Cancer Therapeutics Insights

Suppression of Survivin Induced by a BCR-ABL/JAK2/STAT3 Pathway Sensitizes Imatinib-Resistant CML Cells to Different Cytotoxic Drugs

Stefania Stella, Elena Tirro, Enrico Conte, Fabio Stagno, Francesco Di Raimondo, Livia Manzella, and Paolo Vigneri

Abstract

The BCR-ABL oncoprotein of chronic myelogenous leukemia (CML) displays exclusive cytoplasmic localization and constitutive tyrosine kinase activity leading to the activation of different pathways that favor cell proliferation and survival. BCR-ABL induces survivin expression at both the mRNA and protein level, thus inhibiting the apoptotic machinery of CML cells and contributing to the expansion of the leukemic clone. We report that, in human CML cell lines, BCR-ABL–mediated upregulation of survivin involves the JAK2/STAT3 pathway since silencing of either protein caused a consistent reduction in survivin expression. Cell lines unresponsive to imatinib mesylate (IM) because of BCR-ABL gene amplification were not resensitized to the drug after survivin downregulation. However, cells insensitive to IM because of point mutations in the BCR-ABL kinase domain were highly responsive to hydroxyurea (HU) after survivin silencing. To address the possible clinical applications of our results, we used shepherdin, a cell-permeable peptidomimetic compound that downregulates survivin expression by preventing its interaction with Hsp90. Incubation with shepherdin of immortalized cell lines both sensitive and resistant to IM enhanced cell death induced by HU and doxorubicin. Similarly, the combination of shepherdin with first- and second-generation tyrosine kinase inhibitors reduced the colony-forming potential of human progenitors derived from both patients with IM-sensitive and IM-resistant CML. These results suggest that strategies aimed at reducing survivin levels may represent a potential therapeutic option for patients with CML unresponsive to IM. Mol Cancer Ther; 12(6); 1085–98. ©2013 AACR.

Introduction

A reciprocal translocation between chromosomes 9 and 22 generates the abnormal Philadelphia (Ph) chromosome that, in turn, encodes for the chimaeric BCR-ABL oncogene (1). The ensuing BCR-ABL oncoprotein displays constitutive tyrosine kinase activity thereby activating multiple signaling pathways that lead to the development of chronic myeloid leukemia (CML; ref. 2). BCR-ABL–dependent activation of the phosphoinositide 3-kinase and the upregulation of Bcl-xL (3, 4) contribute to block cytochrome C release from the mitochondria and inhibit caspase activity, thus hampering the apoptotic machinery of CML cells and favoring the survival of leukemic myeloid progenitors. Treatment of CML cells with the ABL inhibitor imatinib mesylate (IM) suppresses BCR-ABL kinase activity reverting the antia apoptotic phenotype of the Ph-positive cells and resulting in the induction of cell death (5).

Survivin is a member of the inhibitor of apoptosis proteins (IAP) that is undetectable in normal tissues but highly expressed in most forms of human cancer and functions as both an inhibitor of cell death and a mitotic regulator (6–9). It has been reported that survivin overexpression reduces the sensitivity of neoplastic cells to death stimuli induced by gamma radiation (10) or chemotherapeutic agents (11, 12). The design of shepherdin, a cell-permeable peptidomimetic molecule that reduces survivin half-life by disrupting its binding with the molecular chaperone Hsp90, represents an attempt to increase the killing of cancer cells while preserving the viability of their normal counterpart (13).

We previously reported a significant correlation between BCR-ABL levels and the expression of survivin in a series of 44 patients with CML (14), suggesting that BCR-ABL could directly regulate survivin expression. Indeed, subsequent evidence indicated that BCR-ABL upregulates survivin at the mRNA and protein levels (15). A further study by Carter and colleagues suggested that the RAS/RAF/MAPK cascade was involved in...
BCR-ABL–dependent induction of survivin in a human CML cell line and that suppression of survivin expression increased responsiveness to IM therapy (16).

The aims of this study were 3-fold. We initially wanted to ascertain the signaling pathway(s) triggered by the BCR-ABL kinase to induce survivin expression. We then wanted to establish whether survivin overexpression contributed to the failure of IM treatment in a representative panel of CML cell lines with well-established mechanisms of IM resistance. Finally, we wished to determine whether reduced survivin levels increased the anti-proliferative activity of different cytotoxic compounds.

We found that JAK2/STAT3 signaling modulates BCR-ABL–dependent induction of survivin and that survivin downregulation enhances the apoptotic effect of IM on CML cells that are sensitive to this compound. Lowering survivin expression increased the cytotoxic effect of hydroxyurea (HU) and doxorubicin (Doxo) on multiple cell lines unresponsive to IM. Likewise, exposure of IM-resistant cells to shepherdin reduced survivin expression and induced higher cell killing by both cytotoxic drugs and other ABL tyrosine kinase inhibitors (TKI).

Materials and Methods

Cell lines, primary cells, drugs, and shepherdin treatments

Human CML cell lines K562, KCL22, KYO-1, LAMA84, K562 S, K562 R, KCL22 S, KCL22 R, LAMA84 S, LAMA84 R, and murine Ba/F3 cells expressing either wild-type BCR-ABL (Ba/F3p210) or different BCR-ABL mutants (Ba/F3p210T253F and Ba/F3p210T315I) were grown in RPMI-1640 (Sigma-Aldrich Corp) supplemented with 10% heat-inactivated FBS (Lonza), 2 mmol/L L-glutamine, 1 mmol/L HU (Sigma), 1 mmol/L IM (a gift from Novartis), 12.5 nmol/L nilotinib (a gift from Bristol-Myers Squibb), 17-Allylamino-17-demethoxygeldanamycin (17-AAG, InvivoGen; Fig. 1).

In further experiments, we used 30 μmol/L of cell-permeable shepherdin (biotin-X-KKWKMRNNQFWKVQRLFACGSHK-CONH2; a gift from Dario Altieri, Wistar Cancer Institute, Philadelphia, PA) or an equimolar concentration of the corresponding scrambled peptide (biotin-X-KKWKMRNNQFWKVQGRHSCFACAKS-CONH2). The Antennapedia homeodomain sequence is underlined. X = EAHX, hexanoic acid spacer.

Immunoprecipitation and immunoblotting

Cell pellets were resuspended in isotonic buffer [25 mmol/l Trizma base (pH 8.5), 100 mmol/l NaCl, 7 mmol/l β-mercaptoethanol, 1 × protease inhibitor cocktail (Roche)], sonicated and harvested by centrifugation at 14,000 rpm for 10 minutes at 4°C.

For immunoprecipitation experiments, 2 μg of antiphosphotyrosine antibody (clone 4G10, Millipore) were incubated with protein G-Sepharose (Amersham Biosciences) for 2 hours and then with 1 mg of cell lysates for an additional 2 hours. The sepharose beads were then washed in isotonic buffer and resuspended in Laemmli buffer.

For immunoblotting experiments, 40 μg of protein were separated by SDS-PAGE, transferred to nitrocellulose membranes, and blocked with 5% nonfat dry milk or with 10% bovine serum albumin (Sigma) in TBS with 0.2% Tween 20 (Sigma).

Monoclonal antibodies used were: antisurvivin (Abcam); antiphosphotyrosine (Millipore); anti-actin and anti-FLAG (Sigma). Polyclonal sera used were: anti-MAPK, anti-pMAPK, anti-AKT and anti-pAKT (Cell Signaling Technology); anti-JAK2, anti-STAT3 and anti-c-abl (clone K12; Santa Cruz Biotechnology). Appropriate horseradish peroxidase-conjugated secondary antibodies (Amersham Biosciences) were added and proteins were detected using the enhanced chemiluminescence reagent Lite Ablot (Euroclone).

Chemiluminescence images were captured and densitometric quantification of protein bands was carried out using the ImageJ 1.36b software (NIH, Bethesda, MD).

Cell proliferation and cell death assays

To evaluate cell viability, 2 × 10⁴ cells were incubated, for 24 hours in 96-well plates with different drugs, siRNAs, or peptides and cell proliferation was subsequently determined using the luminescence ATP detection assay system ATPlite 1 step (Perkin-Elmer), following the manufacturer’s instructions. To assess cell death, 5 × 10⁴ cells were treated with different drugs or peptides, alone or in combination, for 24 hours. Cells were harvested and triplicate samples were selected to determine apoptosis using the FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen) following the manufacturer’s instructions. Apoptotic events were recorded as a combination of Annexin V+/PI− (early apoptosis) and

Stella et al.
Survivin Suppression Sensitizes CML Cells to Cytotoxic Drugs

Figure 1. Chemical structures of the specified drugs.
Transfection and lentiviral transduction

For the production of the lentiviral supernatant, transfection vectors pGIPZ nonsilencing shRNA (Cat n° RHS4346) or pGIPZ shRNA anti-JAK2 (NM_004972, Cat n° RHS4430) were cotransfected with the packaging plasmids in the HEK293T cell line, using the cell line using the calcium phosphate transfection method (Trans-Lentiviral shRNA Packaging Kit, Open Biosystems). Viral supernatants were harvested 48 hours after transfection. CML cells were then transduced by a double round of spin-infection. Cells were centrifuged at 1,200 × g for 90 minutes at 32°C in the presence of 1 mL of viral supernatant and 8 μg/mL polycyrene (Sigma-Aldrich). Transduced cells were finally selected with 6 μg/mL puromycin (Sigma-Aldrich) for 72 hours.

Lentiviruses containing the pLEX empty vector or pLEX STAT3C were produced using the calcium phosphate transfection method (Trans-Lentiviral ORF Packaging Kit, Open Biosystems) as previously described.

RNA silencing experiments

For antisense oligonucleotides, 1 × 10⁶ cells were resuspended in 0.8 mL of culture media with 500 nmol/L antisense oligonucleotides against STAT3 (5' AATGCGGGCGCGCCACC or pGIPZ shRNA anti-JAK2 (NM_004972, Cat n° RHS4430) were cotransfected with the packaging plasmids in the HEK293T cell line, using the cell line using the calcium phosphate transfection method (Trans-Lentiviral shRNA Packaging Kit, Open Biosystems). Viral supernatants were harvested 48 hours after transfection. CML cells were then transduced by a double round of spin-infection. Cells were centrifuged at 1,200 × g for 90 minutes at 32°C in the presence of 1 mL of viral supernatant and 8 μg/mL polycyrene (Sigma-Aldrich). Transduced cells were finally selected with 6 μg/mL puromycin (Sigma-Aldrich) for 72 hours.

Lentiviruses containing the pLEX empty vector or pLEX STAT3C were produced using the calcium phosphate transfection method (Trans-Lentiviral ORF Packaging Kit, Open Biosystems) as previously described.

RNA silencing experiments

For antisense oligonucleotides, 1 × 10⁶ cells were resuspended in 0.8 mL of culture media with 500 nmol/L antisense oligonucleotides against STAT3 (5' AATGCGGGCGCGCCACC or pGIPZ shRNA anti-JAK2 (NM_004972, Cat n° RHS4430) were cotransfected with the packaging plasmids in the HEK293T cell line, using the cell line using the calcium phosphate transfection method (Trans-Lentiviral shRNA Packaging Kit, Open Biosystems). Viral supernatants were harvested 48 hours after transfection. CML cells were then transduced by a double round of spin-infection. Cells were centrifuged at 1,200 × g for 90 minutes at 32°C in the presence of 1 mL of viral supernatant and 8 μg/mL polycyrene (Sigma-Aldrich). Transduced cells were finally selected with 6 μg/mL puromycin (Sigma-Aldrich) for 72 hours.

Lentiviruses containing the pLEX empty vector or pLEX STAT3C were produced using the calcium phosphate transfection method (Trans-Lentiviral ORF Packaging Kit, Open Biosystems) as previously described.

RNA silencing experiments

For antisense oligonucleotides, 1 × 10⁶ cells were resuspended in 0.8 mL of culture media with 500 nmol/L antisense oligonucleotides against STAT3 (5' AATGCGGGCGCGCCACC or pGIPZ shRNA anti-JAK2 (NM_004972, Cat n° RHS4430) were cotransfected with the packaging plasmids in the HEK293T cell line, using the cell line using the calcium phosphate transfection method (Trans-Lentiviral shRNA Packaging Kit, Open Biosystems). Viral supernatants were harvested 48 hours after transfection. CML cells were then transduced by a double round of spin-infection. Cells were centrifuged at 1,200 × g for 90 minutes at 32°C in the presence of 1 mL of viral supernatant and 8 μg/mL polycyrene (Sigma-Aldrich). Transduced cells were finally selected with 6 μg/mL puromycin (Sigma-Aldrich) for 72 hours.

Lentiviruses containing the pLEX empty vector or pLEX STAT3C were produced using the calcium phosphate transfection method (Trans-Lentiviral ORF Packaging Kit, Open Biosystems) as previously described.

Results

Survivin induction by BCR-ABL tyrosine kinase activity involves JAK2

We have previously reported that, in primary hematopoietic cells isolated from patients diagnosed with CML, the amount of BCR-ABL transcript significantly correlates with the expression levels of survivin (14). Our findings suggested that BCR-ABL might directly regulate survivin expression in CML cells and indeed, subsequent manuscripts have shown that BCR-ABL upregulates survivin at both the transcriptional and protein levels (15–17). However, these reports used single immortalized cell lines and attributed BCR-ABL-dependent induction of survivin to different signaling pathways.

To clarify these contrasting observations, we conducted an antisurvivin immunoblot on a wide panel of human CML cells before and after IM or nilotinib treatment. BCR-ABL inactivation produced a striking decrease in survivin levels in CML cells, confirming that BCR-ABL constitutive tyrosine kinase activity induces survivin expression (Fig. 2A and B). We next wanted to establish the BCR-ABL–induced pathway(s) responsible for this effect. Carter and colleagues had previously suggested that the RAS/RAF/MAPK cascade was involved in BCR-ABL–dependent upregulation of survivin (16). In a different cell line, Fang and colleagues identified JAK2/PI3K/c-myc signaling as the main regulator of BCR-ABL–dependent induction of survivin (17). However, when we suppressed mitogen-activated protein kinase (MAPK) activity with PD98059 in a set of 4 human CML cells, we detected a reduction in survivin levels only in the K562 line (Fig. 2C). Likewise, suppression of phosphoinositide 3-kinase (PI3K) activity by LY294002 induced a decrease in survivin expression only in LAMA84 cells (Fig. 2D). We therefore turned our attention to JAK2, as previous evidence...
Survivin Suppression Sensitizes CML Cells to Cytotoxic Drugs

Figure 2. JAK2 inhibition reduces survivin expression in CML cells. The indicated cell lines were treated for 24 hours with 1 μmol/L IM (A), 12.5 nmol/L nilotinib (B), 50 μmol/L PD98059 (C), 20 μmol/L LY294002 (D), 7.5 nmol/L TG101209 (E), and subsequently assessed for their proliferation rate (left). Lysates were then assayed for the expression and phosphorylation of the specified proteins (middle; a blot representative of 3 separate experiments is shown). Histograms (right) depict survivin expression in each cell line normalized to actin, MAPK, AKT, or JAK2 as quantified by densitometric analysis, with survivin levels in untreated cells arbitrarily set at 1. Columns represent average ± SD of 3 independent experiments.
had shown that BCR-ABL binds to JAK2 and phosphorylates it on tyrosine 1007, thereby activating its kinase activity (18). In turn, catalytically active JAK2 phosphorylates different STAT monomers inducing their dimerization, nuclear translocation, and transcriptional activity (18, 19). After blocking JAK2 signaling with the selective inhibitor TG101209, we observed a reduction in survivin expression in all CML lines tested (Fig. 2E). Prior evidence had established that JAK2 inhibition reduced survivin levels in AML cells (20). Furthermore, Fang and colleagues proposed that survivin upregulation was largely controlled at the transcriptional level through a JAK2-dependent mechanism (17). Our findings suggested a role for JAK2 in modulating survivin levels in CML cells.

JAK2/STAT3 signaling contributes to BCR-ABL–dependent induction of survivin

To confirm that the BCR-ABL–dependent induction of survivin involves JAK2, we stably transduced CML cell lines with lentiviral vectors expressing a JAK2-specific shRNA or a nonsilencing control (Fig. 3A) and detected a reduction in survivin in all cell lines. Interestingly, a constitutive activation of the JAK2/STAT3 pathway by the BCR-ABL tyrosine kinase has been previously described in CML progenitors (21) and several reports have shown that STAT3 induces survivin expression in both solid and hematologic malignancies (22–24). Moreover, Bewery and colleagues have suggested that STAT3 might contribute to the development of IM resistance (25). To determine whether STAT3 was the pivotal downstream mediator of the BCR-ABL/JAK2 pathway, we electroporated STAT3-targeted antisense oligonucleotides or their scrambled counterpart in 4 CML lines. Immunoblot analyses showed that STAT3 downregulation reduced survivin levels in each leukemic cell line, whereas this was not the case with the scrambled control (Fig. 3B). To further confirm the role of STAT3 in the regulation of survivin, we generated an activated STAT3 (STAT3C) as previously reported by Bromberg and colleagues (Fig. 3C; ref. 26). We found that STAT3C promoted an increase in survivin levels in all 4 CML lines tested, implying that the JAK2/STAT3 cascade is a major regulator of survivin expression in CML cells.

Survivin silencing sensitizes IM-resistant cells expressing BCR-ABL mutants to hydroxyurea

Resistance to IM has emerged as a major caveat in the long-term treatment of CML (27). BCR-ABL amplification or point mutations in the oncprotein kinase domain represent 2 major mechanisms underlying IM failure. We wanted to establish whether survivin downregulation by specifically targeted siRNAs would increase the apoptotic effect of HU on CML cell lines displaying different mechanisms of IM resistance. To this end, we initially used LAMA84 R cells that are unresponsive to IM because of BCR-ABL kinase domain that prevent IM binding. These findings support the notion that lowering survivin expression can increase HU efficacy on CML cells unresponsive to IM (10-fold increase in the IC50 for the drug; refs. 28–30). In LAMA84 R cells, survivin silencing caused a significant increase in both IM- and HU-induced death (Fig. 4C). Likewise, suppression of survivin in Ba/F3p210 cells expressing the Y253F and T315I mutants significantly increased the response to HU, and E, middle). As anticipated, a reduction in survivin levels failed to restore responsiveness to IM (Fig. 4D and E, right), as point mutations induce conformational changes of the BCR-ABL kinase domain that prevent IM binding. These findings support the notion that lowering survivin expression can increase HU efficacy on CML cells unresponsive to IM because of BCR-ABL point mutations. These results also confirm that survivin does not affect the structural modifications of the BCR-ABL kinase domain induced by different amino acid substitutions. Hence, reducing survivin levels fail to resensitize BCR-ABL mutants to the effect of IM.

The Hsp90 peptidomimetic shepherdin sensitizes IM-resistant cells to different cytotoxic drugs

The design of shepherdin, a compound that reduces survivin expression by disrupting its interaction with Hsp90, represents an attractive opportunity to determine the possible therapeutic potential of survivin downregulation in CML cells. We therefore incubated IM-resistant cell lines K562 R, KCL22 R, LAMA84 R, and their IM-sensitive counterpart with shepherdin alone or in combination with HU or doxorubicin. As expected, addition of shepherdin, but not of the scramble control peptide, increased the response to HU (Fig. 4D and E, middle). As anticipated, a reduction in survivin levels failed to restore responsiveness to IM (Fig. 4D and E, right), as point mutations induce conformational changes of the BCR-ABL kinase domain that prevent IM binding. These findings support the notion that lowering survivin expression can increase HU efficacy on CML cells unresponsive to IM because of BCR-ABL point mutations. These results also confirm that survivin does not affect the structural modifications of the BCR-ABL kinase domain induced by different amino acid substitutions. Hence, reducing survivin levels fail to resensitize BCR-ABL mutants to the effect of IM.

Figure 3. JAK2/STAT3 signaling contributes to BCR-ABL–mediated induction of survivin. A, protein extracts from the specified cell lines lentivirally transduced with either control (sh NS) or JAK2-specific (sh JAK2) shRNAs were blotted for survivin or JAK2 to verify the efficacy of the silencing procedure. B, to study the contribution of STAT3, the same cells were electroporated with antisense oligonucleotides against STAT3 (AS STAT3) or with a scrambled control (AS Scr). After 48 hours, lysates were blotted for survivin or STAT3 to confirm the decrease of the latter protein. Histograms on the right of each immunoblot measure survivin expression in the indicated conditions, with densitometric analysis conducted as detailed in the previous figure. Columns show average ± SD of 3 separate experiments. C, to further confirm the role of STAT3 in the regulation of survivin, cell lysates from CML cells lentivirally transduced with pLEX STAT3C or pLEX empty vector were blotted using antisurvivin (top), anti-FLAG (middle), or antiactin (bottom) antibodies. Panels show a blot representative of 3 independent experiments. ***, P < 0.001; ns, not significant.
found significant reductions in the growth and viability of K562 and KCL22, regardless of their IM sensitivity (Fig. 5B, C, E, and F). Likewise, LAMA84 S cells were highly sensitive to the combination of shepherdin and different chemotherapeutic drugs (Fig. 5H). However, in agreement with previous silencing data (Fig. 4B), shepherdin failed to sensitize LAMA84 R to either HU or doxorubicin (Fig. 5I), confirming that resistance caused by BCR-ABL amplification is independent from survivin. These results were further validated by using the Ba/F3 cell model.

Figure 4. Survivin silencing sensitizes IM-resistant cells expressing BCR-ABL mutants to the effect of HU. The indicated IM-sensitive (A) and IM-resistant (B) cells were electroporated with siRNAs against survivin (si Surv) or with a scrambled control (si Scr) and analyzed by immunoblot to ensure survivin silencing (left panels). Twenty-four hours after electroporation, cells were treated with 1 mmol/L HU (middle panels) or 1 µmol/L IM (right) for 24 (white columns) or 48 (black columns) hours and the effect of these treatments was assessed using the ATPLite luminescence assay. The same experiments were repeated on murine Ba/F3 cells lentivirally transduced with either wild-type BCR-ABL (Ba/F3p210; C) or with the indicated BCR-ABL mutants that confer IM resistance (D, E). Results shown represent average ± SD of at least 3 separate experiments conducted in triplicate with relative luminescence of untreated cells set at 100%. *: $P < 0.05$; **: $P < 0.01$; ***: $P < 0.001$; ns, not significant.
Survivin Suppression Sensitizes CML Cells to Cytotoxic Drugs

Figure 5. Treatment with the Hsp90 inhibitor shep[3]den sensitizes IM-resistant cells to different cytotoxic drugs. IM-sensitive and IM-resistant cell lines were incubated for 24 hours with 30 μmol/L shep[3]den or with an equal concentration of a scrambled peptide (Scr). Alternatively, cells were exposed to 2 cytotoxic compounds [1 mmol/L HU, 1 μmol/L doxorubicin (Doxo)] in association with either Shep or Scr. Cell lysates were then examined by immunoblot to confirm survivin downregulation in the presence of shep[3]den (A, D, and G). The effect of each combination was then assessed using the ATPLite luminescence assay (B, C, E, F, H, and I, left) or Annexin V-FITC/PI double staining (B, C, E, F, H, and I, right). Columns represent average ± SD of 3 independent experiments conducted in triplicate (for the ATPLite assay untreated cells were arbitrarily set at 100). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.
transformed by either wild-type (Ba/F3p210) or mutant BCR-ABL (Ba/F3p210Y253F, Ba/F3p210T315I). In the context of these cell lines, shepherdin efficiently suppressed survivin expression (Fig. 6A) and its association with either HU or doxorubicin significantly reduced cell proliferation and cell viability (Fig. 6B, C, and D).

Shepherdin increases the cytotoxic effect of nilotinib and dasatinib on human CML myeloid progenitors

To further ascertain the efficacy of shepherdin on BCR-ABL-expressing clones, we isolated primary cells from the peripheral blood of 3 different patients with CML: 2 individuals with newly diagnosed disease and a subject that had failed treatment with IM, nilotinib, and dasatinib. We then assessed the colony-forming potential of these cells after treatment with shepherdin alone or in combination with one of the 3 TKIs. Interestingly, we observed a significant decrease in overall colony number when shepherdin was associated with nilotinib and dasatinib, regardless of the TKI sensitivity of the primary cells (Fig. 7A, B, and C). These findings further reinforced the conclusion that downregulation of survivin expression...
TKI-dependent inhibition of BCR-ABL kinase activity. Replacement of CML cells both responsive and unresponsive to IM may represent a potential therapeutic strategy to eliminate TKI cells both responsive and unresponsive to the TKI-refractory (C) patients with CML were pretreated for 24 hours with IM (1 μmol/L), nilotinib (Nil; 12.5 nmol/L), or dasatinib (Das; 5 nmol/L) either alone or in combination with shepherdin. Cells were then plated in triplicate in methylcellulose and the ensuing colonies were counted after 14 days.

Discussion

Although IM has changed the natural course of CML achieving 89% overall survival rates after 8 years of follow-up (31), approximately 50% of patients with CML fail to obtain an optimal response as defined by the current European Leukemia Net (ELN) recommendations (32). To address these critical issues, second-generation TKIs (i.e., dasatinib and nilotinib) have been generated, tested, and approved for the treatment of patients with CML that fail IM (33). Despite the early success of these compounds, 50% of patients receiving either dasatinib or nilotinib will not obtain long-term benefit from these drugs and will progress to the advanced phases of the disease (34). Thus, the need for additional therapeutic strategies that will benefit this selected patient population (34, 35).

Carter and colleagues have previously shown that BCR-ABL induces the expression of the IAP survivin through the MAPK and PI3K pathways, and that reduction of survivin expression both spontaneous and IM-dependent inhibition of a CML cell line (16). However, it is unclear whether these results could: (i) be extended to a more representative panel of CML cells both sensitive and resistant to IM; (ii) be used to potentiate the antiproliferative activity of other pharmacologic compounds; (iii) be exploited to devise a possible therapeutic strategy aimed at reducing survivin levels in patients with CML.

We report here that BCR-ABL kinase activity induced survivin expression in CML cell models via the JAK2/STAT3 pathway. Silencing of survivin reduced the viability of CML cells and enhanced the efficacy of IM. Moreover, survivin downregulation significantly increased the cytotoxic activity of HU, doxorubicin, nilotinib, and dasatinib on cells unresponsive to IM because of either point mutations (including T315I) in the BCR-ABL catalytic domain or other yet uncharacterized mechanisms. These results were obtained with the use of survivin-targeted siRNAs or by using shepherdin, a peptidomimetic compound that reduces survivin half-life by abrogating its interaction with the Hsp90 chaperone (13). These findings were further confirmed by experiments on human myeloid progenitors derived from both IM-sensitive and IM-resistant patients with CML.

Our observations lead to several considerations. First, and at variance with the data reported by Carter and colleagues, we found that only MAPK and PI3K signaling cascades modestly contribute to the regulation of survivin expression in CML. Conversely, we identified the JAK2/STAT3 pathway as a major contributor of BCR-ABL-mediated induction of survivin. This discrepancy could be due to the different cells used in the 2 studies. It is also possible that, in certain cell types, both JAK2 and MAPK contribute to survivin overexpression, as published evidence suggests that JAK2 and MAPK stimulate phosphorylation of STAT3, thus enhancing its biologic activity (36).

We have also found that suppression of survivin is unable to restore IM activity regardless of the mechanisms responsible for drug failure. These results are not unexpected as IM resistance attributable to BCR-ABL gene amplification is due to the enhanced signaling of a higher absolute number of BCR-ABL molecules (37). Intuitively, this phenomenon cannot be constrained by lowering survivin expression. Likewise, point mutations associated with IM failure induce alterations in the 3-dimensional...
after shepherdin treatment was superior to that detected after siRNA-mediated silencing, suggesting that shepherdin may increase CML cell death by both survivin-dependent and survivin-independent mechanisms. Kang and colleagues have previously shown that shepherdin disables a mitochondrial chaperone network that cancer cells use to protect themselves from multiple apoptotic stimuli (42). Hence, it is possible that part of shepherdin’s efficacy on CML cells depends on this mechanism. Indeed, when we treated Ba/F3 cells expressing different BCR-ABL mutants with HU or doxorubicin in association with 17-AAG (a cytosolic inhibitor of Hsp90), we found no significant increases in cell death (Fig. 8). These preliminary findings support the hypothesis that shepherdin kills CML cells through a double mechanism: (i) a reduction in survivin expression and (ii) the mitochondrial inhibition of Hsp90 chaperones.

In summary, our results suggest that pharmacologic reduction of survivin expression may provide a new therapeutic approach for the molecular targeting of IM-insensitive CML cells.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: S. Stella, E. Tirro, E. Conte, P. Vigneri
Development of methodology: S. Stella, E. Tirro
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Stella, E. Conte, F. Stagno, F.D. Raimondo
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Stella, E. Tirro, F. Stagno, F.D. Raimondo, P. Vigneri
Writing, review, and/or revision of the manuscript: S. Stella, E. Tirro, E. Conte, F. Stagno, F.D. Raimondo, L. Manzella, P. Vigneri
Survivin Suppression Sensitizes CML Cells to Cytotoxic Drugs

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 1, 2012; revised March 15, 2013; accepted March 18, 2013; published OnlineFirst March 27, 2013.

References

Administrative, technical, or material support (i.e., reporting or organ- izing data, constructing databases): S. Stella, P. Vigneri
Study supervision: S. Stella, P. Vigneri

Grant Support
This work was supported by a fellowship (E. Tirro) and a national grant from Associazione Italiana per la Ricerca sul Cancro (P. Vigneri).

Molecular Cancer Therapeutics

Suppression of Survivin Induced by a BCR-ABL/JAK2/STAT3 Pathway Sensitizes Imatinib-Resistant CML Cells to Different Cytotoxic Drugs

Stefania Stella, Elena Tirrò, Enrico Conte, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-0550

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/03/26/1535-7163.MCT-12-0550.DC1

Cited articles
This article cites 41 articles, 19 of which you can access for free at:
http://mct.aacrjournals.org/content/12/6/1085.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/12/6/1085.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.