Highlights of This Issue 1219

SPOTLIGHT ON CLINICAL RESPONSE

1221 Overcoming Platinum Resistance through the Use of a Copper-Lowering Agent
Siqing Fu, Aung Naing, Caroline Fu, Macus Tien Kuo, and Razelle Kurzrock

REVIEW

1226 New Directions for Biologic Targets in Urothelial Carcinoma
Suzanne Richter and Srikala S. Sridhar

THERAPEUTIC DISCOVERY

1236 Antitumor Mechanisms of Targeting the PDK1 Pathway in Head and Neck Cancer
Neil E. Bhola, Maria L. Freilino, Sonali C. Joyce, Malabika Sen, Suif M. Thomas, Anirban Sahu, Andre Cassell, Ching-Shih Chen, and Jennifer R. Grandis

1247 IGF-1R/MDM2 Relationship Confers Enhanced Sensitivity to RITA in Ewing Sarcoma Cells
Giusy Di Conza, Marianna Buttarelli, Olimpia Monti, Marsha Pellegrino, Francesca Mancini, Alfredo Pontecorvi, Katia Scottardi, and Fabiola Moretti

1257 Identification and Characterization of MEL-3, a Novel AR Antagonist That Suppresses Prostate Cancer Cell Growth
Christine Helsen, Arnaud Marchand, Patrick Chaltin, Sebastian Munck, Arnout Voet, Annemieke Verstuyf, and Frank Claessens

1269 Dibenzophenanthridines as Inhibitors of Glutaminase C and Cancer Cell Proliferation
William P. Katt, Sekar Ramachandran, Jon W. Erickson, and Richard A. Cerione

1279 An Antibody Fusion Protein for Cancer Immunotherapy Mimicking IL-15 trans-Presentation at the Tumor Site
Vanessa Kermer, Volker Baum, Nora Hornig, Roland E. Kontermann, and Dafne Müller

PRECLINICAL DEVELOPMENT

1289 STAT3 Inhibition Overcomes Temozolomide Resistance in Glioblastoma by Downregulating MGMT Expression
Shinji Kohsaka, Lei Wang, Kazuhiro Yachi, Roshan Mahabir, Takuhito Narita, Tamio Itoh, Mishie Tanino, Taichi Kimura, Hiroshi Nishihara, and Shinya Tanaka

1300 Novel Immunotherapy for Malignant Melanoma with a Monoclonal Antibody That Blocks CEACAM1 Homophilic Interactions
Rona Ortenberg, Yair Sapir, Lee Raz, Liat Hershkovitz, Ayelet Ben Arav, Sivaan Sapoznik, Iris Barsaack, Camila Avivi, Yackov Berkun, Michal J. Besser, Tehila Ben-Moshe, Jacob Schachter, and Gal Markel

1311 HDL Mimetics Inhibit Tumor Development in Both Induced and Spontaneous Mouse Models of Colon Cancer

1320 Combination of Rad001 (Everolimus) and Propachlor Synergistically Induces Apoptosis through Enhanced Autophagy in Prostate Cancer Cells
Sheng Tai, Yin Sun, Nan Liu, Boxiao Ding, Elaine Hsia, Sunita Bhuta, Ryan K. Thor, Robert Damoiseaux, Chaozhao Liang, and Jiaoti Huang

1332 Proteasome Inhibition Blocks NF-κB and ERK1/2 Pathways, Restores Antigen Expression, and Sensitizes Resistant Human Melanoma to TCR-Engineered CTLs
Ali R. Jazirehi and James S. Economou

1342 Predominance of mTORC1 over mTORC2 in the Regulation of Proliferation of Ovarian Cancer Cells: Therapeutic Implications
Juan Carlos Montero, Xi Chen, Alberto Ocaña, and Atanasio Pandiella
The CXCR2 Antagonist, SCH-527123, Shows Antitumor Activity and Sensitizes Cells to Oxaliplatin in Preclinical Colon Cancer Models

Effect of Small-Molecule-Binding Affinity on Tumor Uptake In Vivo: A Systematic Study Using a Pretargeted Bispecific Antibody
Kelly Davis Orcutt, John J. Rhoden, Benjamin Ruiz-Yi, John V. Frangioni, and K. Dane Wittrup

Glycolytic Inhibition Alters Anaplastic Thyroid Carcinoma Tumor Metabolism and Improves Response to Conventional Chemotherapy and Radiation
Vlad C. Sandulache, Heath D. Skinner, Yuan Wang, Yunyun Chen, Cristina T. Dodge, Thomas J. Ow, James A. Bankson, Jeffrey N. Myers, and Stephen Y. Lai

Correction: Microtubule Inhibitors: Differentiating Tubulin-Inhibiting Agents Based on Mechanisms of Action, Clinical Activity, and Resistance

ABOUT THE COVER

The CEACAM1 protein protects melanoma cells from cytotoxic lymphocytes in vitro via homophilic intercellular interactions. Immunohistochemistry of a human lymph node infiltrated with melanoma cells for CEACAM1 (brown pigmentation) and CD8 (pink pigmentation) showed that almost all CD8-positive lymphocytes in the tumor and its close vicinity were CEACAM1⁺, while most lymphocytes in other areas distant from tumor edge were mostly CEACAM1⁻. This strongly suggests that CEACAM1-mediated inhibition occurs in vivo and thus its blockade is a promising strategy for cancer immunotherapy. For details, see article by Ortenberg and colleagues on page 1300.
Molecular Cancer Therapeutics

11 (6)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://mct.aacrjournals.org/content/11/6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Subscriptions</td>
<td></td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>

Downloaded from mct.aacrjournals.org on June 24, 2017. © 2012 American Association for Cancer Research.