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in the sub-G; population and cleaved caspase-3 proteins,
indicating that lapatinib induced apoptosis in NCI-N87 as
well (Figs. 4B and C).

The addition of HGF to lapatinib-treated gastric cancer
cells phosphorylated MET RTK and restored MAPK and
AKT signaling (Fig. 3A). The reactivated MAPK pathway
may mediate the escape from lapatinib-induced growth
inhibition by allowing Gy-arrested NCI-N87 and SNU-216
cells to exit G; and enter normal cell-cycle progression
(Figs. 3B and 4A). The population of apoptotic cells in
NCI-N87 also decreased when AKT was rephosphory-
lated by MET RTK (Fig. 4C).

Addition of PHA-665752 can suppress the rescue
effects of MET RTK

NCI-N87 and SNU-216 cells were treated with a highly
selective MET tyrosine kinase inhibitor, PHA-665752 and

showed no significant growth inhibition (Fig. 3B). When
the gastric cancer cells were treated with a combination of
lapatinib, HGF, and PHA-665752, MET-mediated resis-
tance to lapatinib inhibition was completely abrogated
and growth inhibition was restored (Fig. 3B). Figure 3A
shows that the addition of PHA-665752 was able to pre-
vent activation of the MET RTK by blocking phosphory-
lation of the MET tyrosine kinase domain (Tyr1234/1235).
Inactivation of MET, HER2, and EGFR by lapatinib and
PHA-665752 were able to abolish the downstream phos-
phorylation of MAPK and AKT, seen in untreated and in
HGF-treated cells. We noted restoration of G; arrest in
both gastric cancer cell lines, characterized by an increase
in the G; population (62% to 84% in NCI-N87 and 45% to
61% in SNU-216; Fig. 4A). Apoptotic cells also increased in
NCI-N87, as shown by a return to the lapatinib-treated
level (Fig. 4B and C).
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RNA interference silencing of MET restores
lapatinib-induced growth inhibition

To confirm that MET RTK is responsible for lapatinib
resistance, both gastric cancer cell lines were trans-
fected with either nonsilencing siRNA, MET-targeting
siRNA, or no siRNA, respectively. In Fig. 5A, cells
transfected with nonsilencing siRNA showed no signifi-
cant decrease in MET mRNA expression compared with
cells not transfected with any siRNA. In contrast, MET
mRNA was significantly downregulated (~85%-90%)
in both NCI-N87 and SNU-216 following transfection
with MET siRNA. When both transfected groups in
NCI-N87 and SNU-216 were additionally treated with
lapatinib and HGF, MET-mediated resistance to lapa-
tinib-induced growth inhibition was lost (Fig. 5B).

Discussion

Molecular therapies targeting specific RTKs responsi-
ble for cell proliferation, survival, and migration have
become more attractive as therapeutic strategies in gastric
cancer, in which, despite modern surgery and chemother-
apy, survival remains poor (2-4). HER2 is of particular

interest as a drug target because it has been shown to be
amplified and/or overexpressed in a subset of gastric
cancers (5-9). Knockdowns of HER2 protein expression
also results in decreased cell viability in HER2" gastric
cancer cell lines and reduced tumor growth in vivo (30, 31).
Lapatinib, a dual TKI that targets both HER2 and EGFR, is
one of the drugs currently being assessed in clinical trials
for potential use in gastric cancer therapy. Lapatinib,
which has shown promising in vitro results in the treat-
ment of HER2" cancer cells, is already approved for the
treatment of specific subsets of HER2" breast cancer
patients. However, numerous studies have revealed a
particular weakness in the therapeutic strategies targeting
single receptors such as HER2, wherein drug resistance
can be conferred through the activation of compensatory/
overlapping survival pathways (32-35).

We hypothesized that MET may confer resistance to
HER2-directed therapy in gastric cancer. The MET RTK
has been implicated as a mediator of resistance to thera-
pies targeting members of the HER family of RTKs in
breast, colon, and lung cancer cells (24-27). Furthermore,
HER2 and MET are coexpressed in 12% of unselected
gastric cancer but 24% of the intestinal subtype (36).
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Ourresults show that the HER2" gastric cancer cell lines
NCI-N87 and SNU-216 are more sensitive to lapatinib-
induced growth inhibition than a non-HER2 amplified cell
line (SNU-16). Growth inhibition in the gastric cancer
cells, induced by decreased MAPK signaling, is likely
mediated through G; cell-cycle arrest. Despite suppres-
sion of AKT signaling in both gastric cancer cell lines, we
noted apoptotic events only in NCI-N87 and not in SNU-
216. Kim and colleagues, who made similar discoveries,
have suggested that the HER2 gene amplification ratio
may be an important factor in determining susceptibility
to lapatinib-induced apoptosis, and/or that there are
different mechanisms of action for lapatinib in various
cell lines (15).

Interestingly, we noted dephosphorylation of MET
receptors in the NCI-N87 and SNU-216 lines treated with

lapatinib (Fig. 3A). A similar phenomenon was also
observed in a NSCLC cell line, in which an analogue of
lapatinib disrupted the physical complex between MET
and HER2 receptors and inhibited MET activity (27).
These findings are consistent with several studies that
support cross-activation between MET and EGFR recep-
tors (24, 37, 38). In our gastric cancer cell lines, the mech-
anism of baseline MET phosphorylation remains unclear.
We cannot clearly implicate direct cross-talk through
HER2/MET heterodimers as coimmunoprecipitation
experiments only showed heterodimerization of HER2
and EGFR but not MET and HER2 /EGFR (data not shown;
ref. 27). Other intermediaries or indirect cross-talk may be
important as has been shown with the intracellular Src
kinase (39, 40). Alternatively, lapatinib may have off-
target effects on MET; however, this has not been shown
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in a model using A549 NSCLC cells in which MET acti-
vation is not significantly affected by treatment with
lapatinib (41).

We found that MET is coexpressed with HER2 and
EGEFR in our gastric cancer cell lines, and HGF-mediated
activation of MET can rescue NCI-N87 and SNU-216 from
lapatinib-induced growth inhibition. Smaller concentra-
tions of HGF were required to confer resistance in SNU-
216 than in NCI-N87, most likely due to reduced sensi-
tivity to lapatinib in SNU-216 (Fig. 2B). Phosphorylation of
MET reversed the growth inhibitory effects of lapatinib
through reactivation of the downstream signaling path-
ways MAPK and AKT. Presumably, the restored signal-
ing of MAPK and AKT pathways allowed the gastric
cancer cells to exit G; arrest and to enter normal cell-cycle
progression, and decreased the frequency of apoptotic
events in NCI-N87.

We investigated other RTKs including IGF-R1 and
FGFR because IGF-1R can promote resistance to anti-
EGEFR treatment and FGF-3 is amplified /overexpressed
in selected gastric cancers (42, 43). Coculture of lapati-
nib-treated gastric cancer cell lines with IGF-1 or FGF-3
showed that only HGF significantly rescued NCI-N87
cells from lapatinib-induced growth inhibition while
FGF-3 conferred resistance to lapatinib similar to HGF
in SNU-216. Increasing the concentrations of FGF-3 and
IGF-1 showed no significant change in proliferation of
lapatinib-treated gastric cancer cell lines. Immunoblot
analysis of both cell lines showed that neither FGF-3 nor

IGF-1 could restore MAPK signaling as strongly as
HGEF. It is possible that such rescue by FGF-3 in SNU-
216 is possible because of the cell line’s reduced sensi-
tivity to lapatinib when compared with NCI-N87.

Recently, Liu and colleagues examined a panel of cancer
cells with HER1/HER?2 amplification coupled with MET
overexpression and reported synergy in growth inhibi-
tion, when cells are treated with dual inhibitors (44). They
conclude that these receptors cooperate in promoting cell
proliferation and survival and that simultaneous inhibi-
tion is necessary to achieve maximal clinical effect. In our
study, synergy was not observed in NCI-N87 and SNU-216
treated with dual inhibitors, despite HER2 amplification
and MET overexpression (Fig. 3B). Inhibition of HER2
was sufficient to induce significant growth arrest without
requiring combinatorial treatment with a MET inhibitor,
suggesting that dual inhibition is not necessary until resis-
tance develops. This indicates that genotype alone may not
predict response and that lineage may be important.

Our findings are consistent with those of Engelman
and colleagues, who found that "oncogenically-addicted”
cells do not require dual therapy until resistance develops
with activation of a compensatory RTK pathway (45).
They argue that dual therapy should not be initially used
to avoid increased toxicity and that intermittent, short
duration multidrug therapy could prevent the develop-
ment of resistance (46).

Our findings support the hypothesis that, in gastric
cancers that coexpress HER2, EGFR, and MET, lapatinib-
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induced growth inhibition are abrogated through the
activation of MET RTK, which restores shared down-
stream signaling pathways such as MAPK and AKT.
Importantly, PHA-665752, a highly selective MET tyro-
sine kinase inhibitor, prevents MET-mediated mecha-
nisms of resistance to lapatinib inhibition. PHA-665752
resensitizes NCI-N87 and SNU-216 to the effects of
lapatinib by inhibiting MET phosphorylation and sup-
pressing MAPK and AKT signal transduction. We also
confirmed our finding that downregulation of MET
expression with siRNA can bypass the rescue effects of
MET and restore growth inhibition of the gastric cancer
cells by lapatinib. In addition, we associated degree of
HER2 amplification with response to lapatinib. Further
experiments showed that cells less sensitive to lapatinib-
induced growth inhibition are more susceptible to the
rescue effects of other growth factors. This suggests that
quantitative analysis of HER2 amplification might better
predict response to lapatinib.
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