Highlights of This Issue

1. **REVIEWS**

 - **3** TRAIL Signaling and Synergy Mechanisms Used in TRAIL-Based Combination Therapies
 Christian T. Hellwig and Markus Rehm
 - **14** Oncogenic Viruses and Tumor Glucose Metabolism: Like Kids in a Candy Store
 Evan Noch and Kamel Khalili

THERAPEUTIC DISCOVERY

- **24** MUC13 Mucin Augments Pancreatic Tumorigenesis
 Subhash C. Chauhan, Mara C. Ebeling, Diane M. Maher, Michael D. Koch, Akira Watanabe, Hiroyuki Aburatani, Yuhlong Lio, and Meena Jaggi

- **34** A 71-Gene Signature of TRAIL Sensitivity in Cancer Cells
 Jun-Jie Chen, Steen Knudsen, Wiktor Mazin, Jesper Dahlgaard, and Baolin Zhang

- **45** Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells
 Yan Liu, Shi-Yong Sun, Taofeek K. Owonikoko, Gabriel L. Sica, Walter J. Curran, Fadlo R. Khuri, and Xingming Deng

PRECLINICAL DEVELOPMENT

- **57** Effective Targeting of Hedgehog Signaling in a Medulloblastoma Model with PF-5274857, a Potent and Selective Smoothened Antagonist That Penetrates the Blood–Brain Barrier
 Allison Rohner, Mary E. Spilker, Justine L. Lam, Bernadette Pascual, Darian Bartkowski, Qing John Li, Amy H. Yang, Greg Stevens, Meirong Xu, Peter A. Wells, Simon Planken, Sajiv Nair, and Shaoxian Sun

- **66** Genomic c-Myc Quadruplex DNA Selectively Kills Leukemia
 Kara C. Sedoris, Shelia D. Thomas, Cortney R. Clarkson, David Muench, Ashrafal Islam, Rajesh Singh, and Donald M. Miller

- **77** A Monoclonal Antibody against Human Notch1 Ligand-Binding Domain Depletes Subpopulation of Putative Breast Cancer Stem-like Cells
 Ankur Sharma, Anurag N. Paranjape, Annapoorni Rangarajan, and Rajan R. Dige

- **87** SOD Mimetics: A Novel Class of Androgen Receptor Inhibitors That Suppresses Castration-Resistant Growth of Prostate Cancer
 Rusha Thomas and Nima Sharifi

- **98** Targeted Mutations in the ATR Pathway Define Agent-Specific Requirements for Cancer Cell Growth and Survival
 Deborah Wilsker, Jon H. Chung, Ivan Pradilla, Eva Petermann, Thomas Helleday, and Fred Bunz

- **108** Aryl Hydrocarbon Receptor Agonists Induce MicroRNA-335 Expression and Inhibit Lung Metastasis of Estrogen Receptor Negative Breast Cancer Cells
 Shu Zhang, KyoungHyun Kim, Un Ho Jin, Catherine Pient, Huojun Cao, Brad Amendt, Xinyi Liu, Heather Wilson-Robles, and Stephen Safe

- **119** A Systems Biology Approach Identifies SART1 as a Novel Determinant of Both 5-Fluorouracil and SN38 Drug Resistance in Colorectal Cancer

- **129** Apigenin Induces Apoptosis in Human Leukemia Cells and Exhibits Anti-Leukemic Activity In Vivo
 Amit Budhraja, Ning Gao, Zhou Zhang, Young-Ok Son, Senping Cheng, Xin Wang, Songze Ding, Andrew Hitron, Gang Chen, Jia Luo, and Xianglin Shi
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>Single-Chain Antibody-Based Immunotoxins Targeting Her2/neu: Design Optimization and Impact of Affinity on Antitumor Efficacy and Off-Target Toxicity</td>
<td>Yu Cao, James D. Marks, Qian Huang, Stephen I. Rudnick, Chiyi Xiong, Walter N. Hittelman, Xiaoxia Wen, John W. Marks, Lawrence H. Cheung, Kim Boland, Chun Li, Gregory P. Adams, and Michael G. Rosenblum</td>
</tr>
<tr>
<td>154</td>
<td>MK-2206, a Novel Allosteric Inhibitor of Akt, Synergizes with Gefitinib against Malignant Glioma via Modulating Both Autophagy and Apoptosis</td>
<td>Yan Cheng, Yi Zhang, Li Zhang, Xingcong Ren, Kathryn J. Huber-Keener, Xiaoyuan Liu, Lei Zhou, Jason Liao, Heike Keihack, Li Yan, Eric Rubin, and Jin-Ming Yang</td>
</tr>
<tr>
<td>174</td>
<td>MK1775, a Selective Wee1 Inhibitor, Shows Single-Agent Antitumor Activity against Sarcoma Cells</td>
<td>Jenny M. Kreahling, Jennifer Y. Gemmer, Damon Reed, Douglas Letson, Marilyn Bui, and Soner Altiok</td>
</tr>
<tr>
<td>183</td>
<td>Induction of Vascular Endothelial Growth Factor Secretion by Childhood Acute Lymphoblastic Leukemia Cells via the FLT-3 Signaling Pathway</td>
<td>Ana Markovic, Karen L. MacKenzie, and Richard B. Lock</td>
</tr>
<tr>
<td>194</td>
<td>In Silico Screening Reveals Structurally Diverse, Nanomolar Inhibitors of NQO2 That Are Functionally Active in Cells and Can Modulate NF-κB Signaling</td>
<td>Karen A. Nolan, Mark S. Dunstan, Mary C. Caraher, Katherine A. Scott, David Leys, and Ian J. Stratford</td>
</tr>
<tr>
<td>214</td>
<td>Breast Cancer–Derived Bone Metastasis Can Be Effectively Reduced through Specific c-MET Inhibitor Tivantinib (ARQ 197) and shRNA c-MET Knockdown</td>
<td>Sara Previdi, Giovanni Abbadesa, Francesca Dalò, Dennis S. France, and Massimo Broggini</td>
</tr>
<tr>
<td>235</td>
<td>Targeting Interleukin-4 Receptor α with Hybrid Peptide for Effective Cancer Therapy</td>
<td>Liying Yang, Tomohisa Horibe, Masayuki Kohno, Mari Haramoto, Koji Ohara, Raj K. Puri, and Koji Kawakami</td>
</tr>
<tr>
<td>244</td>
<td>Tumor Suppressor MicroRNA-493 Decreases Cell Motility and Migration Ability in Human Bladder Cancer Cells by Downregulating RhoC and FZD4</td>
<td>Koji Uno, Hiroshi Hirata, Shahan Majdl, Soichiro Yamamura, Varahram Shahryari, Z. Laura Tabatabai, Yuji Hinoda, and Rajvir Dahiya</td>
</tr>
</tbody>
</table>

Molecular Medicine in Practice

- **Page 244**: Tumor Suppressor MicroRNA-493 Decreases Cell Motility and Migration Ability in Human Bladder Cancer Cells by Downregulating RhoC and FZD4

 Koji Uno, Hiroshi Hirata, Shahan Majdl, Soichiro Yamamura, Varahram Shahryari, Z. Laura Tabatabai, Yuji Hinoda, and Rajvir Dahiya

MOLECULAR CANCER THERAPEUTICS
ABOUT THE COVER

Pancreatic cancer is extremely lethal, partially due to the aggressive nature of the disease and the lack of reliable markers for early detection. Mucin 13 (MUC13) was found to be overexpressed in pancreatic cancer tissue samples. In *in vitro* studies, the expression of MUC13 increased the oncogenic characteristics of pancreatic cancer cells, including increased cell proliferation, invasion, and modulation of tumorigenic signaling pathways. Exogenous MUC13 expression also increased tumorigenesis in a mouse model of pancreatic cancer. For details, see article by Chauhan and colleagues on page 24.
Molecular Cancer Therapeutics

11 (1)

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/11/1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://mct.aacrjournals.org/content/11/1. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.