Impact of Tumor Vascularity on Responsiveness to Antiangiogenesis in a Prostate Cancer Stem Cell-Derived Tumor Model

Kexiong Zhang and David J. Waxman

Abstract

Drugs that target the tumor vasculature and inhibit angiogenesis are widely used for cancer treatment. Individual tumors show large differences in vascularity, but it is uncertain how these differences affect responsiveness to antiangiogenesis. We investigated this question using two closely related prostate cancer models that differ markedly in tumor vascularity: PC3, which has very low vascularity, and the PC3-derived cancer stem-like cell holoclone PC3/2G7, which forms tumors with high microvessel density, high tumor blood flow, and low hypoxia compared with parental PC3 tumors. Three angiogenesis inhibitors (axitinib, sorafenib, and DC101) all induced significantly greater decreases in tumor blood flow and microvessel density in PC3/2G7 tumors compared with PC3 tumors, as well as significantly greater decreases in tumor cell proliferation and cell viability and a greater increase in apoptosis. The increased sensitivity of PC3/2G7 tumors to antiangiogenesis indicates they are less tolerant of low vascularity and suggests they become addicted to their oxygen- and nutrient-rich environment. PC3/2G7 tumors showed strong upregulation of the proangiogenic factors chemokine ligand 2 (CCL2) and VEGFA compared with PC3 tumors, which may contribute to their increased vascularity, and they have significantly lower endothelial cell pericycle coverage, which may contribute to their greater sensitivity to antiangiogenesis. Interestingly, high levels of VEGF receptor-2 were expressed on PC3 but not PC3/2G7 tumor cells, which may contribute to the growth static response of PC3 tumors to VEGF-targeted antiangiogenesis. Finally, prolonged antiangiogenic treatment led to resumption of PC3/2G7 tumor growth and neovascularization, indicating these cancer stem-like cell-derived tumors can adapt and escape from antiangiogenesis. Mol Cancer Ther; 12(5); 787–98. ©2013 AACR.

Introduction

Chemotherapy using cytotoxic drugs is presently the most commonly used weapon in the treatment of advanced cancer. However, the therapeutic efficacy of cancer chemotherapy is limited by factors such as tumor heterogeneity, host toxicity, and drug resistance. New opportunities to improve cancer therapy are presented by drugs that target the tumor vasculature and inhibit tumor angiogenesis (1). Antiangiogenesis may also help circumvent resistance to conventional chemotherapy linked to cancer stem cells (2, 3). Tumor angiogenesis is a highly regulated process, whereby new blood vessels form within growing tumors. In many cancers, as tumor cells proliferate, the tumor mass expands beyond the support capacity of the existing vasculature leading to decreased levels of oxygen and nutrients and the accumulation of metabolic wastes. Tumor cells respond to this deterioration of the microenvironment by secreting proangiogenic factors, which activate quiescent endothelial cells and promote their migration into the tumor. This shift of the tumor microenvironment to an angiogenic state, or “angiogenic switch” (4), is an important step in tumor development.

Inhibition of angiogenesis has emerged as an important therapeutic strategy for solid tumors. The VEGF pathway is the dominant signaling pathway involved in tumor angiogenesis (5), with VEGF receptor-2 (VEGFR2) being a major endothelial cell signal mediator and an important target of receptor tyrosine kinase inhibitors (RTKI) designed to inhibit tumor angiogenesis (5). Many tumor cells secrete VEGFA, which binds VEGFRs on endothelial cells and stimulates vascular endothelial cell growth. VEGFA may also act as a direct tumor cell growth factor by binding VEGFRs expressed on tumor cells (6, 7). Several antiangiogenic drugs have been introduced in the clinic in the past few years, including the anti-VEGFA antibody bevacizumab and multi-RTKIs, such as sorafenib and sunitinib (8). Greater selectivity for VEGFR inhibition can be achieved using the VEGFR2 monoclonal...
antibody DC101 (9, 10) or the RTKI axitinib, which preferentially inhibits VEGFR compared with other RTKs (11). To date, however, the clinical benefits of these agents in unselected patient populations have been modest owing to factors such as increased invasiveness, decreased uptake of coadministered chemotherapeutics, and the development of tumor resistance (12–14).

Tumor vascularity has a major impact on tumor growth and drug responsiveness through its effects on tumor blood flow, oxygenation, and the permeability of chemotherapeutic drugs. Tumor vascularity varies widely in human cancers, ranging from highly vascularized renal carcinomas (15, 16) to poorly vascularized prostate cancer (17), reflecting, in part, the balance between pro- and antiangiogenic factors within the tumor microenvironment (4, 18). Vascularity is an independent prognostic factor for many human tumors, with high vascular density often associated with poor prognosis following surgery or conventional chemo/radiotherapy (19, 20). For example, the progression of prostate cancer to androgen independence is characterized by increased angiogenesis, with increased vascular density associated with decreased survival (21). The vascularity of prostate cancer is in part dependent on VEGF (22, 23), with VEGFRs being upregulated in metastatic prostate tumors (24). It is uncertain, however, whether high vascularity increases or decreases tumor responsiveness to antiangiogenesis.

Well-vascularized tumors with elevated VEGF signaling (e.g., renal cell carcinoma) are considered to be a preferred target of antiangiogenic drugs (25), whereas hypovascularized tumors are viewed as more hypoxia-tolerant and therefore likely to be less sensitive to antiangiogenesis (26, 27). Changes in vascularity as a function of the stage of tumor growth and progression can impact the effectiveness of antiangiogenic therapy, in part reflecting changes in vascular maturity, with blood vessels covered by pericytes and vascular smooth muscle cells more likely to survive antiangiogenic drug treatment (28, 29). However, it is not clear whether the most highly vascularized tumors are necessarily the most responsive to antiangiogenesis. Some studies found that slowly growing, poorly vascularized tumors respond to antiangiogenic drug treatment as well as rapidly growing, highly vascularized tumors (30), whereas other studies reported increased responsiveness of poorly vascularized tumors (31, 32). Conceivably, antiangiogenesis may suppress an already low blood supply to the point where continued tumor growth becomes unsustainable, in particular when combined with chemotherapy (14). However, the limited data available on the impact of tumor vascularity on the efficacy of antiangiogenic therapy are difficult to interpret, owing to intrinsic differences in the tumor models being compared, including differences in histology and tissue of origin, oncogenic mutation background, and VEGF-dependence of the tumor vasculature.

Presently, we investigate the impact of vascularity on antiangiogenesis using 2 closely related prostate cancer tumor models that show marked differences in vascular-
(SCID) (Fox Chase ICR-SCID strain). Mice 5- to 7-week old were purchased from Taconic Inc. and housed in the Boston University Laboratory of Animal Care Facility in accordance with institutionally approved protocols and federal guidelines. Autoclaved cages containing food and water were changed once a week. Mouse body weight was measured every 3 to 4 days. On the day of tumor cell inoculation, PC3/2G7 and parental PC3 tumor cells at 70% to 80% confluence were trypsinized and resuspended in serum-free culture medium. Tumor cells (4 × 10^6 cells in 0.2 mL) were implanted bilaterally by subcutaneous injection into each flank of the mouse. Tumor sizes were measured every 3 to 4 days using digital calipers (VWR International) and volumes were calculated as \(V = (\pi/6) \times (L \times W)^{3/2} \). Mice were randomized to different treatment groups on the day of initial drug treatment, that is, when the average tumor volume reached 400 to 600 mm^3 (10–14 tumors per treatment group). Mice were euthanized when they approached authorized tumor size limits specified in the approved animal protocol.

Antiangiogenic drug treatment schedules and tumor growth delay experiments

Axitinib was administered to the tumor-bearing mice daily by intraperitoneal injection at 25 mg/kg body weight and in a volume of 5 μL/g body weight. Control mice received daily intraperitoneal injection of vehicle (30% polyethylene glycol 400/70% acidic water, pH 2–3) in a volume of 5 μL/g body weight. Axitinib was prepared as a 5 mg/mL suspension in 30% polyethylene glycol 400/70% acidic water, as follows. Axitinib (25 mg) was added to 1.5 mL of polyethylene glycol 400 and sonicated at room temperature for 10 to 20 minutes to obtain a fine suspension. The pH was adjusted to 2 to 3 using 0.1 N HCl followed by a second sonication. The volume was adjusted to 5 mL by adding acidified water (pH 2–3). The injection-ready solution was prepared fresh every 4 to 5 days and stored at 4°C in the dark. Sorafenib was administered by daily intraperitoneal injection at 25 mg/kg mouse body weight. Weight appropriate volumes of sorafenib (6.25 μL/g body weight) were dissolved in sterile dimethyl sulfoxide at 200 μL/mL and diluted in sterile 1× PBS [final concentration: 5.4 mg/mL of sorafenib tosylate (salt), which corresponds to 4 mg/mL of sorafenib]. Fresh stock solutions of sorafenib were prepared every 6 days and stored in the dark at 4°C. Monoclonal antibody DC101 (10.86 mg/mL in PBS; Imclone lot#100726) was stored at 4°C and given by intraperitoneal injection every 3 days at a dose of 28.6 mg/kg body weight (800 μg/28 g mouse; ref. 34).

Hoechst 33342 perfusion assay

The DNA-binding dye Hoechst 33342 was used to analyze the patency of the tumor vasculature as described previously (32). Images were captured and analyzed using an Olympus FSX100 Bio Imaging Navigator fluorescence microscope system (Olympus America Inc.). Representative fields of the fluorescent staining patterns are presented for each tissue.

Immunohistochemistry and TUNEL staining

Tissues were cut to 6 μm as cryosections or paraffin-embedded sections. Immunohistochemical staining of cryosections was described previously (33). To prepare paraffin-embedded sections, tumor tissues pretreated with isopentane and stored at –80°C were fixed in 4% paraformaldehyde, while the tissues thawed at room temperature. After 1 hour, the tissues were cooled to 4°C and shipped to Maine Health Center (Portland, ME) for preparation of paraffin-embedded blocks. Each tumor was cut into 3 to 4 pieces and embedded in the same block. Paraffin-embedded sections were baked, dewaxed, and treated with 3% H₂O₂ for 10 minutes to inactivate endogenous peroxidases. Antigen retrieval was carried out by steaming in 10 mmol/L citric buffer, pH 6 for 30 minutes. The samples were cooled to room temperature and then processed in an i6000 autostainer (Biogenex Inc.) as follows: 20 minutes serum blocking, 1 hour primary antibody incubation, 1 hour secondary antibody incubation, 30 minutes ABC incubation, and 5 minutes substrate incubation. Immunohistochemistry SuperSensitive buffer (Biogenex Inc.) was used for the intermediate wash steps. Following a thorough wash with tap water, the slides were dehydrated and sealed with VectaMount. The final dilution of each primary antibody was as follows. For cryosections: anti-mouse CD31 (1:1,000; BD Pharmingen, catalog #557355) and anti-VEGFR2 (1:300; Cell Signaling Technology, catalog #2479); and for paraffin-embedded sections: anti-mouse CD31 (1:40; HistobioTec, catalog #DIA-310), anti-PCNA (1:2,000; Cell Signaling Technology, catalog #2586), anti-cleaved caspase-3-(Asp175; 1:2,000; Cell Signaling Technology, catalog #9661), anti-chemokine ligand 2 (CCL2; 1:20; R&D Systems, catalog #MAB2791), anti-VEGFA (1:100; Santa Cruz Biotechnology, catalog #sc-152), anti-GLUT1 (1:400; Millipore, catalog #07-1401), and anti-human CD31 (1:50; Leica Microsystems, catalog #sc-152), anti-VEGFA (1:100; Santa Cruz Biotechnology, catalog #sc-152), anti-GLUT1 (1:400; Millipore, catalog #07-1401), and anti-human CD31 (1:50; Leica Microsystems). For paraffin sections: anti-mouse CD31 (1:40; HistoBioTec, catalog #DIA-310), anti-PCNA (1:2,000; Cell Signaling Technology, catalog #2586), anti-cleaved caspase-3-(Asp175; 1:2,000; Cell Signaling Technology, catalog #9661), anti-chemokine ligand 2 (CCL2; 1:20; R&D Systems, catalog #MAB2791), anti-VEGFA (1:100; Santa Cruz Biotechnology, catalog #sc-152), anti-GLUT1 (1:400; Millipore, catalog #07-1401), and anti-human CD31 (1:50; Leica Microsystems). For paraffin-embedded sections: anti-mouse CD31 (1:40; HistobioTec, catalog #DIA-310), anti-PCNA (1:2,000; Cell Signaling Technology, catalog #2586), anti-cleaved caspase-3-(Asp175; 1:2,000; Cell Signaling Technology, catalog #9661), anti-chemokine ligand 2 (CCL2; 1:20; R&D Systems, catalog #MAB2791), anti-VEGFA (1:100; Santa Cruz Biotechnology, catalog #sc-152), anti-GLUT1 (1:400; Millipore, catalog #07-1401), and anti-human CD31 (1:50; Leica Microsystems). Biottinylated anti-rat, anti-rabbit, and anti-mouse secondary antibodies were diluted to 1:200 (Vector Laboratories, catalog #BA4000, BA1000, and BA-2000, respectively).

Paraffin-embedded sections were dewaxed and rehydrated then incubated with hematoxylin for 5 minutes. Sections were washed with distilled water and then incubated with Scott’s tap water (catalog #S5134, Sigma) for 10 minutes, followed by a dH₂O wash. Images were captured at ×4.2 amplification on an Olympus F SX100 instrument and saved in high-resolution format. The staining intensity of each image was quantified using NIH ImageJ software. The stained area percentage was expressed as a mean value ± SE for each tumor, based on all images from the 3 to 4 independent tumor sections analyzed. Immunohistochemical double staining was detailed previously (35). For GLUT1 and CD31 double staining, paraffin-embedded sections were first stained with GLUT1 antibody (detection with DAB substrate) and then stained...
with CD31 antibody (detection with VIP substrate). Para-
affin-embedded sections from 12-day axitinib-treated
PC3/2G7 and PC3 tumors and drug-free control tumors
were processed for TUNEL assay using the manufac-
turer’s protocol. TUNEL-positive cells or areas were quan-
tified using NIH ImageJ software.

Immunofluorescence double staining of microvessels
and pericytes
Pericytes were identified using antibody to α-smooth
muscle actin (α-SMA), which is expressed in several cell
types but can be used to identify pericytes when used in
combination with CD31 immunostaining to identify peri-
cyte-associated vascular endothelial cells. Protocols and
reagents purchased from Vector Laboratories were used.
Briefly, 6-μm thick cryosections were cut from PC3/2G7
and PC3 tumor tissues, fixed in 1% paraformaldehyde for
30 minutes, then permeabilized with 1% Triton-X 100
(×/v) on ice. Slides were blocked with avidin/biotin and
horse serum. The first staining was conducted by incu-
bating with anti-α-SMA antibody (1:400) for 45 minutes,
followed by biotinylated anti-mouse antibody for 30 min-
utes, and then 15 μL/mL avidin-conjugated Fluorescein
Avidin DCS (catalog #A-1100; Vector Laboratories) for 10
minutes. The slides were reblocked with avidin/biotin
rabbit serum and incubated with anti-CD31 (1:1,000;
BD Pharringen) antibody for 1 hour followed by bioti-
ylated anti-rat antibody for 30 minutes, and then 15
μL/mL avidin-conjugated Texas Red Avidin DCS for
30 minutes. An Olympus FSX100 Bio Imaging Navigator fluorescence microscope using the green and red color emissions and the overlay function.

Real-time quantitative PCR
RNA levels were assayed in PC3/2G7 and PC3 tumors
by quantitative PCR (qPCR) using gene-specific, and in
some cases species-specific, primer sequences shown in
Supplementary Table S1. Fresh tumor tissue was snap-
frozen in liquid nitrogen and stored at −80°C. Total RNA
isolation, reverse transcription, and qPCR were con-
ducted as described elsewhere (33). Ct values determined
for each RNA were normalized to the 18S rRNA content to
give relative RNA levels.

Cell growth inhibition assay
The growth inhibitory effects of axitinib on cultured
cells were investigated using a growth inhibition assay
(36). Briefly, PC3/2G7, PC3, and 9L gliosarcoma cells
were seeded in triplicate at 4 × 10^3 cells per well in 48-well
plates and grown overnight. Cells were cultured for 4
days in the presence of axitinib (1 nmol/L to 10 μmol/L,
final concentration), washed twice with PBS on ice, and
then quantified by crystal violet staining at 595 nm. The
staining intensity of drug-treated samples was calculated
as a percentage of untreated controls based on triplicate
assays.

Statistical analysis
Results were expressed as mean ± SE and are based on
the indicated number of tumors or tissue samples per
group. Statistical significance of differences was assess-
exted by two-tailed Student t test or two-way ANOVA
using GraphPad Prism software version 4.0; statistical
significance is indicated by *, P < 0.05; **, P < 0.01; and
***, P < 0.001.

Results
High vascularity PC3/2G7 tumor model
PC3/2G7 is a clonal isolate from the human prostate
cancer cell line PC3; it is one of several similar, indepen-
dent clones derived from a subpopulation of cancer stem-
like cells present within the parental PC3 cell population
and was isolated on the basis of its characteristic holoclone
morphology (33). Tumors derived from PC3/2G7 cells
show significantly higher vascularity than parental PC3
cell-derived tumors, as indicated by immunostaining
with anti-mouse CD31 antibody (Fig. 1A), and confirmed
by the increased expression of CD31 and also VE-cad-
herin, a second marker of vascular endothelial cells
(Fig. 1B and C). Tumor blood flow was substantially in-
creased in PC3/2G7 tumors compared with PC3 tumors,
as shown by Hoechst dye perfusion (Fig. 1D), indicating
that the high-density PC3/2G7 blood vessels are func-
tional. Immunostaining with anti-human CD31 was neg-
ative for both PC3 and PC3/2G7 tumors (cf. normal
human tonsil-positive control; Supplementary Fig. S1).
Thus, the dense blood vessels found in PC3/2G7 tumors
are derived from host (mouse) endothelial cells and are
not formed by differentiation of the (human) stem-like
cells used to seed the PC3/2G7 tumors.

PC3/2G7 tumors are more responsive than PC3
tumors to axitinib antiangiogenesis
Next, we investigated the responsiveness of PC3 and
PC3/2G7 tumors to the VEGFR-selective angiogenesis
inhibitor axitinib (11). Once established, PC3 and PC3/
2G7 tumors grew at similar rates (Fig. 2A). Axitinib
induced rapid onset of growth inhibition in both tumor
models; however, while PC3 tumors continued to grow,
albeit at a reduced rate, PC3/2G7 tumors began to regress
after treatment day 6 (Fig. 2A). Furthermore, axitinib
decreased tumor blood flow (Fig. 1D), resulting in a
similar low level of vascularity in both tumor models
after drug treatment (Fig. 2B and Supplementary Fig.
S2A). Given the selectivity of axitinib for VEGFR inhibi-
tion in vivo (11), these findings indicate that the increased
vascularity of PC3/2G7 tumors is VEGFR-dependent.
Axitinib did not induce host toxicity in either tumor
model, as judged by body weight measurements (data
not shown).

Hematoxylin staining of tumor cell nuclei identifies
viable tumor cells and distinguishes them from necrotic
tumor regions that form after drug treatment, in a manner
similar to YO-PRO-1 staining (37). Hematoxylin staining
was significantly decreased in PC3/2G7 tumors but not PC3 tumors after 12 days axitinib treatment (Fig. 2C and Supplementary Fig. S2B). Moreover, tumor cell proliferation, monitored by PCNA staining, was significantly decreased by axitinib treatment of PC3/2G7 tumors but not PC3 tumors (Fig. 2D and Supplementary Fig. S2C). Axitinib also induced a significantly greater increase in apoptosis in PC3/2G7 tumors than PC3 tumors, as revealed by TUNEL assay (Fig. 2E and Supplementary Fig. S2D). In cell culture, axitinib was not growth inhibitory to PC3/2G7 or PC3 cells, whereas it exhibited moderate growth-inhibitory activity against 9L tumor cells, which served as a positive control (Supplementary Fig. S3; ref. 36). This suggests that the antitumor activities of axitinib seen in vivo (Fig. 2A) are indirect responses to the loss of VEGF signaling, and are not due to direct PC3/2G7 or PC3 tumor cell cytotoxicity.

Impact of sorafenib and DC101 on PC3/2G7 and PC3 tumors

Next, we investigated whether the greater sensitivity of PC3/2G7 tumors to axitinib is seen with 2 other antiangiogenic drugs, the multi-RTKI sorafenib (38) and the anti-VEGFR2 monoclonal antibody DC101, which blocks VEGF-induced receptor activation (9, 10). With both drugs, PC3/2G7 tumor growth was inhibited more extensively and/or for a longer period of time than PC3 tumors (Supplementary Figs. S4 and S5). Blood flow to PC3/2G7 tumors was markedly decreased by both sorafenib and DC101, and a further decrease in the already low blood
flow to PC3 tumors was also apparent (Fig. 3A). The treated PC3/2G7 tumors showed low microvessel density, with many blood vessels showing little internal volume in cross-sections, in contrast to the many large, open vessels found in untreated PC3/2G7 tumors (Fig. 3B). The few blood vessels detected in the sorafenib- and DC101-treated PC3 tumors were similar to or smaller than those in untreated PC3 tumors. The very low vascularity of the treated PC3/2G7 tumors was associated with more extensive tumor necrosis (fewer viable tumor regions), as indicated by lower hematoxylin staining (Fig. 3C), and a greater decrease in tumor cell proliferation (PCNA staining; Fig. 3D) compared with the drug-treated PC3 tumors. Thus, PC3/2G7 tumors are less able than PC3 tumors to tolerate the low vascularity induced by antiangiogenesis.
Hypoxia, basal apoptosis, and pericyte coverage

The tumor vasculature is characterized by structural and functional abnormalities that impart a tumor micro-environment marked by interstitial hypertension, hypoxia, and acidosis and impaired delivery of therapeutics (39). Immunostaining for GLUT-1, a well-established marker for tumor hypoxia, revealed more extensive hypoxic regions in PC3 tumors than in PC3/2G7 tumors (Fig. 4A), especially in tumor regions more distant from blood vessels (Fig. 4B). Furthermore, apoptotic regions were more frequent in PC3 tumors than in PC3/2G7 tumors, as indicated by cleaved caspase-3 immunostaining (Fig. 4C). The higher basal apoptotic rate in PC3 tumors is consistent with the increased apoptosis often seen in hypoxic tumors (27).

Pericytes wrap around endothelial cells and regulate blood vessel development and stabilization and are recruited to tumor microvessels during angiogenesis (40). In contrast to normal tissue blood vessels, pericytes are loosely bounded to endothelial cells in tumor blood vessels, however, they still execute their functions, including secretion of survival signals and protection of vascular endothelial cells. We compared the pericyte coverage between PC3/2G7 tumors and PC3 tumors using a-SMA to stain pericytes, combined with CD31 staining to identify endothelial cells (Fig. 4D). Substantially fewer pericytes were found in PC3/2G7 tumors, despite their high vascular density, and correspondingly, the rate of pericyte coverage of tumor endothelial cells was much lower in PC3/2G7 tumors than in PC3 tumors [Fig. 4D, right; see overlap (yellow) between a-SMA and CD31].

Expression of proangiogenic factors in PC3/2G7 tumors

Next, we investigated factors that might contribute to the striking increase in vascularity seen in PC3/2G7 tumors. VEGFA protein levels were strongly upregulated in PC3/2G7 tumors compared with PC3 tumors (Fig. 5A), however, no differences in the expression of VEGFA RNA (Fig. 5B), VEGFC RNA (Supplementary Fig. S6A), or VEGFA splice variants were apparent (data not shown). Large differences in expression of 2 other factors were seen: CCL2 (also termed MCP-1) was strongly upregulated and VEGFR2 was strongly downregulated in PC3/2G7 tumors compared with PC3 tumors, as shown by immunohistochemistry (Fig. 5A) and at the RNA level (Fig. 5B). CCL2 is an inflammatory chemokine that promotes angiogenesis, attracts tumor-promoting...
macrophages, and contributes to tumor progression and metastasis in many human cancers, including prostate cancer (41). The decreased expression of VEGFR2 in PC3/2G7 tumors might seem to be inconsistent with the increase in tumor angiogenesis and with the increased sensitivity of PC3/2G7 tumors to VEGFR-targeted anti-angiogenic drugs shown earlier. However, further analysis revealed that the decrease in overall PC3/2G7 tumor VEGFR2 levels reflects the all but complete repression of human (i.e., tumor cell-expressed) VEGFR2 (Fig. 5C, left). A similar loss of VEGFR2 expression was seen in PC3/2G7 tumor cells grown in culture (Fig. 5C, right). In contrast, PC3/2G7 tumor expression of mouse VEGFR2 (i.e., expression on tumor endothelial cells) was actually increased by ~2.5-fold compared with PC3 tumors (Fig. 5C, middle), consistent with the increased angiogenesis.

Escape from antiangiogenesis

Despite the strong initial response of PC3/2G7 tumors to axitinib, PC3/2G7 tumors began to regrow after approximately 20 days daily axitinib treatment and continuing until day 58 (Fig. 6A), at which time the study was terminated because of the slow but steady decline in body weight associated with prolonged tumor burden combined with axitinib treatment (Fig. 6B). Tumor regrowth was associated with recovery of functional blood vessels, primarily at the tumor periphery, and this response contrasts to the marked overall decrease in tumor blood vessel density seen after the first 12 days axitinib treatment (Fig. 6C and D and Supplementary Fig. S7). PC3/2G7 tumors treated with axitinib for 58 days showed an increase in proliferation (PCNA staining) when compared with tumors treated with axitinib for only 12 days.
(Fig. 6D), supporting the conclusion that these tumors escape from axitinib inhibition. Conceivably, this may occur by a VEGFR-independent angiogenic mechanism.

Discussion

The present study investigates the impact of tumor vascularity on responsiveness to antiangiogenesis using 2 closely related prostate cancer tumor models, PC3 and the PC3 tumor stem-like cell-derived PC3/2G7 (33), which exhibits a growth rate very similar to PC3 but shows significantly higher vascularity. Our findings show that the more highly vascularized PC3/2G7 tumors are significantly more responsive to antiangiogenesis, as determined using 3 different antiangiogenic agents, axitinib, sorafenib (Fig. 7), and DC101. All 3 agents markedly reduced blood vessel density and dramatically decreased blood flow in PC3/2G7 tumors, whereas they induced much more modest changes in the poorly vascularized PC3 tumors. Importantly, PC3/2G7 tumor cell proliferation was inhibited more significantly by the antiangiogenesis inhibitors used here than with PC3 tumors. Thus, antiangiogenesis is more effective against PC3/2G7 tumors, whose increased sensitivity likely derives from the oxygen and/or nutrient starvation induced by antiangiogenesis. In contrast, the anti-PC3 tumor responses to the angiogenesis inhibitors used here may be largely the result of direct inhibition of tumor cell-associated VEGFRs, which are abundant on PC3 tumor cells, but are barely detectable on PC3/2G7 tumor cells.
(Fig. 5B), and presumably act as tumor growth factor receptors (6, 7). Notably, following antiangiogenesis, tumor blood flow and microvessel density were as low in PC3/2G7 tumors as in PC3 tumors, yet the PC3/2G7 tumors showed significantly greater tumor cell apoptosis, more extensive necrotic regions, and lower tumor cell proliferation than PC3 tumors. These findings support the conclusion that the PC3/2G7 tumors are less tolerant to low vascularity than PC3 tumors.

All tumors, including those of low microvessel density, depend on a therapeutically targetable angiogenic process driven by a requirement of nutrients and oxygen exchange for tumor growth. However, vascularity requirements differ significantly between tumors, and rapid tumor growth does not necessarily indicate high vascular density (18). Moreover, the microvessel density of a tumor is often lower than that of nearby normal tissue, which experiences no net growth (17). This difference may reflect the lower rate of oxygen consumption by tumor cells, which can tolerate oxygen deprivation and be resistant to apoptosis under hypoxic conditions (27). Consequently, the degree of tumor vascularity may be regarded as reflecting the metabolic burden of the supported tumor cells. Tumors that have high rates of oxygen or nutrient consumption, such as glioblastomas, often have high vascularity, whereas tumors with a low metabolic demand, such as chondrosarcomas, are poorly vascularized (18). Thus, the high vascularity of PC3/2G7 tumors may indicate a higher metabolic rate compared with PC3 tumors. Importantly, we found that PC3/2G7 tumors are particularly sensitive to the loss of vasculature and decrease in tumor blood flow induced by antiangiogenic drugs, whereas PC3 tumors readily tolerate these conditions. Highly vascularized tumors, such as PC3/2G7, may be good targets for clinical antiangiogenic therapy.

PC3/2G7 endothelial cells were found to have a significantly lower rate of pericyte coverage than PC3 endothelial cells, as shown by double immunostaining of microvessels and pericyte cells. Pericytes wrap around vascular endothelial cells and provide them with survival signals essential for the stabilization and maintenance of mature blood vessels (28). The low rate of pericyte coverage in PC3/2G7 tumors compared with PC3 tumors is indicative of a more immature vascular system, and may contribute to the greater antiangiogenic response of the PC3/2G7 tumors.

Prolonged treatment of PC3/2G7 tumors with axitinib led to an apparent escape from antiangiogenesis, marked by neovascularization and the resumption of tumor growth. Several mechanisms may contribute to escape (Fig. 5B), and presumably act as tumor growth factor receptors (6, 7). Notably, following antiangiogenesis, tumor blood flow and microvessel density were as low in PC3/2G7 tumors as in PC3 tumors, yet the PC3/2G7 tumors showed significantly greater tumor cell apoptosis, more extensive necrotic regions, and lower tumor cell proliferation than PC3 tumors. These findings support the conclusion that the PC3/2G7 tumors are less tolerant to low vascularity than PC3 tumors.

All tumors, including those of low microvessel density, depend on a therapeutically targetable angiogenic process driven by a requirement of nutrients and oxygen exchange for tumor growth. However, vascularity requirements differ significantly between tumors, and
Tumor Vascularity and Antiangiogenesis

from VEGFR-targeted antiangiogenesis. Tumor angiogenesis can become VEGF independent by upregulating alternative proangiogenic molecules that compensate for the loss of VEGF signaling. This may, in part, be facilitated by hypoxia induced by tumor vessel pruning, which induces factors that stimulate tumor vascularization (42). Therapy-induced hypoxia also plays a critical role in facilitating the selection of tumor cells that are able to tolerate, and perhaps even thrive, in a low oxygen environment (43).

We determined that the vasculature of human PC3/2G7 (and PC3) tumors is derived from host (mouse) vascular endothelial cells and does not contain detectable levels of human blood vessels, which, in principle, could form by differentiation of the (human) tumor stem-like cells used to seed the PC3/2G7 tumors. In contrast, tumor xenografts grown from human glioblastoma neurospheres develop human blood vessels (identified using human CD31-specific antibody), indicating that brain cancer stem-like cells can differentiate into functional tumor endothelial cells (44, 45). Using the same anti-human CD31 antibody, we observed strong positive staining of human normal tissues, whereas human CD31 staining of PC3/2G7 tumor blood vessels was undetectable. The same PC3/2G7 tumors showed strong staining by anti-mouse CD31 antibody, indicating that the majority of PC3/2G7 tumor blood vessels are of host (mouse) origin. The ability of brain tumor stem cells, but apparently not other tumor stem-like cells, to differentiate into tumor endothelial cells (44, 45) is consistent with reports that normal neuronal stem cells can differentiate into endothelial cells (46), and suggests that this differentiation pathway may be tissue type-dependent. In contrast, our finding that VEGFA and CCL2 are upregulated in PC3/2G7 tumors compared with parental PC3 tumors is similar to the finding in other studies that brain cancer stem-like cells secrete proangiogenic factors, which in turn recruit host endothelial cells to grow into tumor blood vessels (47, 48). The proangiogenic chemokine interleukin (IL)-8 is another key determinant of prostate cancer vascularity; it is elevated in metastatic prostate cancer and stimulates angiogenesis and increases vascularity in many cancer types, including prostate tumors (49, 50), but was, in fact, decreased in PC3/2G7 tumors (Supplementary Fig. S6B). Further study is required to elucidate the full range of factors and mechanisms that lead to the increased angiogenesis of PC3/2G7 tumors.

In conclusion, we show, using the high vascularity, stem-like cell-derived prostate cancer model PC3/2G7 and its low vascularity PC3 parental tumor control, that highly vascularized tumors are more responsive to antiangiogenesis and less tolerant of the loss of vascularity than poorly vascularized tumors. Thus, the vascularity status of tumors in individual patients—or perhaps levels of CCL2 or another associated proangiogenic marker upregulated in PC3/2G7 tumors—could be an important prognostic indicator of intrinsic susceptibility to antiangiogenic therapies. Further studies are needed to establish whether the strong upregulation of CCL2 and other proangiogenic factors drives the increased vascularity of PC3/2G7 tumors, and to ascertain whether these factors also determine the low pericyte coverage of PC3/2G7 tumor endothelial cells, which may contribute to the observed increase in sensitivity to antiangiogenesis. Our finding that VEGFR2 was expressed at a high level on PC3 (but not PC3/2G7) tumor cells suggests VEGFR2 functions as a PC3 growth factor receptor, whose inhibition contributes to the PC3 tumor growth response seen with all 3 VEGF pathway-targeted drugs. Finally, PC3/2G7 tumors retained the ability to adapt and escape from antiangiogenesis, as evidenced by the resumption of tumor growth and neovascularization following prolonged antiangiogenic drug treatment, highlighting the need for more effective therapeutic approaches to such cancer stem-like cell-derived tumors.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: K. Zhang, D.J. Waxman
Development of methodology: K. Zhang
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K. Zhang
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K. Zhang, D.J. Waxman
Writing, review, and/or revision of the manuscript: K. Zhang, D.J. Waxman
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K. Zhang
Study supervision: D.J. Waxman

Acknowledgments
The authors thank C.S. Chen, Drs. J. Connerney, and L. Jia for assistance and many useful discussions.

Grant Support
This study was supported in part by NIH grant CA49248 (D.J. Waxman)

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 26, 2012; revised March 7, 2013; accepted March 7, 2013; published OnlineFirst May 1, 2013.

References
Zhang and Waxman

Molecular Cancer Therapeutics

Impact of Tumor Vascularity on Responsiveness to Antiangiogenesis in a Prostate Cancer Stem Cell-Derived Tumor Model

Kexiong Zhang and David J. Waxman

Updated version
Access the most recent version of this article at:
doi:10.1158/1535-7163.MCT-12-1240

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2013/03/12/1535-7163.MCT-12-1240.DC1

Cited articles
This article cites 50 articles, 21 of which you can access for free at:
http://mct.aacrjournals.org/content/12/5/787.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.