydrogen bond with Glu594. As a direct inhibitor of STAT3 and IKKs, TPCA-1 inhibits growth of non–small cell lung cancer (NSCLC) with EGFR mutation and potentiates the antitumor effect of gefitinib. For details, see article by Nan and colleagues on page 617.
Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/13/3

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>