Phosphoproteomic Profiling Identifies Focal Adhesion Kinase as a Mediator of Docetaxel Resistance in Castrate-Resistant Prostate Cancer

Brian Y. Lee1, Falko Hochgrafe1,5, Hui-Ming Lin1, Lesley Castillo1, Jianmin Wu1, Mark J. Ratery2, S. Martin Shreeve6, Lisa G. Horvath1,3, and Roger J. Daly1,4

Abstract

Docetaxel remains the standard-of-care for men diagnosed with metastatic castrate-resistant prostate cancer (CRPC). However, only approximately 50% of patients benefit from treatment and all develop docetaxel-resistant disease. Here, we characterize global perturbations in tyrosine kinase signaling associated with docetaxel resistance and thereby develop a potential therapeutic strategy to reverse this phenotype. Using quantitative mass spectrometry-based phosphoproteomics, we identified that metastatic docetaxel-resistant prostate cancer cell lines (DU145-Rx and PC3-Rx) exhibit increased phosphorylation of focal adhesion kinase (FAK) on Y397 and Y576, in comparison with parental controls (DU145 and PC3, respectively). Bioinformatic analyses identified perturbations in pathways regulating focal adhesions and the actin cytoskeleton and in protein–protein interaction networks related to these pathways in docetaxel-resistant cells. Treatment with the FAK tyrosine kinase inhibitor (TKI) PF-00562271 reduced FAK phosphorylation in the resistant cells, but did not affect cell viability or Akt phosphorylation. Docetaxel administration reduced FAK and Akt phosphorylation, whereas cotreatment with PF-00562271 and docetaxel resulted in an additive attenuation of FAK and Akt phosphorylation and overcame the chemoresistant phenotype. The enhanced efficacy of cotreatment was due to increased autophagic cell death, rather than apoptosis. These data strongly support that enhanced FAK activation mediates chemoresistance in CRPC, and identify a potential clinical niche for FAK TKIs, where coadministration with docetaxel may be used in patients with CRPC to overcome chemoresistance. Mol Cancer Ther; 13(1); 190–201. ©2013 AACR.

Introduction

Prostate cancer remains the third leading cause of cancer-related death in men in the developed world (1) with castrate-resistant prostate cancer (CRPC) being the lethal stage of the disease. Docetaxel-based chemotherapy is the first-line cytotoxic treatment offering both symptomatic and survival benefits for patients diagnosed with metastatic CRPC (2, 3). However, docetaxel only clinically benefits approximately 50% of men at the cost of significant toxicity (2). Inevitably, those patients who respond develop resistance to chemotherapy. Therefore, there is an urgent need to identify novel therapeutic strategies to overcome resistance to docetaxel in patients with CRPC.

Accumulating evidence has implicated several mechanisms in the development of docetaxel resistance. These include increased drug efflux through enhanced expression of multidrug resistance proteins (MDRP; 4) and perturbations in intra- and intercellular signaling pathways. Examples of the latter mechanism include altered expression and/or activation of apoptotic regulators such as Clusterin (5), HSPs (6), IAPs (7), and Bcl2 (8) and components of growth factor signaling pathways, such as PI3-kinase/Akt/mTOR (9) and platelet-derived growth factor receptor (10). However, clinical trials emanating from these targets (11–16) have yet to make an impact in the clinical setting with the exception of cabazitaxel. Cabazitaxel is a novel tubulin-binding taxane with poor affinity for the multidrug P-glycoprotein efflux pump. A randomized phase III study (TROPIC trial) demonstrated that men with CRPC progressing after...
Phosphoproteomic profiling analysis (21). The hypergeometric test was selected to test network analyses.

Pathway enrichment and protein–protein interaction in cell culture (SILAC), as previously described (19, 20).

combination with stable isotope labeling with amino acids in cell culture/tandem mass spectrometry (LC/MS-MS) in immunoaffinity purification followed by liquid chromatography. Docetaxel-sensitive and resistant cells was undertaken by conventional candidate-based approaches in the clinical setting highlights an urgent need to better understand the underlying molecular mechanism of chemoresistance and design novel therapeutic strategies.

To date, no one has undertaken a global analysis of signaling networks in docetaxel-resistant CRPC. In this study, we designed an integrative approach involving characterization of aberrant phosphorylation events in docetaxel-resistant cells using quantitative mass spectrometry (MS)-based phosphoproteomic profiling, followed by functional interrogation of aberrantly activated kinases using selective tyrosine kinase inhibitors (TKI). Our findings provide important insights into the biology of chemoresistance in prostate cancer and have significant implications for the development of therapeutic strategies.

Materials and Methods

Drugs and compounds
Docetaxel (Sanofi-Aventis), PF-00562271 (Symansis), Z-VAD-FMK (R&D Systems), and 3-methyladenine (3-MA; Sigma-Aldrich) were obtained from their respective manufacturers and handled according to the manufacturer’s recommendations.

Cell cultures and cell lines
PC3 and DU145 cell lines were purchased from and authenticated by the American Type Culture Collection. Docetaxel-resistant sublines (PC3-Rx and DU145-Rx) were established and maintained as previously described (18). All cell lines were used within 10 passages and for less than 3 months after reviving from frozen storage, routinely tested to confirm chemosensitivity by cell viability assay, and independently authenticated by Cell Bank Australia in May 2013 using a short tandem repeat profiling approach.

Cell viability assay
This was based on Trypan blue exclusion (18). The concentration of drug required to kill 50% of the cells (IC50) was calculated, as previously described (18).

Phosphoproteomic profiling
Quantitative tyrosine phosphorylation profiling of docetaxel-sensitive and resistant cells was undertaken by immunoaffinity purification followed by liquid chromatography/tandem mass spectrometry (LC/MS-MS) in combination with stable isotope labeling with amino acids in cell culture (SILAC), as previously described (19, 20).

Pathway enrichment and protein–protein interaction network analyses
KOBAS was used to perform pathway enrichment analysis (21). The hypergeometric test was selected to test statistical enrichment of KEGG and Reactome pathways, and the P values were corrected for multiple comparisons (22). The protein–protein interactions among proteins of interest were retrieved from the Protein Interaction Network Analysis platform (23), and substrate–kinase relationships were downloaded from the PhosphoSitePlus database (24). Cytoscape (25) was used for visualization of networks.

Immunoblotting analysis
Preparation of cell lysates, immunoblotting, and densitometry analyses were performed as previously described (19, 26). All primary antibodies used in this study were from Cell Signaling Technology, except pY397-FAK (Invitrogen), FAK (BD Transduction Laboratories), pY576-FAK (Santa Cruz Biotechnology), β-Actin (Sigma), and GAPDH (Abcam).

Apoptosis assay
Determination of sub-G1 phase of PC3/PC3-Rx and DU145/DU145-Rx cell lines ± docetaxel ± FAK TKI was undertaken, as previously described (19).

Colony-forming assay
Clonogenicity of the PC3/PC3-Rx and DU145/DU145-Rx models was quantified by measuring the number of surviving colonies undergoing ± docetaxel ± PF-00562271 (100 nmol/L) treatments (18).

Rhodamine assay
P-glycoprotein activity in DU145 and DU145-Rx cells was quantified by measuring Rh123 fluorescence ± P-glycoprotein inhibitor PSC833 (1 mmol/L, Novartis; ref. 18).

Small interfering RNA transfection
Atg5 small-interfering RNAs (siRNA) #7, 8 and 10 were obtained from Thermo Scientific. #7 siRNA sequence was GGCAUUAUCCAUUUGGUUU, #8 GCAGAACCAUAUCUUAGC, #10 ACAAAGAGUUGCUCGAGA. ON-TARGETplus Non-Targeting Pool was obtained from Thermo Scientific. Cells were transfected with 5 to 20 nmol/L of siRNAs using Lipofectamine (Invitrogen) for 48 hours. For cell death rescue experiment with Atg5 knockdown, 5 nmol/L of siRNAs were used.

Statistical analysis
Comparisons between more than two groups were made using one-way analysis of variance (ANOVA) with Bonferroni post hoc correction for multiple comparisons. P values of less than 0.05 were considered statistically significant. All statistical tests were performed using GraphPad Prism 5 (GraphPad Software Inc).

Results
Phosphotyrosine profiling of docetaxel-resistant prostate cancer cells
To complement our previously established PC3/PC3-Rx model (18), we developed a second docetaxel-resistant...
model, DU145/DU145-Rx using the same dose escalation strategy. DU145-Rx cells exhibit a significantly increased IC\textsubscript{50} for docetaxel (Supplementary Fig. S1A) and increased clonogenic capacity following docetaxel treatment (Supplementary Fig. S1B), when compared with their parental cells. Neither cell line model exhibited any increased phosphorylation events associated with docetaxel chemoresistance, when compared with their parental cell lines. Neither cell line model exhibited any changes in P-glycoprotein activity, consistent with docetaxel resistance not being mediated by drug efflux (Supplementary Fig. S1C; ref. 18).

To quantitatively characterize the perturbed tyrosine phosphorylation events associated with docetaxel chemoresistance, we utilized an immunoaffinity-coupled mass spectrometry (LC/MS-MS) approach in combination with SILAC (Fig. 1A) to compare docetaxel-sensitive cells (PC3 and DU145) with their docetaxel-resistant counterparts (PC3-Rx and DU145-Rx). This identified 365 tyrosine phosphorylation sites derived from 215 unique proteins exhibiting differential phosphorylation. A ranking of individual phosphosites with up- or downregulated phosphorylation according to their SILAC ratios demonstrated a large overlap of phosphorylation changes in PC3-Rx and DU145-Rx cells (Fig. 1B and Supplementary Table S1). A striking characteristic of the phosphorylation profile associated with docetaxel-resistant cell lines was the enrichment for proteins involved in regulating focal adhesions and the actin cytoskeleton, such as ACTN1/4, FAK, BAR1, VIM, PDLIM5, CAV, PAX, and ANXA1. Mapping protein–protein interactions among the differentially phosphorylated proteins highlighted the presence of interaction “hubs” that centered on members of these pathways, such as FAK, VIM, and ACTN1 (Fig. 2A). Furthermore, pathway enrichment analysis revealed that “regulation of actin cytoskeleton” and “focal adhesion” were the top 2 pathways enriched in PC3-Rx and DU145-Rx cells (the corrected P < 0.05; Fig. 2B). The top 10 upregulated

Figure 1. Phosphoproteomic profiling of docetaxel-resistant prostate cancer cells. A, workflow for quantitative phosphoproteomic profiling. B, heatmap of up- (red) or downregulated (green) tyrosine phosphorylation sites found in both PC3-Rx and DU145-Rx cell lines, in comparison with their parental cell lines (PC3 and DU145, respectively). A ranking of differentially phosphorylated sites characteristic of both docetaxel-resistant models was performed according to their SILAC ratios as indicated in the scale bar, where SILAC ratio of 1 indicates no change, and >1 indicates upregulated phosphosites. For ease of comparison, we have set the upper limit of the scale at 1.5-fold. However, many sites show larger fold changes. Absolute values are indicated in the Supplementary Table S1.
phosphorylation sites common to both Rx cell lines included sites from 3 kinases (FAK, AXL, HIPK3), 1 protease (ADAM9), and 3 actin cytoskeletal proteins (ACTN1, VIM, PDLIM5; Table 1). Of these, seven are potential therapeutic targets amenable to inhibition by small molecule drugs. Strikingly, the autophosphorylation and SRC binding site, Y397, and sites located at the kinase domain activation loop, Y576 and Y577, of FAK were included among the top phosphorylated sites.

FAK regulation and function in docetaxel-sensitive and -resistant prostate cancer cells

Consistent with the profiling data, immunoblotting revealed that both chemoresistant cell lines showed significantly enhanced FAK phosphorylation on Y397 and Y576 residues compared with the parental cells (Figs. 3A–C and 4A–C). Of note, total FAK expression was not significantly altered. To interrogate the role of FAK-mediated signaling in chemoresistance, we utilized PF-00562271 (27),

<table>
<thead>
<tr>
<th>Position</th>
<th>Gene name</th>
<th>DU145-Rx SILAC Ratio</th>
<th>PC3-Rx SILAC Ratio</th>
<th>Peptide sequence Targeted Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>ACTN1</td>
<td>1.68</td>
<td>3.51</td>
<td><em>AIMTYVSSFY(ph)HAFSGAQK</em></td>
</tr>
<tr>
<td>61</td>
<td>VIM</td>
<td>1.27</td>
<td>2.22</td>
<td><em>SLYASSPGGVY(ph)ATR</em></td>
</tr>
<tr>
<td>702</td>
<td>AXL;UFO</td>
<td>1.29</td>
<td>2.03</td>
<td><em>IYNGDY(ph)YR</em></td>
</tr>
<tr>
<td>359</td>
<td>HIPK3;DYRK6</td>
<td>1.38</td>
<td>1.95</td>
<td><em>TV CSTY(ph)LQSR</em></td>
</tr>
<tr>
<td>53</td>
<td>VIM</td>
<td>1.34</td>
<td>1.91</td>
<td><em>SLY(ph)ASSPGGYATR</em></td>
</tr>
<tr>
<td>397</td>
<td>FAK</td>
<td>1.87</td>
<td>1.65</td>
<td><em>THAVSVSETDDY(ph)AEIIDEEDTYMPSTR</em></td>
</tr>
<tr>
<td>577</td>
<td>FAK</td>
<td>1.79</td>
<td>1.51</td>
<td><em>YM EDSTYY(ph)K</em></td>
</tr>
<tr>
<td>576</td>
<td>FAK</td>
<td>1.76</td>
<td>1.42</td>
<td><em>YM EDSTY(ph)YK</em></td>
</tr>
<tr>
<td>815</td>
<td>ADAM9</td>
<td>1.33</td>
<td>1.72</td>
<td><em>VSSQGNLIPARPA PAPPLY(ph)SSLT</em></td>
</tr>
<tr>
<td>251</td>
<td>PDLIM5</td>
<td>1.63</td>
<td>1.67</td>
<td><em>YTEFY(ph)HVPTHSDASK</em></td>
</tr>
</tbody>
</table>
a small-molecule FAK TKI, and tested the ability of docetaxel alone or docetaxel + PF-00562271 cotreatment to kill resistant cells. In the resistant cells, treatment with PF-00562271 reduced phosphorylation on both Y397 and Y576, whereas in the sensitive cells, the effects of this TKI were more modest (Figs. 3B and C and 4B and C). Interestingly, Docetaxel administration also reduced FAK phosphorylation on both sites in the resistant cells, but combined treatment with PF-00562271 and docetaxel led to a further diminution in FAK phosphorylation, such that it returned to levels comparable with that of the parental cells.

Both the PC3-Rx and DU145-Rx cell lines showed significantly enhanced Akt phosphorylation (S473 and T308) with or without docetaxel (Supplementary Fig. S2). Strikingly, the cotreatment further inhibited Akt phosphorylation compared with docetaxel alone. However, PF-00562271 alone had no effect on Akt phosphorylation. ERK activation was not enhanced in either docetaxel-resistant cell line (data not shown).

We then determined the effect of FAK inhibition on the sensitivity of the parental and resistant cells to docetaxel. Administration of PF-00562271 alone did not affect the

![Figure 3. Regulation of FAK phosphorylation in docetaxel-sensitive and -resistant PC3 cells. A, immunoblotting analysis. PC3/PC3-Rx cells were treated with/without docetaxel (DTX; 8 ng/mL) + PF-00562271 (PF271; 100 nmol/L) for 24 hours. Total cell lysates were immunoblotted as indicated. B and C, quantitative analysis of the immunoblots described above using ImageJ software. FAK phosphorylation at Y397 (B) and Y576 (C) was normalized for total FAK levels and is expressed relative to vehicle (saline and DMSO) controls. Results are shown as mean ± SEM for each data point in three independent experiments. *, P < 0.0001.](image1)

![Figure 4. Regulation of FAK phosphorylation in docetaxel-sensitive and -resistant DU145 cells. A, immunoblotting analysis. DU145/DU145-Rx cells were treated with/without docetaxel (DTX; 8 ng/mL) + PF-00562271 (PF271; 100 nmol/L) for 24 hours. Total cell lysates were immunoblotted as indicated. B and C, quantitative analysis of the immunoblots described above using ImageJ software. FAK phosphorylation at Y397 (B) and Y576 (C) was normalized for total FAK levels and is expressed relative to vehicle (saline and DMSO) controls. Results are shown as mean ± SEM for each data point in three independent experiments. *, P < 0.0001.](image2)
viability of either cell type (Fig. 5A and B). Treatment with PF-00562271 did not affect the sensitivity of parental PC3 or DU145 cells to docetaxel. In contrast, it reversed the chemoresistant phenotypes of both the PC3-Rx and DU145-Rx cell lines. Cotreatment with PF-00562271/docetaxel resulted in a 35- and 28-fold IC50 decrease in PC3-Rx and DU145-Rx cells, respectively, when compared with docetaxel alone (Fig. 5C and D). These data indicate that the elevated FAK activity in the resistant models mediates docetaxel resistance and can be targeted to resensitize the cells to the drug.

**Effect of docetaxel and PF-00562271 cotreatment on apoptotic cell death**

Consistent with the cell viability data, a higher percentage of parental cells underwent apoptosis upon docetaxel treatment compared with their Rx counterparts, as determined by assaying for cells in sub-G1 phase (Fig. 6A and B).

**Table 2.** The IC50 values (docetaxel concentration required to inhibit 50% of viability) of docetaxel and cotreatment in PC3/PC3-Rx and DU145/DU145-Rx cells

<table>
<thead>
<tr>
<th>IC50 (ng/mL)</th>
<th>PC3</th>
<th>PC3-Rx</th>
<th>DU145</th>
<th>DU145-Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docetaxel</td>
<td>28.22</td>
<td>698.91</td>
<td>26.54</td>
<td>1,288.41</td>
</tr>
<tr>
<td>Docetaxel + PF-00562271</td>
<td>32.59</td>
<td>19.86</td>
<td>18.51</td>
<td>45.42</td>
</tr>
</tbody>
</table>
and immunoblotting for cleaved caspase-3 and PARP (Fig. 6C and D). However, while cotreatment with PF-00562271 and docetaxel markedly reduced the viability of the Rx cells, it did not induce increased apoptosis compared with the administration of docetaxel alone. Furthermore, pharmacologic blockage of the apoptotic pathway using Z-VAD-FMK, a pan-caspase inhibitor, did not rescue the decreased cell viability resulting from PF-00562271/docetaxel cotreatment of PC3-Rx and DU145-Rx cells, in contrast with the effect of this inhibitor on docetaxel ± PF-00562271 treatment of parental cells (Fig. 7A and B). These data indicate that the reduction in cell viability induced by cotreatment of Rx cells is not via enhanced apoptosis.

**Effect of docetaxel and PF-00562271 cotreatment on autophagic cell death**

Next, we sought to determine whether type II programmed cell death, also known as autophagic cell death, was involved (28). One of the precursor signatures of autophagy is reduced phosphorylation of mTOR. Strikingly, cotreatment, but not administration of either agent alone, resulted in a marked attenuation of mTOR phosphorylation at 6 hours, but not at 24 hours (Fig. 8A). In addition, LC3B conversion and degradation of p62 are downstream features of induction of autophagy. During the autophagy process, LC3B is cleaved to generate LC3B-I, which is then converted to membrane-bound LC3B-II via lipidation. LC3B conversion can be quantified by the ratio of LC3B-II relative to LC3B-I (29, 30).

While cotreatment of PF-00562271 and docetaxel for 24 hours did not affect relative LC3B-II or p62 levels compared with docetaxel alone in the parental PC3 cells (Fig. 8A), coadministration resulted in a significant enhancement of relative LC3B-II accumulation and a marked decrease in p62 expression in PC3-Rx cells (Fig. 8A and B). However, unlike in the PC3 model, where docetaxel only induced autophagy in the resistant cells, docetaxel monotherapy induced autophagy in both DU145 and DU145-Rx cells, but the combination treatment resulted in a significant enhancement of relative LC3B-II accumulation and p62 degradation specifically in DU145-Rx cells in comparison with docetaxel alone (Fig. 8C and Supplementary Fig. S3). While administration of 3-MA, a pharmacologic inhibitor of autophagosome formation, did not affect the sensitivity of Rx cells to docetaxel alone, it significantly attenuated co-treatment–induced cell death (Fig. 9A and B). We next used siRNA to transiently knock down Atg5, a gene essential for autophagosome formation (Fig. 9C). This also rescued PC3-Rx cells from cotreatment–induced cell death, but did not affect sensitivity to docetaxel alone (Fig. 9D). These data indicate that the enhanced efficacy of cotreatment in reducing viability and overcoming the chemoresistant phenotypes in Rx cells is mediated via increased autophagy.
Discussion

To date, the targeting of FAK has faced significant challenges in the clinic. Early studies in ovarian cancer cell lines and xenografts demonstrated that knockdown of FAK expression enhanced docetaxel efficacy in docetaxel-sensitive and docetaxel-resistant models in vitro and in vivo (31, 32). Subsequently, TAE226, a TKI that targets FAK and IGF-1R, was demonstrated to enhance docetaxel cytotoxicity (33); however, at this point, development stalled due to the drug failing clinical trials. Other first-generation FAK TKIs had problems with compensatory upregulation of the FAK homolog, Pyk2, which affected clinical efficacy (34). Newer FAK TKIs targeting FAK and Pyk2, PF-00562271, and its second-generation PF-04554878, were well tolerated in phase I clinical trials (35, 36), and the latter is currently in phase Ib and II clinical trials (37). While the efficacy of combining PF-00562271 with cytotoxic agents has not been reported, coadministration of this TKI with sunitinib in a hepato-cellular carcinoma xenograft model exhibited a significantly greater effect than monotherapy, blocking tumor growth and tumor recovery after treatment (38). PF-00562271 is a potent inhibitor of CYP3A, whereas PF-04554878 is a weak CYP3A inhibitor with a low potential for CYP3A drug–drug interaction (35, 36), making this second-generation compound the preferred FAK inhibitor for development in combination with cytotoxics. Our preclinical data support the establishment of clinical trials testing docetaxel in combination with PF-04554878 in men with metastatic CRPC.

Interrogation of the functional role of FAK in the chemoresistant cells revealed that while treatment with PF-00562271 significantly decreased FAK phosphorylation, this did not affect cell viability in vitro, consistent with other studies using small-molecule FAK inhibitors and cells grown under monolayer conditions (19). Instead, a significant reduction in cell viability was only observed in the presence of docetaxel, where coadministration of a FAK inhibitor resensitized the cells to docetaxel chemotherapy. This reflects a novel effect of docetaxel, where treatment with this drug reduced FAK phosphorylation on both Y397 and Y576, and coadministration with FAK inhibitor resulted in an additive diminution of FAK phosphorylation back to the levels characteristic of parental cells. The activity of docetaxel on focal adhesion signaling likely reflects its activity as a microtubule-targeting agent, as microtubules interact with focal adhesions and regulate their turnover (39). Support for this model is provided by studies on a different microtubule-targeting agent, laulimalide, which also decreases FAK phosphorylation (40). Of note, while FAK couples to PI3-kinase/Akt signaling via recruitment of the p85 subunit of PI3-kinase to phosphorylated Y397 (41), individual treatment with either docetaxel or a FAK inhibitor was insufficient to significantly downregulate Akt/mTOR signaling in vitro. Instead, this was only achieved by the combination treatment. Because mTOR negatively regulates autophagy, we propose that the combination therapy reduces mTOR activation below a certain threshold and triggers an autophagic response and ultimately cytotoxicity. Whether the effect of the combination treatment on Akt and mTOR is entirely due to a reduction in FAK activation requires further clarification.

While docetaxel induced apoptotic cell death in the parental cells, chemosensitization conferred by the combination treatment was not associated with increased apoptosis in the drug-resistant cells. This is in contrast with previous studies involving targeting of FAK in combination with administration of chemotherapeutic agents. For example, Halder and colleagues (33) reported increased tumor cell apoptosis in ovarian cancer cell line xenografts when these were subjected to TAE-226/docetaxel coadministration, compared with either treatment alone. In addition, Golubovskaya and colleagues (42) detected enhanced apoptotic cell death when Y15, a small-molecule agent that targets the FAK autophosphorylation site, was administered to glioblastoma cell lines in combination with temozolomide. Consequently, the ability of FAK-directed agents to induce apoptosis appears to be dependent on context and the targeting strategy employed.

Interestingly, in our study, coadministration of PF-00562271 and docetaxel was also not associated with enhanced caspase-independent cell death, as indicated.
by increased mitochondrial outer membrane permeability (data not shown). Instead, cotreatment with FAK inhibitor and docetaxel resulted in increased autophagy, and a causative role for this process in the enhanced cytotoxicity induced by the cotreatment was confirmed by pharmacologic and genetic approaches. These data are of interest in light of a previous study where knockdown of p130Cas, which signals downstream of FAK, resulted in enhanced autophagy in ovarian cancer cells (43) and add further weight to the emerging concept that the role of autophagy in cancer development and progression is highly context dependent. Thus, while specific autophagy genes, such as Beclin-1, can act as tumor suppressors (44), and particular drug regimens can exert cytotoxicity through autophagic cell death (45, 46) induction of autophagy can also confer drug resistance to cancer cells, for example, against the TKIs erlotinib (47) and saracatinib (48). Moreover, our work also emphasizes how FAK signaling can exert contrasting effects on autophagy and cell survival.

Figure 8. Cotreatment-induced cell death in docetaxel-resistant cells is associated with enhanced autophagy. A, the effect of individual and combination treatments on the induction of autophagy. Cells were treated with docetaxel (DTX; 8 ng/mL) + PF-00562271 (PF271; 100 nmol/L) for 6 and 24 hours. Total cell lysates were immunoblotted as indicated. B and C, quantification of relative LC3B-II levels of PC3/PC3-Rx (B) and DU145/DU145-Rx (C) cells. LC3B-II expression was normalized for LC3B-I and loading (β-actin) controls, and is expressed relative to vehicle (saline and DMSO). Results are shown as mean ± SEM for each data point in three independent experiments with triplicate samples. Asterisks indicate the following P value ranges: *, P < 0.05; **, P < 0.001; and ***, P < 0.0001.
cancer model demonstrated that components of the autophagy pathway are intimately associated with focal adhesions, and that loss of FAK can trigger an apoptotic response, unless the active Src released upon FAK ablation is subject to autophagic targeting (49). This led to the suggestion that combining FAK and/or Src inhibitors with an autophagy inhibitor may reduce the viability of cancer cells. Since, in our study, blocking autophagy rescued prostate cancer cells from a combination treatment involving FAK inhibition, this highlights how such strategies should be applied in a selective manner.

While PF-00562271 and PF-04554878 monotherapies were well tolerated in phase I trials (35, 36), a clear clinical application for FAK TKIs has yet to be identified. According to the molecularly characterized preclinical data presented in this study, we have identified a potential clinical niche for selective FAK TKIs, where coadministration with docetaxel may be used in patients with CRPC to overcome chemoresistance, providing the basis for further clinical development.

Disclosure of Potential Conflicts of Interest
S.M. Shreeve has stock ownership interest in Pfizer Oncology. L.G. Horvath has an honorarium for being on the organizing committee of the Australian Pfizer Oncology Forum and attended a research forum with Pfizer in La Jolla, California, paid for by Pfizer. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: B.Y. Lee, S.M. Shreeve, L.G. Horvath, R.J. Daly
Development of methodology: B.Y. Lee, S.M. Shreeve, L.G. Horvath, R.J. Daly
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): B.Y. Lee, F. Hochgrafe, J.-M. Lin, L. Castillo, M.J. Raftery
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): B.Y. Lee, F. Hochgrafe, J. Wu, L.G. Horvath, R.J. Daly
Writing, review, and/or revision of the manuscript: B.Y. Lee, S.M. Shreeve, L.G. Horvath, R.J. Daly
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): B.Y. Lee, L. Castillo
Study supervision: L.G. Horvath, R.J. Daly

Acknowledgments
The authors gratefully acknowledge the late Professor Rob Sutherland for his intellectual input into this paper.
Grant Support
This work was supported by a Program Grant (535903) from the National Health and Medical Research Council of Australia (to R.J. Daly, E.A. Munro, L. Sutherland, C.J. Ormandy, J.G. Kench, A.V. Biankin, E.K. Milbr, L.G. Horvath, S.A. O’Toole), a Program Grant (10/T1PC/1-04) from the Cancer Institute NSW (to L.G. Horvath), and by Cancer Australia/Prostate Cancer Foundation of Australia (596858; to L.G. Horvath, E.K. Millar, L.G. Horvath, S.A. O’Toole), a Program Grant (10/TPG/1-04)

References

Received May 1, 2013; revised October 25, 2013; accepted October 29, 2013; published OnlineFirst November 5, 2013.


Molecular Cancer Therapeutics

Phosphoproteomic Profiling Identifies Focal Adhesion Kinase as a Mediator of Docetaxel Resistance in Castrate-Resistant Prostate Cancer


Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-13-0225-T

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/11/05/1535-7163.MCT-13-0225-T.DC1

Cited articles
This article cites 47 articles, 27 of which you can access for free at:
http://mct.aacrjournals.org/content/13/1/190.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/13/1/190.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.