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Figure 2. Inhibition of APE1/Ref-1 redox activity alters cell cycle profile and levels of p21 protein. A, representative dot plots of BrdU assays in Panc-1
(top) and PaCa-2 cells (bottom) treated with E3330. The x-axis represents 7-AAD staining and the y-axis represents BrdU-fluorescein isothiocyanate staining.
Western blots of cell cycle proteins, p21, p27, and tubulin as loading control. B, Panc-1; C, PaCa-2. Bar graphs show quantitation of 3 or more independent
experiments with average + SE. *, P < 0.05 using Student's t test, comparing DMSO versus E3330.

dose-dependent decrease in HIF1 target CA-IX mRNA
in pancreatic cancer cells following APE1/Ref-1 inhibi-
tion (Fig. 3D). Because inhibition of mRNA for CA-IX
serves as a biomarker for HIF1 activity (32), we
hypothesize that inhibition of APE1/Ref-1’s redox func-
tion by E3330 could disable the tumors’ ability to
respond to hypoxic conditions that are known to con-
tribute to the chemotherapeutic resistance of these
tumors.

Blockade of APE1/Ref-1 redox activity diminishes
the pancreatic cancer cells ability to induce HIF1a
and NFkB

We generated PaCa-2 and Panc-1 lines that stably
express NF«kB-driven and HIF1—driven luciferase/green
fluorescent protein (GFP) using lentiviral constructs,
pGreenFire (pGF) from System Biosciences Inc. As a
negative control, stable cell lines were generated that

contain the luciferase/GFP cassette but do not have the
NF«B or HIF1 response element (pGF-mCMYV). Inhibition
of the redox function of APE1/Ref-1 blocks the ability of
PaCa-2 and Panc-1 cells to induce NFxB through TNFa
(Fig. 4A, B) and HIF1 activity (Fig. 4C). PaCa-2 and Panc-1
cells that express pPGF-mCMYV did not show detectable
luciferase activity above baseline, and treatment with
TNFo. or hypoxia did not induce expression of luciferase
activity (data not shown).

Inhibition of APE1/Ref-1 redox activity delays the
growth of pancreatic cancer xenografts in vivo and
exhibits favorable PK parameters

The estimated half-life (t /,) of E3330 was 3.7 hours
(Fig. 5A). From this, a dosing regimen was established in
mice that consisted of 2 doses of E3330 each day, approxi-
mately 8 hours apart. As shown in Fig. 5B, 2 dosages of
E3330 maintained the concentrations of E3330 1 or more
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pmol/L for more than 24 hours. In formulation studies,
E3330 was dissolved in 4% CremophorEL: EtOH (1:1) in
saline or 0.5% methylcellulose. Both vehicles were similar
in their PK levels in plasma and tumor tissue (Supple-
mentary Fig. S2) and replaced the less desirable vehicle,
DMSO. Concentrations of E3330 attained in the blood of
mice were within the required range for target inhibition
from in vitro studies, suggesting that E3330 has favorable
properties in vivo.

Next we evaluated the antitumor efficacy of E3330
using both patient-derived tumors and xenografts from
established cell line, PaCa-2. In contrast to vehicle-control
tumors, both patient-derived and PaCa-2 xenografts
showed a significant tumor growth delay (Fig. 5C). All
animals treated with E3330 had detectable drug in the
tumor tissue (40-7,500 ng/g tissue). E3330 was detectable
in pancreas, liver, lung, kidney, heart, and brain, but was
not overly toxic to the animals as measured by weight loss
and bone marrow cellularity (data not shown and Sup-
plementary Fig. 2A and B). Furthermore, Ki67 staining is
reduced in E3330-treated tumors at day 7 and day 11,

supporting the notion that APE1/Ref-1 redox activity is
blocking proliferation of the tumor cells (Supplementary
Fig. S2C). Another patient-derived xenograft was used
and did not show the dramatic growth delay that we
observed in Fig. 5C. However, tumor tissue analysis
indicated that levels of E3330 in the unresponsive tumors
were 10-fold less than in the Panc 253 responsive
tumors: 2,500 ng/g (~6.6 umol/L) versus 250 ng/g
(~0.7 umol/L), data not shown. These results indicate
that if we can efficiently deliver APE1/Ref-1 redox inhi-
bitor, tumor growth is strongly inhibited.

Discussion

Although today’s standard of care for pancreatic
cancer strives for a cure, debulking surgery along with
chemotherapy and/or radiation is almost always pal-
liative rather than curative, with few cases of long-term
regression (33). Researchers agree that pancreatic cancer
defies most of what we have come to know about other
types of cancer; therefore, a different therapeutic
approach is needed (1, 33, 34). Blocking a single step
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in a pathway or a single pathway has very limited
clinical utility in the face of the tumors’ cumulative
defects. Jones and colleagues found that pancreatic
cancers contain a core set of 12 cellular signaling path-
ways and processes, each of which was altered in 67% to
100% of the tumors analyzed (24). Novel targets that
modulate multiple pathways may offer the most pro-
mise for clinical utility against this dreaded disease.
Transcription factors including NFxB, AP-1, and HIFla
are key in the regulation of multiple signals in pancrea-
tic cancer, which provides strong evidence for investi-
gating the effects of targeting APE1/Ref-1 to kill
pancreatic cancer cells. In this report, we show that
inhibition of APE1/Ref-1 reduces the proliferation of
ectopic pancreatic tumors in mice using both estab-
lished pancreatic cancer cell lines and primary human
pancreatic tumors. Inhibition of APE1/Ref-1 redox
activity led to cell cycle arrest and a reduction in NFkB,
AP-1, and HIF1 activity, key regulators of pathways that
are involved in the progression, maintenance, invasive,
and metastatic potential of pancreatic cancer (5, 35-37).
Furthermore, we show downregulation of HIF1 target,
CA-IX, and surmise that APE1/Ref-1 inhibition may be
able to sensitize these tumors to therapy by disabling
their response to the hypoxic environment in which
they are growing.

We recently showed that human adenocarcinoma and
peri-pancreatic metastases have a significant increase in
APE1/Ref-1 expression in adenocarcinoma as com-
pared with normal pancreas tissue (22). The experi-
ments described here and our previous work
showing both in vitro and in vivo data support APE1/
Ref-1 as a viable target in this deadly disease (21, 22).
We used the redox-specific APE1/Ref-1 inhibitor,
E3330, which recognizes an alternate, redox active con-
formation of APE1/Ref-1, and potentially inhibits its
redox activity by inducing disulfide bond formation (16,
17). Biochemical studies using radiolabeled E3330 and
proteins renatured on membrane blots showed that '*C-
labeled E3330 very selectively bound to both recombi-
nant APE1/Ref-1 and purified APE1/Ref-1 from cell
nuclear extracts (20). Although E3330 blocks Ref-1’s
redox function, it has no effect on APE1/Ref-1 endo-
nuclease activity or base excision repair activity of an
AP site (5). These studies formally show the specificity
of E3330 for APE1/Ref-1's redox activity, without
impacting on its DNA repair function. The PK/phar-
macodynamic studies (Fig. 5) show that tumors with
significant levels of E3330 have their rate of growth
significantly reduced. We are currently investigating
additional delivery methodology such as nanoparticle
technology to ensure efficient delivery of APE1/Ref-1
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Figure 5. E3330 PK profile and analysis of tumor growth rate in PaCa-2 and patient-derived xenografts. A, serum concentrations of E3330 following 1 dose
at 25 mg/kg, i.p. in 9% DMSO. B, serum concentrations of E3330 (25 mg/kg, i.p., 9% DMSO) following dosing at 0 and 8 hours as indicated by the arrows.
C, tumor growth delay following treatment with E3330 in PaCa-2 xenografts (left) and patient-derived tissue, Panc253 (right).

inhibitor and novel compounds with submicromolar
inhibition of APE1/Ref-1 redox activity. Another poten-
tial mechanism for the different amount of E3330 in
these 2 patient-derived tumors is that the drug is
pumped out of the cells. For example, there are several
ATP-binding cassette transporters in the MDR/MRP
gene family. Given the chemical structure of E3330,
we predict that it is not a substrate for P-gp (MDRI,
ABCB1) since this efflux transporter typically binds
cationic, lipophilic structures. However, E3330 could
be a substrate for MRP (ABCC1) or BCRP (ABCG2),
as these transporters are known to bind anionic sub-
strates including glutathione conjugates (38). However,
it should be noted that MRP is not always associated
with extracellular transport but may concentrate sub-
strates into intracellular vesicles, thus protecting poten-
tial targets from drug. This is one possibility for the
tumors with low levels of E3330 detected. However,
further research is warranted.

The mechanism of action of E3330 is through the
blockage of the transcriptional regulation of APE1/
Ref-1 therefore, it blocks activity of NFkB, AP-1, and
HIF1 as shown in Figs. 3 and 4. These data provide

fundamental evidence that E3330 inhibits 3 known
transcriptional targets of APE1/Ref-1 in pancreatic can-
cer cells. Pancreatic tumors are characterized as one of
the most hypoxic tumors that clinicians encounter (3,
35). Our previous work and the data here show that
blockade of APE1/Ref-1 redox signaling does affect the
activity of HIF1 in pancreatic cancer cells (21, 23). This
supports our hypothesis that inhibition of APE1/Ref-1
could disable the tumors’ ability to respond to hypoxic
conditions, which contributes to chemotherapeutic resis-
tance. Using in vitro luciferase-based assays, E3330 can
inhibit the activity of these 3 important transcription
factors in pancreatic cancer. Using a lentiviral system,
we created stable cell lines with a construct containing
an NFxB or HIF1 response element that drives GFP and
luciferase. In PaCa-2 and Panc-1 cells that express lucifer-
ase driven by the NFxB or HIF1 promoter, E3330 treat-
ment results in a reduction in activity as shown by
reduction of GFP positivity and luciferase activity
(Fig. 4 and data not shown). Inhibition of NFxB (with
and without induction by TNFo) and HIF1 activity is
observed both in transient and stable luciferase assays.
Decreases in the activity of downstream transcription
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factors provide important support for APE1/Ref-1 as a
target in pancreatic cancer. We can now use these stable
cell lines in vivo as markers of NFxB, AP-1, and HIF1 and
dissect which of these transcription factors are critical for
the survival and spread of pancreatic cancer.

Inhibition of APE1/Ref-1 via E3330 inhibits the growth
of pancreatic tumor xenografts, both the cell line and
xenograft models, and we plan to extend our studies to
orthotopic models. In addition to evaluating E3330 as a
single agent, combination of E3330 with gemcitabine will
also be tested to know whether E3330 potentiates gemci-
tabine sensitivity. A reduction in APE1/Ref-1 protein
expression does indeed sensitize pancreatic cells in vitro
to gemcitabine (39) suggesting that combination therapy
might be useful in treating this disease. Due to the
decrease in proliferative capacity and the decrease in
cells in S phase (Figs. 1 and 2), careful selection of the
agent(s) that are chosen for combination therapy and the
dosing schedules should be chosen carefully. The studies
here provide preclinical validation for a novel therapeutic
strategy for this largely incurable cancer.
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