Highlights of This Issue

REVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>TRAIL Signaling and Synergy Mechanisms Used in TRAIL-Based Combination Therapies</td>
<td>Christian T. Hellwig and Markus Rehm</td>
</tr>
<tr>
<td>14</td>
<td>Oncogenic Viruses and Tumor Glucose Metabolism: Like Kids in a Candy Store</td>
<td>Evan Noch and Kamel Khalili</td>
</tr>
<tr>
<td>34</td>
<td>A 71-Gene Signature of TRAIL Sensitivity in Cancer Cells</td>
<td>Jun-Jie Chen, Steen Knudsen, Wiktor Mazin, Jesper Dahlgaard, and Baolin Zhang</td>
</tr>
<tr>
<td>45</td>
<td>Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells</td>
<td>Yan Liu, Shi-Yong Sun, Taofeek K. Ovonikoko, Gabriel L. Sica, Walter J. Curran, Fadlo R. Khuri, and Xingming Deng</td>
</tr>
<tr>
<td>57</td>
<td>Effective Targeting of Hedgehog Signaling in a Medulloblastoma Model with PF-5274857, a Potent and Selective Smoothened Antagonist That Penetrates the Blood–Brain Barrier</td>
<td>Allison Rohrer, Mary E. Spilker, Justine L. Lam, Bernadette Pascaul, Darian Bartkowski, Qing John Li, Amy H. Yang, Greg Stevens, Meirong Xu, Peter A. Wells, Simon Planken, Sajiv Nair, and Shaoxian Sun</td>
</tr>
</tbody>
</table>

THERAPEUTIC DISCOVERY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>MUC13 Mucin Augments Pancreatic Tumorigenesis</td>
<td>Subhash C. Chauhan, Mara C. Ebeling, Diane M. Maher, Michael D. Koch, Akira Watanabe, Hiroyuki A buratani, Yuhlong Lio, and Meena Jaggi</td>
</tr>
<tr>
<td>34</td>
<td>A 71-Gene Signature of TRAIL Sensitivity in Cancer Cells</td>
<td>Jun-Jie Chen, Steen Knudsen, Wiktor Mazin, Jesper Dahlgaard, and Baolin Zhang</td>
</tr>
<tr>
<td>45</td>
<td>Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells</td>
<td>Yan Liu, Shi-Yong Sun, Taofeek K. Ovonikoko, Gabriel L. Sica, Walter J. Curran, Fadlo R. Khuri, and Xingming Deng</td>
</tr>
</tbody>
</table>

PRECLINICAL DEVELOPMENT

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>Apigenin Induces Apoptosis in Human Leukemia Cells and Exhibits Anti-Leukemic Activity In Vivo</td>
<td>Amit Budhraja, Ning Gao, Zhuo Zhang, Young-Ok Son, Senping Cheng, Xin Wang, Songze Ding, Andrew Hitron, Gang Chen, Jia Luo, and Xianglin Shi</td>
</tr>
</tbody>
</table>
Single-Chain Antibody-Based Immunotoxins Targeting Her2/neu: Design Optimization and Impact of Affinity on Antitumor Efficacy and Off-Target Toxicity
Yu Cao, James D. Marks, Qian Huang, Stephen I. Rudnick, Chyi Xiong, Walter N. Hittelman, Xiaowen Wen, John W. Marks, Lawrence H. Cheung, Kim Boland, Chun Li, Gregory P. Adams, and Michael G. Rosenblum

MK-2206, a Novel Allosteric Inhibitor of Akt, Synergizes with Gefitinib against Malignant Glioma via Modulating Both Autophagy and Apoptosis
Yan Cheng, Yi Zhang, Li Zhang, Xingcong Ren, Kathryn J. Huber, Li Lei Zhou, Jason Liao, Heike Keihack, Li Yan, Eric Rubin, and Jin-Ming Yang

A Polymeric Nanoparticle Encapsulated Small-Molecule Inhibitor of Hedgehog Signaling (NanoHHI) Bypasses Secondary Mutational Resistance to Smoothened Antagonists
Venugopal Chenna, Chaoxin Hu, Dipankar Pramanik, Blake T. Aftab, Collins Kariuki, Nathaniel R. Campbell, Seung-Mo Hong, Ming Zhao, Michelle A. Rudek, Saeed R. Khan, Charles M. Rudin, and Anirban Maitra

MK1775, a Selective Wee1 Inhibitor, Shows Single-Agent Antitumor Activity against Sarcoma Cells
Jenny M. Kreahling, Jennifer Y. Gemmer, Damon Reed, Douglas Letson, Marilyn Bui, and Soner Altiok

Induction of Vascular Endothelial Growth Factor Secretion by Childhood Acute Lymphoblastic Leukemia Cells via the FLT-3 Signaling Pathway
Ana Markovic, Karen L. MacKenzie, and Richard B. Lock

In Silico Screening Reveals Structurally Diverse, Nanomolar Inhibitors of NQO2 That Are Functionally Active in Cells and Can Modulate NF-κB Signaling
Karen A. Nolan, Mark S. Dunstan, Mary C. Caraher, Katherine A. Scott, David Leys, and Ian J. Stratford

Overcoming Erlotinib Resistance in EGFR Mutation-Positive Non–Small Cell Lung Cancer Cells by Targeting Survivin
Kunio Okamoto, Isamu Okamoto, Erina Hatashita, Kiyoko Kuwata, Haruka Yamaguchi, Aya Kita, Kentaro Yamanaka, Mayumi Ono, and Kazuhiko Nakagawa

Breast Cancer–Derived Bone Metastasis Can Be Effectively Reduced through Specific c-MET Inhibitor Tivantinib (ARQ 197) and shRNA c-MET Knockdown
Sara Previdi, Giovanni Abbade, Francesca Dalo, Dennis S. France, and Massimo Broggini

Epratuzumab–SN-38: A New Antibody–Drug Conjugate for the Therapy of Hematologic Malignancies
Robert M. Sharkey, Serengulam V. Govindan, Thomas M. Cardillo, and David M. Goldenberg

Targeting Interleukin-4 Receptor α with Hybrid Peptide for Effective Cancer Therapy
Liying Yang, Tomohisa Horibe, Masayuki Kohno, Mari Hara, Koji Ishihara, Raj K. Puri, and Koji Kawakami

Tumor Suppressor MicroRNA-493 Decreases Cell Motility and Migration Ability in Human Bladder Cancer Cells by Downregulating RhoC and FZD4
Koji Ueno, Hiroshi Hirata, Shahanah Majid, Soichiro Yamamura, Varahram Shahryari, Z. Laura Tabatabai, Yuji Hinoda, and Rajvir Dahiya
ABOUT THE COVER

Pancreatic cancer is extremely lethal, partially due to the aggressive nature of the disease and the lack of reliable markers for early detection. Mucin 13 (MUC13) was found to be overexpressed in pancreatic cancer tissue samples. In in vitro studies, the expression of MUC13 increased the oncogenic characteristics of pancreatic cancer cells, including increased cell proliferation, invasion, and modulation of tumorigenic signaling pathways. Exogenous MUC13 expression also increased tumorigenesis in a mouse model of pancreatic cancer. For details, see article by Chauhan and colleagues on page 24.
Molecular Cancer Therapeutics

11 (1)

Updated version Access the most recent version of this article at:
http://mct.aacrjournals.org/content/11/1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.