SPOTLIGHT ON CLINICAL RESPONSE

Overcoming Platinum Resistance through the Use of a Copper-Lowering Agent
Siqing Fu, Aung Naing, Caroline Fu, Macus Tien Kuo, and Razelle Kurzrock

Overcoming Platinum Resistance through the Use of a Copper-Lowering Agent

REVIEW

New Directions for Biologic Targets in Urothelial Carcinoma
Suzanne Richter and Srikala S. Sridhar

THERAPEUTIC DISCOVERY

Antitumor Mechanisms of Targeting the PDK1 Pathway in Head and Neck Cancer
Neil E. Bholia, Maria L. Frellino, Sonali C. Joyce, Malabika Sen, Suji M. Thomas, Anirban Sahu, Andre Cassell, Ching-Shih Chen, and Jennifer R. Grandis

IGF-1R/MDM2 Relationship Confers Enhanced Sensitivity to RITA in Ewing Sarcoma Cells
Giusy Di Conza, Marianna Buttarelli, Olimpia Monti, Marsha Pellegrino, Francesca Mancini, Alfredo Pontecorvi, Katia Scotlandi, and Fabiola Moretti

Identification and Characterization of MEL-3, a Novel AR Antagonist That Suppresses Prostate Cancer Cell Growth
Christine Helsen, Arnaud Marchand, Patrick Chaltin, Sebastian Munck, Arnout Voet, Annemieke Verstuyft, and Frank Claessens

HDL Mimetics Inhibit Tumor Development in Both Induced and Spontaneous Mouse Models of Colon Cancer

PRECLINICAL DEVELOPMENT

Proteasome Inhibition Blocks NF-κB and ERK1/2 Pathways, Restores Antigen Expression, and Sensitizes Resistant Human Melanoma to TCR-Engineered CTLs
Ali R. Jazirehi and James S. Economou

Predominance of mTORC1 over mTORC2 in the Regulation of Proliferation of Ovarian Cancer Cells: Therapeutic Implications
Juan Carlos Montero, Xi Chen, Alberto Ocaña, and Atanasio Pandiella
The CXCR2 Antagonist, SCH-527123, Shows Antitumor Activity and Sensitizes Cells to Oxaliplatin in Preclinical Colon Cancer Models

Effect of Small-Molecule–Binding Affinity on Tumor Uptake In Vivo: A Systematic Study Using a Pretargeted Bispecific Antibody
Kelly Davis Orcutt, John J. Rhoden, Benjamin Ruiz-Yi, John V. Frangioni, and K. Dane Wittrup

Correction: Microtubule Inhibitors: Differentiating Tubulin-Inhibiting Agents Based on Mechanisms of Action, Clinical Activity, and Resistance

Glycolytic Inhibition Alters Anaplastic Thyroid Carcinoma Tumor Metabolism and Improves Response to Conventional Chemotherapy and Radiation
Vlad C. Sandulache, Heath D. Skinner, Yuan Wang, Yunyun Chen, Cristina T. Dodge, Thomas J. Ow, James A. Bankson, Jeffrey N. Myers, and Stephen Y. Lai

Glycolytic Inhibition Alters Anaplastic Thyroid Carcinoma Tumor Metabolism and Improves Response to Conventional Chemotherapy and Radiation
Vlad C. Sandulache, Heath D. Skinner, Yuan Wang, Yunyun Chen, Cristina T. Dodge, Thomas J. Ow, James A. Bankson, Jeffrey N. Myers, and Stephen Y. Lai

ABOUT THE COVER

The CEACAM1 protein protects melanoma cells from cytotoxic lymphocytes in vitro via homophilic intercellular interactions. Immunohistochemistry of a human lymph node infiltrated with melanoma cells for CEACAM1 (brown pigmentation) and CD8 (pink pigmentation) showed that almost all CD8-positive lymphocytes in the tumor and its close vicinity were CEACAM1⁺, while most lymphocytes in other areas distant from tumor edge were mostly CEACAM1⁻. This strongly suggests that CEACAM1-mediated inhibition occurs in vivo and thus its blockade is a promising strategy for cancer immunotherapy. For details, see article by Ortenberg and colleagues on page 1300.
Molecular Cancer Therapeutics

11 (6)


Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/11/6

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.