Molecular Cancer Therapeutics
The Cancer Drug Development Journal: From Concept to Clinic
March 2012 • Volume 11 • Number 3

Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>515</td>
<td>Highlights of This Issue</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>REVIEWS</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>Mesothelin-Targeted Agents in Clinical Trials and in Preclinical Development</td>
<td>Ronan J. Kelly, Elad Sharon, Ira Pastan, and Raffit Hassan</td>
</tr>
<tr>
<td>526</td>
<td>Novel Therapies for Metastatic Renal Cell Carcinoma: Efforts to Expand beyond the VEGF/mTOR Signaling Paradigm</td>
<td>Sumanta Kumar Pal, Stephen Williams, David Y. Josephson, Courtney Carmichael, Nicholas J. Vogelzang, and David I. Quinn</td>
</tr>
<tr>
<td>538</td>
<td>The Ubiquitin-Proteasome System Meets Angiogenesis</td>
<td>Nader Rahimi</td>
</tr>
<tr>
<td>549</td>
<td>THERAPEUTIC DISCOVERY</td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>The Antidiabetic Drug Metformin Inhibits Gastric Cancer Cell</td>
<td>Kiyohito Kato, Jian Gong, Hisakazu Iwama, Akira Kitanaka, Joji Tani, Hisaaki Miyoshi, Kei Nomura, Shima Mimura, Mitsuoshi Kobayashi, Yuichi Aritomo, Hideyuki Kobara, Hirohito Mori, Takashi Himoto, Keiichi Okano, Yasuyuki Suzuki, Koji Murao, and Tsutomu Masaki</td>
</tr>
<tr>
<td>561</td>
<td>Inhibition of p38 MAPK-Dependent Excision Repair Cross-Complementing 1 Expression Decreases the DNA Repair Capacity to Etoposide</td>
<td>Min-Shao Tsai, Shao-Hsing Weng, Huang-Jen Chen, Yu-Fan Chiu, Yu-Ching Huang, Sheng-Chieh Tseng, Ya-Hsun Kuo, and Yun-Wei Lin</td>
</tr>
<tr>
<td>572</td>
<td>Galiximab Signals B-NHL Cells and Inhibits the Activities of NF-κB–Induced YY1- and Snail-Resistant Factors: Mechanism of Sensitization to Apoptosis by Chemoinmunotherapeutic Drugs</td>
<td>Melisa A. Martinez-Paniagua, Mario I. Vega, Sara Huerta-Yepez, Stavroula Baritaki, Gabriel G. Vega, Kandasamy Hartharan, and Benjamin Bonavida</td>
</tr>
<tr>
<td>582</td>
<td>Antitumor Activity of a Novel Bispecific Antibody That Targets the ErbB2/ErbB3 Oncogenic Unit and Inhibits Heregulin-Induced Activation of ErbB3</td>
<td>Charlotte F. McDonagh, Alexandra Huhalov, Brian D. Harris, Sharlene Adams, Violette Paragas, Shinji Oyama, Bo Zhang, Lla Lusus, Ryan Overland, Stephanie Nguyen, Jinming Gu, Neeraj Kohli, Matt Wallace, Michael J. Feldhaus, Arthur J. Kudla, Birgit Scheebel, and Ulrik B. Nielsen</td>
</tr>
<tr>
<td>594</td>
<td>A Human Fab-Based Immunoconjugate Specific for the LMP1 Extracellular Domain Inhibits Nasopharyngeal Carcinoma Growth In Vitro and In Vivo</td>
<td>Renjie Chen, Dawei Zhang, Yuan Mao, Jin Zhu, Hao Ming, Juan Wen, Jun Ma, Qing Cao, Hong Lin, Qi Tang, Jie Liang, and Zhengqin Feng</td>
</tr>
<tr>
<td>629</td>
<td>Inhibition of dUTPase Induces Synthetic Lethality with Thymidylate Synthase–Targeted Therapies in Non–Small Cell Lung Cancer</td>
<td>Peter M. Wilson, Melissa J. Labonte, Heinz-Josef Lenz, Philip C. Mack, and Robert D. Ladner</td>
</tr>
<tr>
<td>639</td>
<td>DLK1 as a Potential Target against Cancer Stem/Progenitor Cells of Hepatocellular Carcinoma</td>
<td>Xiao Xu, Rui-Fang Liu, Xin Zhang, Li-Yu Huang, Fei Chen, Qian-Lan Fei, and Ze-Guang Han</td>
</tr>
<tr>
<td>649</td>
<td>212Pb-Radioimmunotherapy Induces G2 Cell-Cycle Arrest and Delays DNA Damage Repair in Tumor Xenografts in a Model for Disseminated Intraperitoneal Disease</td>
<td>Kwon Joong Yong, Diane E. Milenic, Kwamena E. Baidoo, and Martin W. Brechbiel</td>
</tr>
</tbody>
</table>
PRECLINICAL DEVELOPMENT

649 Potent Inhibition of Angiogenesis by the IGF-1 Receptor-Targeting Antibody SCH717454 Is Reversed by IGF-2
Hemant K. Bid, Jun Zhan, Doris A. Phelps, Raushan T. Kurmasheva, and Peter J. Houghton

660 MET Activation Mediates Resistance to Lapatinib Inhibition of HER2-Amplified Gastric Cancer Cells
Chin-Tung Chen, Hyaehwan Kim, David Liska, Sizhi Gao, James G. Christensen, and Martin R. Weiser

670 CEP-28122, a Highly Potent and Selective Orally Active Inhibitor of Anaplastic Lymphoma Kinase with Antitumor Activity in Experimental Models of Human Cancers
Mangeng Cheng, Matthew R. Quail, Diane E. Gingrich, Gregory R. Ott, Lihui Lu, Weihua Wan, Mark S. Albom, Thelma S. Angeles, Lisa D. Aimone, Flavio Cristofani, Rodolfo Machiorlatti, Cristina Abele, Mark A. Ator, Bruce D. Dorsey, Giorgio Inghirami, and Bruce A. Ruggeri

680 Low-Dose Metronomic Oral Dosing of a Prodrug of Gemcitabine (LY2334737) Causes Antitumor Effects in the Absence of Inhibition of Systemic Vasculogenesis
Giulio Francia, Yuval Shaked, Kae Hashimoto, John Sun, Melissa Yin, Carolyn Costa, Ping Xu, Shan Man, Christina Hackl, Julie Stewart, Mark Uhlil, Anne H. Dantzif, F. Stuart Foster, and Robert S. Kerbel

690 Ponatinib (AP24534), a Multitargeted Pan-FGFR Inhibitor with Activity in Multiple FGFR-Amplified or Mutated Cancer Models

700 TAK-960, a Novel, Orally Available, Selective Inhibitor of Polo-Like Kinase 1, Shows Broad-spectrum Preclinical Antitumor Activity in Multiple Dosing Regimens
Yuichi Hikichi, Kohei Honda, Kouki Hikami, Hitoshi Miyashita, Isao Kaieda, Saomi Murai, Noriko Uchiyama, Maki Hasegawa, Tomohiro Kawamoto, Takashi Sato, Takashi Ichikawa, Sheldon Cao, Zhe Nie, Lilly Zhang, Johnny Yang, Keisuke Kuida, and Erik Kupperman

710 An Integrated Genomic Approach to Identify Predictive Biomarkers of Response to the Aurora Kinase Inhibitor PF-03814735
Kenneth E. Hook, Scott J. Garza, Maruza E. Lira, Keith A. Ching, Nathan V. Lee, Joan Cao, Jing Yuan, Jingjiong Ye, Mark Ozeck, Stephanie T. Shi, Xianxian Zheng, Paul A. Rejto, Julie L.C. Kan, James G. Christensen, and Adam Pavlicek

720 Comprehensive Predictive Biomarker Analysis for MEK Inhibitor GSK1120212
Junping Jing, Joel Greshock, Joanna Dawn Holbrook, Aidan Gilmartin, Xiping Zhang, Elizabeth McNeil, Theresa Conway, Christopher Moy, Sylvie Laquerre, Kurt Bachman, Richard Wooster, and Yan Degenhardt

730 The Novel Oral Hsp90 Inhibitor NVP-HSP990 Exhibits Potent and Broad-spectrum Antitumor Activities In Vitro and In Vivo

740 Molecular and Cellular Pharmacology of the Hypoxia-Activated Prodrug TH-302
Fanying Meng, James W. Evans, Deepthi Bhupathi, Monica Banica, Leslie Lan, Gustavo Lorente, Jian-Xin Duan, Xiaohong Cai, Alexandra M. Mowday, Christopher P. Guise, Andrej Maroz, Robert F. Anderson, Adam V. Patterson, Gregory C. Stachelek, Peter M. Glazer, Mark D. Matteucci, and Charles P. Hart

752 Effects of Anti-VEGF on Pharmacokinetics, Biodistribution, and Tumor Penetration of Trastuzumab in a Preclinical Breast Cancer Model
Cinthia V. Pastuskovas, Eduardo E. Mundo, Simon P. Williams, Tapan K. Nayak, Jason Ho, Sheila Ulufatu, Suzanna Clark, Sarajane Ross, Eric Cheng, Kathryn Parsons-Reponte, Gary Cain, Marije Van Hyl, Nicholas Majidly, Sheila Bheddah, Josefa dela Cruz Chuh, Katherine R. Kozak, Nicholas Lewin-Koh, Peter Nauka, Daniela Bumbaca, Mark Sliwkowski, Jay Tibibits, Frank-Peter Theil, Paul J. Fielder, License A. Khawil, and C. Andrew Boswell
The Aurora Kinase A Inhibitor MLN8237 Enhances Cisplatin-Induced Cell Death in Esophageal Adenocarcinoma Cells
Vikas Sehdev, DunFa Peng, Mohammed Soutto, M. Kay Washington, Frank Revetta, Jeffrey Ecsedy, Alexander Zaika, Tilman T. Rau, Regine Schneider-Stock, Abbes Belkhiri, and Wael El-Rifai

MOLECULAR MEDICINE IN PRACTICE

Next Generation Sequencing of Prostate Cancer from a Patient Identifies a Deficiency of Methylthioadenosine Phosphorylase, an Exploitable Tumor Target

ABOUT THE COVER

The uracil-metabolizing enzyme dUTPase is a key component of de novo thymidine nucleotide biosynthesis and its expression is tightly regulated in replicating tissues such as the follicular germinal centers of human palatine tonsil (pictured). However, dUTPase is frequently overexpressed in human cancers and this has been firmly linked to drug resistance to chemotherapeutic agents that target thymidylate synthase (TS). Using immunohistochemistry and quantitative RT-PCR, evidence of dUTPase overexpression in a cohort of non-small cell lung cancers (NSCLC) was observed. Small interfering RNA-mediated gene silencing of dUTPase induced a strong synthetic lethal effect in NSCLC cell lines to two class-specific TS-targeted therapies including pemetrexed and fluorodeoxyuridine. Inhibition of dUTPase represents a promising, mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents by overcoming a critical drug resistance pathway. For details, see article by Wilson and colleagues on page 616.
Molecular Cancer Therapeutics

11 (3)

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/11/3

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.