Small Molecule Therapeutics

Novel Selective Estrogen Mimics for the Treatment of Tamoxifen-Resistant Breast Cancer

Mary Ellen Molloy1, Bethany E. Perez White1, Teshome Gherezghiher2, Bradley T. Michalsen2, Rui Xiong2, Tamoxifen-Resistant Breast Cancer

Abstract

Endocrine-resistant breast cancer is a major clinical obstacle. The use of 17β-estradiol (E2) has reemerged as a potential treatment option following exhaustive use of tamoxifen or aromatase inhibitors, although side effects have hindered its clinical usage. Protein kinase C alpha (PKCα) expression was shown to be a predictor of disease outcome for patients receiving endocrine therapy and may predict a positive response to an estrogenic treatment. Here, we have investigated the use of novel benzothiophene selective estrogen mimics (SEM) as an alternative to E2 for the treatment of tamoxifen-resistant breast cancer. Following in vitro characterization of SEMs, a panel of clinically relevant PKCα-expressing, tamoxifen-resistant models were used to investigate the antitumor effects of these compounds. SEM treatment resulted in growth inhibition and apoptosis of tamoxifen-resistant cell lines in vitro. In vivo SEM treatment induced tumor regression of tamoxifen-resistant T47D:A18/PKCα and T47D:A18-TAM1 tumor models. T47D:A18/PKCα tumor regression was accompanied by translocation of estrogen receptor (ER)α to extranuclear sites, possibly defining a mechanism through which these SEMs initiate tumor regression. SEM treatment did not stimulate growth of E2-dependent T47D:A18/neo tumors. In addition, unlike E2 or tamoxifen, treatment with SEMs did not stimulate uterine weight gain. These findings suggest the further development of SEMs as a feasible therapeutic strategy for the treatment of endocrine-resistant breast cancer without the side effects associated with E2. Mol Cancer Ther; 13(11); 2515–26. ©2014 AACR.

Introduction

The selective estrogen receptor modulator (SERM) tamoxifen is the most widely prescribed endocrine therapy for the treatment and prevention of breast cancer in premenopausal women, whereas aromatase inhibitors are the drug of choice for postmenopausal women. De novo or acquired resistance to these endocrine therapies limits their clinical effectiveness, leading to disease progression. As such, there is a clinical need for therapeutic alternatives for women who no longer respond to conventional endocrine therapies.

Protein kinase C alpha (PKCα) belongs to a family of serine/threonine protein kinases (1, 2). PKCα expression in breast cancer is associated with tamoxifen resistance, poor patient survival, and breast cancer aggressiveness (3–5). To further substantiate these clinical observations, we reported that ectopic overexpression of PKCα in the T47D:A18 breast cancer cell line resulted in a hormone-independent, tamoxifen-resistant phenotype (6). Interestingly, these tamoxifen-resistant T47D:A18/PKCα tumors are growth inhibited by 17β-estradiol (E2) in vivo (7). Yao and colleagues describe an MCF-7 tumor model in which long-term exposure (5 years) to tamoxifen led to an E2-inhibited phenotype (8) and elevated PKCα expression (7). Together these studies provide important therapeutic implications, suggesting that PKCα expression may predict both resistance to conventional endocrine therapies and a predicted response to E2 or estrogen-like compounds.

Before the introduction of tamoxifen, patients with breast cancer were treated with high-dose E2 or diethylstilbestrol. Although, similar response rates were observed (9, 10), tamoxifen treatment became the mainstream due to a lower incidence of side effects such as nausea, emesis, and edema. Because treatment with E2, diethylstilbestrol, and tamoxifen are now all associated with side effects, including increased risk of thromboembolic disorders and unwanted agonist-driven uterine growth, we...
sought an alternative treatment strategy that would have therapeutic efficacy in the tamoxifen-resistant setting. We have previously reported that tamoxifen-resistant T47D:A18/ PKCα tumors regress upon treatment with both E2 and the benzothiophene SERM raloxifene, although the effects of raloxifene did not persist after treatment withdrawal (11). Raloxifene has a favorable antiestrogenic profile in the uterus and has proven safety over 15 years of clinical use in postmenopausal osteoporosis and breast cancer chemoprevention.

In this study, we tested the in vivo effects of 2 novel benzothiophene SEMs, BTC, [2-(4-hydroxyphenyl)benzo[b][thiophen-6-ol], and TTC-352, [3-(4-fluorophenyl)-2-(4-hydroxyphenox)benzo[b][thiophen-6-ol], that in contrast to raloxifene, acted as estrogen agonists in T47D:A18 and MCF-7 cells as reflected by increased cell proliferation and estrogen response element (ERE)-luciferase reporter activity. Both of these SEMs induced regression of tamoxifen-resistant, hormone-independent T47D:A18/PKCα and T47D:A18-TAM1 xenograft tumors in vivo, but remarkably, neither compound was able to support aifen-resistant, hormone-independent T47D:A18/PKCα cells as a predictive biomarker.

Materials and Methods

Reagents

DMSO, E2, and tamoxifen were obtained from Sigma-Aldrich. Raloxifene (Evista, Eli Lilly and Company) was purchased from the University of Illinois at Chicago (UIC) Hospital Pharmacy (Chicago, IL). Cell culture reagents were obtained from Life Technologies. Tissue culture plastic ware was purchased from Becton Dickinson. The following antibodies were used: rabbit polyclonal PKCα (C-20; Santa Cruz Biotechnology), rabbit polyclonal ERα (SP1; Lab Vision), mouse monoclonal β-actin (Sigma), anti-rabbit Alexa Fluor 488 (Life Technologies), and anti-mouse Cy3 (Jackson ImmunoResearch Laboratories).

Cell culture conditions

Stable transfectant cell lines T47D:A18/neo and T47D: A18/PKCα were produced and maintained as previously described (6) in RPMI-1640 (phenol red) supplemented with 10% FBS containing G418 (500 µg/mL). T47D cells were initially obtained from ATCC in 1996 and stored during early passage. MCF-7 cells were originally obtained from the Michigan Cancer Foundation (Detroit, MI) in 1992 and stored during early passage. MCF-7:5C cells were maintained in E2-depleted media as previously described (12). The T47D:A18-TAM1 cell line was created by maintaining T47D:A18 breast cancer cells long-term (12 months) in 1 µmol/L of 4-hydroxytamoxifen in E2-depleted media. Single-cell clones were derived using the limiting dilution method. All tamoxifen-resistant cell lines retain estrogen receptor (ER)α expression at varying levels compared with their tamoxifen-sensitive counterparts (Supplementary Fig. S1). Before treatment, cell lines were cultured in E2-depleted media for 3 days. Cell lines were routinely tested for mycoplasma contamination (MycoAlert Mycoplasma Detection Kit, Lonza Ltd. USA). All cell lines were authenticated in April 2014 using short tandem repeat (STR) and ATCC analysis (Promega Corporation Core Genomics Facility, UIC).

Synthesis and oral bioavailability of BTC

Synthesis of both BTC and TTC-352 has been described previously (13). Dansyl derivatization of BTC was used to increase limits of detection and quantitation for LC/MS-MS analysis of plasma samples (Supplementary Figs. S2 and S3). Working solutions of BTC and internal standard (3-Br-BTC) were prepared by serial dilution of 1 mg/mL acetonitrile stocks. Calibration standards were prepared by spiking BTC or 3-Br-BTC (20 ng/mL) into blank mouse plasma to give a final concentration range of 5 to 100 ng/mL (Supplementary Fig. S4). After addition of cold acetonitrile, samples were kept at 4°C for 2 hours, centrifuged at 10,000 rpm for 15 minutes, and supernatants were concentrated under N2 stream. Residuals were reconstituted in 0.1 mL of 100 mmol/L sodium bicarbonate buffer (pH = 10.5) and derivatized by addition of 0.1-mL dansyl chloride (2 mg/mL in acetonitrile) followed by incubation at 60°C for 5 minutes. After removal of solvent, residues were reconstituted in 0.25-mL acetonitrile/water (1:1, v/v) and analyzed by LC/MS-MS.

BTC was administered in ethanol using a vehicle of propylene glycol/carboxymethylcellulose (10 mg/kg per os) to ovariectomized 4- to 6-week-old athymic mice (Harlan-Sprague-Dawley; n = 3). Blood samples were collected in EDTA tubes at 20 minutes, 2 hours, and 6 hours after treatment. Plasma was separated from whole blood by centrifugation at 4°C. Before analysis, plasma was spiked with internal standard and extracted 3 times with cold acetonitrile. Recovery of analyte was measured by spiking known amounts of BTC into blank plasma samples. Work up of plasma samples was identical to that described above for standard curve determination.

LC/MS-MS analysis was performed using an API 3000 (Applied Biosystems) triple quadrupole mass spectrometer equipped with Agilent 1200 HPLC (Agilent Technologies). Multiple reaction monitoring (MRM) for the dissociations of m/z 709 → 171 and m/z 789 →; 171 (loss of 5-dimethylaminonaphthalene) was optimized to measure dansyl-BTC and dansylBr-BTC, respectively (Supplementary Fig. S5). Separation was performed using a Hypersil BDS C18 (2.1 mm × 30 mm; 3µm) column (Thermo Quest Corporation) at a flow rate of 0.3 mL/min. The elution solvent consisted of water with 10% MeOH and 0.3% formic acid (A) and MeCN with 0.3% formic acid (B). The mobile phase was initially held at 10% B for 5 minutes, increased to 60% B over 1.5 minutes, and then increased to 90% B over 15 minutes, with dansyl-BTC and dansylBr-BTC eluting at 17.8 and 19.7 minutes, respectively (Supplementary Fig. S5).
DNA growth assay

T47D:A18/neo, T47D:A18/PKCα, and T47D:A18-TAM1 cells were maintained in E2-depleted media 3 days before plating in 24-well plates (15,000 cells per well). Medium containing compound was added the following day, and total DNA was determined by incubating cells with Hoechst 33342 cell-permeable dye for 1 hour and reading fluorescence at excitation 355 nm/emission 460 nm on a Perkin Elmer Victor3 V plate reader (Waltham). Treatment medium was changed every 2 to 3 days.

Proliferation assay

Following 3 days of growth in E2-depleted media, 2 x 10^5 cells were seeded into T25 tissue culture flasks. The following day (day 1) treatment medium was added. Cells were counted on day 9 and medium was changed every 3 days.

Western blotting

Whole-cell extracts of cultured cells were prepared in lysis buffer (200 mmol/L Tris, 1% Triton X-100, 5 mmol/L EDTA) with protease and phosphatase inhibitor cocktails (1:50, both from Sigma-Aldrich) after scraping from the culture plates. Protein concentration was measured using the Bradford method (Bio-Rad). Proteins were separated under denaturing conditions and blotted onto nitrocellulose membrane (Bio-Rad) using a wet transfer system (Bio-Rad). Images of blots were acquired on a Bio-Rad ChemiDoc System following incubation with SuperSignal West Dura luminol solution (Thermo Fisher Scientific). Protein bands were quantified using densitometry measured in Adobe Photoshop CS4 and normalized to β-actin.

Transient transfection and luciferase assays

Cells were transiently transfected by electroporation with 5 μg ERE-tk-Luc plasmid containing the luciferase reporter gene controlled by a triplet vitellogenin consensus ERE (14) and 1 μg pCMVβ-galactosidase (β-gal) expressing plasmid. After 24 hours, the cells were treated and incubated overnight at 37°C. Cells were lysed and luciferase activity and β-gal signals were read by a Monolight 3010 luminometer (Becton Dickinson).

Colony formation assay in Matrigel matrix

Matrigel (Becton Dickinson) was thawed overnight at 4°C. Twelve-well plates were coated with 200 μL Matrigel per well and incubated at 37°C for 30 minutes. Cells were suspended at 5 x 10^4 in 400 μL of phenol red–free RPMI-1640 and spread onto pre-gelled Matrigel followed by the addition of 360 μL of treatment media containing 40 μL Matrigel. Plates were incubated at 37°C for 10 days; medium containing 10% Matrigel was replaced to the top of the Matrigel every 3 days. Colonies were stained with crystal violet on day 10, and each well was counted by light microscopy (20×).

Annexin V analysis of apoptosis

The AlexaFluor 488 Annexin V/Dead Cell Apoptosis Kit (Invitrogen) was used to quantify cell death by flow cytometry according to the manufacturer’s instructions. In brief, MCF-7;5C cells were treated with control and test compounds for 6 days with treatment renewal on day 3. Cells (1 x 10^5) were suspended in 1 x Annexin V binding buffer and were stained with AlexaFluor 488 Annexin V and propidium iodide (PI). The cells were then analyzed by FACS using a Gallios Flow Cytometer (Beckman Coulter).

Animal experiments

T47D:A18/PKCα, T47D:A18/neo, and T47D:A18-TAM1 tumors were established as previously described (7). E2 was administered via silastic capsules (1.0 cm) implanted subcutaneously between the scapulae, producing a mean serum E2 level of 379.5 pg/mL (11, 15). BTC and TTC-352 were administered per os at a dose of 1.5 mg/animal daily for 2 weeks as previously described for other SERMs (7). Raloxifene was administered per os at a dose of 1.5 mg/animal daily for 2 weeks. Tumor cross-sectional area was determined weekly using Vernier calipers and calculated using the formula: length/2 x width/2 x π. Mean tumor area was plotted against time (in weeks) to monitor tumor growth. The mice were sacrificed by CO2 inhalation and cervical dislocation, and tumors and uteri were excised, cleaned of connective tissue, and immediately weighed. The Animal Care and Use Committee of the UIC approved all of the procedures involving animals.

Tumor immunofluorescence and confocal microscopy

Tumor sections (4 μm) were cut from paraffin blocks and prepared for immunofluorescent staining by deparaffinization and rehydration as previously described (11). Briefly, antigen retrieval was performed by incubating slides in Tris-EDTA (pH = 9.0) buffer. Slides were blocked with antibody diluent (DAKO) followed by primary antibodies at 1:100 in antibody diluent for 1 hour and then incubated with secondary antibodies at 1:100 in antibody buffer for 45 minutes followed by 1 μg/mL 4',6-diamidino-2-phenylindole (DAPI; DAKO). Confocal analysis was performed with a Zeiss LSM 510 microscope (Carl Zeiss, Inc.).

Statistical analyses

Statistics were run using GraphPad Prism Version 5.0. Statistical analyses used were one-way ANOVA followed by Tukey posttest or the Student t test where appropriate.

Results

PKCα expression correlates with sensitivity to E2

PKCα-expression in clinical specimens predicted resistance to tamoxifen (4). The ectopic overexpression of PKCα in T47D cells (T47D:A18/PKCα) led to a tamoxifen-resistant, E2-inhibited phenotype in vivo (7), suggesting that PKCα may also predict a positive response to estrogenic therapeutic intervention. To derive an independent model of tamoxifen resistance, T47D:A18 cells were cultured long-term in the presence of 1 μmol/L 4-hydroxytamoxifen, and several tamoxifen-resistant
clones were identified, including T47D:A18-TAM1. When evaluated in vitro, T47D:A18-TAM1 cell growth was independent of E2 in addition to exhibiting tamoxifen resistance (Fig. 1A). In vivo T47D:A18-TAM1 xenografts were found to act similar to T47D:A18/PKCα xenografts, growing hormone independently, tamoxifen-resistant, and regress when treated with E2 (Fig. 1B). Similar to the T47D:A18/PKCα cell line, T47D:A18-TAM1 cells display increased PKCα expression compared with the tamoxifen-sensitive parental T47D:A18 cell line (Fig. 1C and D, lanes 3 and 4).

The tamoxifen-resistant MCF-7:5C cell clone is growth inhibited by E2 in vivo and in contrast to T47D:A18/PKCα and T47D:A18-TAM1 cells, growth is also inhibited by E2 in 2-dimensional (2D) culture (12). MCF-7:5C cells display increased expression of PKCα compared with tamoxifen-sensitive MCF-7:W8 cells (Fig. 1C and D, lanes 5 and 6). Because all 3 tamoxifen-resistant cell clones display elevated PKCα expression compared with the parental lines, and as PKCα knockdown in T47D:A18/PKCα cells led to a partial reversal of the E2-inhibited phenotype in vivo (16), these results suggest that PKCα may play a role in E2-induced growth inhibition and/or be a predictive biomarker for E2-induced growth inhibition.

SEMs are estrogenic and antiproliferative in endocrine-resistant, PKCα-expressing breast cancer cell lines in vitro

We have previously reported that the E2 growth-inhibitory phenotype observed with T47D:A18/PKCα tumors can be partially recapitulated when these cells are cultured in 3D Matrigel as characterized by inhibition of colony formation (7, 17). In an effort to find a potential alternative to E2 and to expand on positive data obtained in vivo with raloxifene (11), 2 benzothiophene SEMs, BTC and TTC-352 (Fig. 2A and B), were selected from a library of compounds and screened by DNA growth assay in 2D.

To determine whether BTC and TTC-352 act as estrogen agonists, we treated cells in 2D culture and measured DNA content as an index of proliferation. The higher concentrations of BTC and TTC-352 (100 nmol/L) stimulated proliferation of T47D:A18/neo cells comparable with E2 (1 nmol/L; Fig. 2C and D). Both T47D:A18/PKCα

Figure 1. PKCα overexpression in breast cancer cells correlates with sensitivity to E2-induced growth inhibition. A, effect of E2 and 4-hydroxytamoxifen (4-OHT) on T47D:A18-TAM1 proliferation in vitro. DNA assays were performed as described in Materials and Methods. Graph shows mean ± SEM and is representative of 3 independent experiments. RFU, relative fluorescent units. B, effect of tamoxifen and E2 on T47D:A18-TAM1 xenograft growth. Two mice per group were bilaterally injected with T47D:A18-TAM1 cells and either left untreated or were given oral tamoxifen (1.5 mg/d). Dashed line represents the start of E2 treatment. C, Western blot analysis of PKCα expression in E2-stimulated (T47D:A18/neo, T47D:A18, MCF-7:WS8) and E2-inhibited (T47D:A18/PKCα, T47D:A18-TAM1, and MCF-7:5C) cell lines. D, densitometric quantification of 3 Western blot analyses from 3 independent cell lysates. The Student t test was used to compare each E2-inhibited cell line to the E2-stimulated counterpart. *, P < 0.05.
Figure 2. Effect of BTC and TTC-352 on proliferation of T47D:A18/neo and T47D:A18/PKCα cells in vitro. Structures of BTC (A) and TTC-352 (B). Effect of BTC and TTC-352 treatment on the growth of T47D:A18/neo cells (C and D, respectively), T47D:A18/PKCα cells (E and F, respectively), and T47D:A18-TAM1 cells (G and H, respectively). DNA assays were performed as described in Materials and Methods. Graphs show mean ± SEM and are representative of 3 independent experiments. RFU, relative fluorescent units.
and T47D:A18-TAM1 cells proliferated equally in the presence of E2, BTC, and TTC-352 (1–100 nmol/L; Fig. 2E–H).

To determine whether BTC and TTC-352 mirror the antiproliferative effect of E2 on T47D:A18/PKCα cells in 3D culture, colony formation in Matrigel was examined. BTC and TTC-352 treatment resulted in increased T47D:A18/neo colony formation (Fig. 3A) while significantly preventing T47D:A18/PKCα and T47D:A18-TAM1 colony formation in 3D (Fig. 3B and C).

To confirm the inhibitory activity of SEMs in a third in vitro model of E2-induced growth inhibition, we determined the effects in tamoxifen-resistant MCF-7:5C cells: MCF-7:5C cells are growth inhibited by E2 in 2D culture (12). Parental hormone-dependent MCF-7:WS8 cells were growth stimulated when subjected to BTC and TTC-352 treatment (Fig. 3D); however, BTC and TTC-352 (100 nmol/L) significantly inhibited the growth of MCF-7:5C cells over 9 days (Fig. 3E). In addition, apoptosis significantly increased in these cells 6 days posttreatment with E2, BTC, and TTC-352 (Fig. 3F).

To confirm the inhibitory activity of BTC and TTC-352, we examined transcriptional activation of ERα using an ERE-luciferase reporter construct (14). In T47D:A18/neo, T47D:A18/PKCα, and T47D:A18-TAM1 cells, BTC and TTC-352 treatment resulted in an increase in ERα transcriptional activity that was concentration-dependent (Fig. 4A–C). BTC acted as a full agonist with respect to ERE-luciferase induction in all cell lines, whereas TTC-352 appears to act as a partial ER agonist yielding a significant but partial induction at 100 nmol/L concentration. Taken together, our in vitro findings suggest that SEMs exhibit estrogenic activity and mimic the inhibitory activity of E2 in MCF-7:5C cells in 2D culture and in T47D:A18/PKCα and T47D:A18-TAM1 cells in 3D culture.

Bioavailability of BTC and benzothiophene SERMs

In humans, the absolute bioavailability of orally administered raloxifene is reported as 2%, with oral clearance of 44 L/kg/h (18, 19). Desmethylarzoxifene is a more potent estrogen antagonist in the breast and maintains estrogen agonist actions in bone tissues, however, it also has poor bioavailability (20). Arzoxifene was designed as a desmethylarzoxifene prodrug to overcome the problems associated with low bioavailability (21–24). As part of a comparative study of biologic activity of desmethylarzoxifene, arzoxifene, and F-DMA in juvenile female rats, metabolism was assessed by quantification of remaining drug in plasma after 3 days of drug administration.
BTC and TTC-352 induce ERα transcriptional activity in T47D:A18/neo, T47D:A18/PKCα, and T47D:A18-TAM1 cell lines. A, T47D:A18/neo. B, T47D:A18/PKCα. C, T47D:A18-TAM1 cell lines. Data are expressed normalized to E2 (100%). *, P < 0.05 versus DMSO; **, P < 0.01 versus DMSO; ***, P < 0.001 versus DMSO. Graph shows mean ± SEM of 3 independent experiments.

SEM of 3 independent experiments.

BTC and TTC-352 induce ERα transcriptional activity in T47D:A18/neo, T47D:A18/PKCα, and T47D:A18-TAM1 cell lines. A, T47D:A18/neo. B, T47D:A18/PKCα. C, T47D:A18-TAM1 cell lines. Data are expressed normalized to E2 (100%). *, P < 0.05 versus DMSO; **, P < 0.01 versus DMSO; ***, P < 0.001 versus DMSO. Graph shows mean ± SEM of 3 independent experiments.

SEM of 3 independent experiments.

BTC and TTC-352 induce ERα transcriptional activity in T47D:A18/neo, T47D:A18/PKCα, and T47D:A18-TAM1 cell lines. A, T47D:A18/neo. B, T47D:A18/PKCα. C, T47D:A18-TAM1 cell lines. Data are expressed normalized to E2 (100%). *, P < 0.05 versus DMSO; **, P < 0.01 versus DMSO; ***, P < 0.001 versus DMSO. Graph shows mean ± SEM of 3 independent experiments.

SEM of 3 independent experiments.

BTC and TTC-352 induce ERα transcriptional activity in T47D:A18/neo, T47D:A18/PKCα, and T47D:A18-TAM1 cell lines. A, T47D:A18/neo. B, T47D:A18/PKCα. C, T47D:A18-TAM1 cell lines. Data are expressed normalized to E2 (100%). *, P < 0.05 versus DMSO; **, P < 0.01 versus DMSO; ***, P < 0.001 versus DMSO. Graph shows mean ± SEM of 3 independent experiments.
Because BTC and TTC-352 support the growth of T47D:A18/neo cells in 2D (Fig. 1A and B) and 3D cultures (Fig. 3A), we next asked whether these SEMs would sustain the growth of T47D:A18/neo tumors in vivo. T47D:A18/neo cells were bilaterally injected into 20 athymic mice and divided into 6 treatment groups: 3 nontreated controls, 3 E2 capsule, 3 oral tamoxifen 1.5 mg/d, 3 oral raloxifene 1.5 mg/d, 4 oral BTC 1.5 mg/d, or 4 oral TTC-352 1.5 mg/d. Following 7 weeks of treatment, mice treated with E2, as expected, harbored T47D:A18/neo tumors that reached an average size of about 0.35 cm² (100%); ~0.5 cm²). Dotted line indicates when treatment was ended. Arrow designates where tumors from B were obtained. *, P ≤ 0.001 versus control. Graph shows mean ± SEM. B, ERα localization in T47D:A18/PKCα tumors by immunofluorescence staining. Total magnification, 630×. C, T47D:A18-TAM1 tumors regress when treated with BTC and TTC-352. Dotted lines represent start of treatment. RAL, raloxifene.

Figure 5. BTC and TTC-352 inhibit T47D:A18/PKCα and T47D:A18-TAM1 xenograft tumors. A, BTC and TTC-352 treatment result in regression of T47D:A18/PKCα tumors. Graph shows percentage of tumor regression (100%; ~0.5 cm²). Dotted line indicates when treatment was ended. Arrow designates where tumors from B were obtained. *, P ≤ 0.001 versus control. Graph shows mean ± SEM. B, ERα localization in T47D:A18/PKCα tumors by immunofluorescence staining. Total magnification, 630×. C, T47D:A18-TAM1 tumors regress when treated with BTC and TTC-352. Dotted lines represent start of treatment. RAL, raloxifene.

in vivo (6, 7). Because BTC and TTC-352 support the growth of T47D:A18/neo cells in 2D (Fig. 1A and B) and 3D cultures (Fig. 3A), we next asked whether these SEMs would sustain the growth of T47D:A18/neo tumors in vivo. T47D:A18/neo cells were bilaterally injected into 20 athymic mice and divided into 6 treatment groups: 3 nontreated controls, 3 E2 capsule, 3 oral tamoxifen 1.5 mg/d, 3 oral raloxifene 1.5 mg/d, 4 oral BTC 1.5 mg/d, or 4 oral TTC-352 1.5 mg/d. Following 7 weeks of treatment, mice treated with E2, as expected, harbored T47D:A18/neo tumors that reached an average size of about 0.35 cm² (100%), whereas no significant tumor growth was observed in the other treatment groups (Fig. 6A). Thus, the growth of T47D:A18/neo cells seen at higher concentrations of BTC and TTC-352 in vitro (Fig. 2C and D) was not recapitulated in vivo. Importantly, the dose of SEMs capable of causing robust regression of T47D:A18/PKCα and T47D:A18-TAM1 tumors did not stimulate T47D:A18/neo tumor growth. In addition, no significant weight loss was observed over the 7-week treatment period (Fig. 6B). Therefore, SEMs are capable of causing regression of endocrine-resistant breast cancer xenografts, and importantly they are unable to support the growth of hormone-dependent xenografts in vivo. This result is significant as it suggests that SEMs will...
Control

E2 (capsule)

TAM (1.5 mg/day)

RAL (1.5 mg/day)

BTC (1.5 mg/day)

TTC-352 (1.5 mg/day)

A

Tumor volume (mg)

Control

E2 (capsule)

TAM (1.5 mg/day)

RAL (1.5 mg/day)

BTC (1.5 mg/day)

TTC-352 (1.5 mg/day)

B

Body weight (g)

Control

E2 (capsule)

TAM (1.5 mg/day)

RAL (1.5 mg/day)

BTC (1.5 mg/day)

TTC-352 (1.5 mg/day)

C

Uterine weight (mg)/body weight (g)

Control

E2 (capsule)

TAM (1.5 mg/day)

RAL (1.5 mg/day)

BTC (1.5 mg/day)

TTC-352 (1.5 mg/day)

Figure 6. BTC and TTC-352 have no effect on T47D:A18/neo tumor growth, body weight, or uterine weights of ovariectomized mice. A, BTC and TTC-352 do not result in growth of T47D:A18/neo tumors. B, body weights of treated mice from A. C, uterine weights from mice in A. Weights are reported as uterine weight (mg)/body weight (g). ***P < 0.001 versus control. Graphs show mean ± SEM. RAL, raloxifene; TAM, tamoxifen.

not stimulate the growth of any endocrine-sensitive breast cancer cells that may be present in heterogeneous tumors.

SEMs are without uterotrophic actions in athymic mice

E2 has a proliferative effect on the endometrium resulting in an increase in uterine weight. Tamoxifen has an estrogenic effect on endometrial growth, which leads to an increased risk of developing endometrial cancer (29). In ovariectomized rats at a minimally effective dose, raloxifene did not increase uterine weight in contrast to E2 and tamoxifen and at doses up to 10 mg/kg/d did not increase luminal epithelial cell thickness (30–33). Mindful of the in vitro estrogen agonist actions of BTC and TTC-352 described above, we sought to compare the effects on uterine weight of BTC, TTC-352, raloxifene, tamoxifen, and E2. Following 7 weeks of treatment, the uteri from the ovariectomized mice used in the T47D:A18/neo xenograft study (Fig. 6A) were excised and weighed. Interestingly, BTC and TTC-352 caused no significant increase in the uterine weights of the treated mice (Fig. 6C). The SEM-treated mice were indistinguishable from those that were treated with raloxifene, which is known to be without uterotrophic actions. In contrast, and as expected, tamoxifen and E2 caused significant increases in uterine weight.

Discussion

Before the introduction of tamoxifen, the ER agonists, E2 and diethylstilbestrol, were recognized to have clinical utility in the treatment of breast cancer (9, 34). Discovery of alternative ER agonists that might mimic the anticancer effects of E2 and diethylstilbestrol, without the unacceptable side effects, is a reasonable and novel strategy. To identify such SEMs, we chose to take advantage of the knowledge that the growth of several ER-positive, but endocrine-resistant, breast cancer cell lines is inhibited by E2. These tamoxifen-resistant cell lines overexpress PKCα, the role of which in the antiproliferative actions of E2 is not yet defined. Using 3 such cell lines (T47D:A18/PKCα, T47D:A18-TAM1, MCF-7:5C), 2 novel SEMs were identified.

BTC and TTC-352 showed estrogentic activity in vitro in 2D cultures with respect to proliferation and ERE-mediated transcription, although (i) both SEMs were less potent than E2 and (ii) TTC-352 displayed partial agonist properties. In 2D cultures of tamoxifen-resistant MCF-7:5C cells, both SEMs and E2 inhibited growth and induced apoptosis (Fig. 3E and F, respectively). BTC and TTC-352 mimicked E2 and inhibited tamoxifen-resistant T47D:A18/PKCα and T47D:A18-TAM1 colony formation (Fig. 3B and C). Regression of T47D:A18/PKCα tumors by BTC and TTC-352 was accompanied by exit of ERα from the nucleus to extranuclear sites, again mimicking the actions of E2 (Fig. 5B) and hinting at a role for extranuclear transcription, although (i) both SEMs were less potent than E2 and (ii) TTC-352 displayed partial agonist properties. These xenograft models which represent established T47D:A18-TAM1 tumors in a xenograft model (Fig. 5C). These xenograft models which represent both exogenous and endogenous PKCα expression are similarly inhibited by SEMs.

We have observed that translocation of ERα from the nucleus to cytoplasm is a common feature of treatments that cause regression of T47D:A18/PKCα tumors, but not those that are ineffective, that is, tamoxifen (11). The similarity with the diarylthiohydantoin antiandrogens (e.g., enzalutamide, ARN509, RD162) that cause a similar translocation of the androgen receptor (AR) in prostate cancer cells is of interest, in particular because this feature is seen as a clinical advantage over older antiandrogens (35, 36). Enzalutamide is currently approved for the treatment of castration-resistant prostate cancer. We have previously reported an increased physical interaction of ERα and caveolin-1 (cav-1) in E2-induced tumor regression (11), suggesting that cav-1 may be responsible for the transport of ERα to extranuclear sites following E2 or SEM treatment. Cav-1 serves as a scaffold protein recruiting signaling molecules, including ERα, to the plasma membrane to form a signalsome complex. Contrary to the
growth-promoting effects and activation of kinase cascades generally associated with extranuclear ERα and E2 treatment, we have previously reported a downregulation and inactivation of Akt following E2 treatment in tumors overexpressing PKCα (17). We hypothesize that the overexpression of PKCα in the presence of E2 or SEMs may lead to a modified signalosome complex in the cytoplasm, altering the canonical effects of E2 thus leading to apoptosis. We are currently overexpressing kinase dead PKCα mutants in T47D cells, as it is likely that the kinase activity of PKCα contributes to the increased sensitivity to estrogenic compounds in endocrine-resistant breast cancer cells.

Use of tamoxifen in breast cancer therapy is currently recommended for at least 5 years. Although only used following tamoxifen treatment failure, there is a potential risk with the use of E2 or SEMs in promoting tumorigenesis of endocrine-dependent neoplasms. Although E2 induced growth of hormone-dependent, tamoxifen-sensitive, parental T47D:A18/neo tumors in vivo, neither BTC nor TTC-352 supported T47D:A18/neo tumor growth (Fig. 6A). Furthermore, in contrast to E2 and tamoxifen, neither BTC nor TTC-352 treatment resulted in an increase in the uterine weight of mice (Fig. 6C), indicating that BTC and TTC-352 act in vivo as SEMs with selective E2-like activity in endocrine-resistant mammary tumors. It is fascinating that structurally related compounds, variously showing classical ERα agonist activity (raloxifene), or classical agonist activity (BTC, TTC-352) should elicit the same tumor regressing actions in T47D:A18/PKCα and T47D:A18-TAM1 xenografts, although the failure of raloxifene-induced regression to persist after drug withdrawal is noted. That the estrogen agonists, BTC and TTC-352, did not stimulate growth of estrogen-sensitive T47D:A18/neo xenografts or uterine tissues is most simply rationalized by the relatively low potency of these agonists, again indicating involvement of a pathway that is not simply classically mediated by ERα in T47D:A18/PKCα and T47D:A18-TAM1 xenografts.

Resistance to endocrine therapies is a major obstacle encountered in the clinical setting. Currently, there is a lack of effective therapeutic options for women who no longer respond to conventional, endocrine therapy. The combination of the aromatase inhibitor exemestane with the mTOR inhibitor everolimus improved progression-free survival for patients with endocrine-resistant breast cancer; however, an increased toxicity profile was observed in patients who took the combined treatment (37). There is a clinical need to provide endocrine therapy-resistant patients with effective and safe alternatives. Our findings and those of others suggest that PKCα expression is a predictive marker of disease outcome for patients on endocrine therapy (3–5). Further PKCα expression may predict a positive response to E2 or an E2-like compound (7). E2 has clinical efficacy (9, 34, 38, 39), but due to unfavorable side effects, it is no longer used for treatment.

Recently, the use of E2 or an E2-like compound has reemerged as a possible treatment strategy for patients exhibiting endocrine therapy–resistant breast cancers (40, 41). Clinical trials have demonstrated the efficacy of E2 in this setting (38, 39). In fact, a long-term follow-up study indicated a survival advantage for patients treated with the synthetic estrogen diethylstilbestrol compared with patients treated with tamoxifen (42). The basis for the clinical use of estrogens is supported by a number of preclinical laboratory models (7, 8, 12, 43–48). The ability to predict a patient’s response to therapy before treatment would be a very attractive clinical option. Patients presenting with tumors overexpressing PKCα would likely benefit from an E2-like therapy, of which there are currently few options.

In the present study, we sought to identify possible alternative therapeutic options for tamoxifen-resistant breast cancers. As the presence of PKCα dictated an enhanced estrogenic response to BTC and TTC-352 as well as a tumor regressing phenotype, these compounds may have potential clinical value in the endocrine-resistant setting. Our findings support the use of SEMs in patients who no longer respond to conventional endocrine therapies and whose tumors overexpress PKCα. Importantly, treatment with BTC and TTC-352 had minimal effects on proliferation within the uteri of mice in vivo, suggesting that the estrogenic effects of these agents are specific to the breast. Both BTC and TTC-352 are potential alternatives to E2 treatment and represent chemical probes and lead compounds for further optimization toward new treatment options in the management of endocrine-resistant breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: M.E. Molloy, B.E.P. White, T. Gherezghiher, V.C. Jordan, G.R.J. Thatcher, D.A. Tonetti
Development of methodology: M.E. Molloy, B.E.P. White, T. Gherezghiher, H. Zhao, V.C. Jordan, D.A. Tonetti
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.E. Molloy, B.E.P. White, B.T. Michalsen, R. Xiong, H. Patel, H. Zhao, V.C. Jordan, D.A. Tonetti
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.E. Molloy, B.E.P. White, T. Gherezghiher, H. Zhao, V.C. Jordan, D.A. Tonetti
Writing, review, and/or revision of the manuscript: M.E. Molloy, T. Gherezghiher, V.C. Jordan, G.R.J. Thatcher, D.A. Tonetti

Acknowledgments
The authors acknowledge the Histopathology Core and the Confocal Microscopy Facility of the Research Resources Center at the University of Illinois at Chicago for providing services and expertise.

Grant Support
These studies were supported by NCI/NIH R01 CA122914 (to D.A. Tonetti) and R01 102590 to (G.R.J. Thatcher).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 10, 2014; revised August 27, 2014; accepted September 3, 2014; published OnlineFirst September 9, 2014.
References

Molecular Cancer Therapeutics

Novel Selective Estrogen Mimics for the Treatment of Tamoxifen-Resistant Breast Cancer

Mary Ellen Molloy, Bethany E. Perez White, Teshome Gherezghiher, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-14-0319

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2014/09/09/1535-7163.MCT-14-0319.DC1

Cited articles
This article cites 48 articles, 20 of which you can access for free at:
http://mct.aacrjournals.org/content/13/11/2515.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/13/11/2515.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.