Highlights of This Issue 2009

FROM THE EDITOR-IN-CHIEF

2011 The Patient Impact Factor

THE BEST OF MCT–10 YEARS

2012 Shining the Light on Aurora-A Kinase as a Drug Target in Pancreatic Cancer
David J. Bearss

2013 First Report of Functional Chk1 siRNA Studies Applied to Drug Discovery
Zehan Chen

2015 The Discovery and Development of SU14813, a Next-Generation Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Human Malignancies
Dana Hu-Lowe, Nicoletta Brega, and Shem Patyna

2016 PI3K Inhibitors for Cancer Treatment: Five Years of Preclinical and Clinical Research after BEZ235
Sauveur-Michel Maira

2017 Discovering and Developing PI3 Kinase Inhibitors for Cancer: Rapid Progress through Academic-Biotech-Pharma Interactions
Florence I. Raynaud and Paul Workman

2019 The Discovery of Lapatinib (GW572016)
David Rusnak and Tona M. Gilmer

2020 Methylation Profiling of Lung Cancer: A Decade of Progress
Shinichi Toyooka and Adi F. Gazdar

2021 MicroRNAs in Cancer Pharmacology and Therapeutics: Exploiting a Natural Synergy between ‘-omic’ and Hypothesis-Driven Research
John N. Weinstein

2022 Development of the First Generation c-Met Kinase Inhibitors: Beginning of a Path to a New Treatment for Cancer
Xueyan Wang, Gerald McMahon, and Kenneth E. Lipson

2024 Proof of Principle for Crizotinib in Anaplastic Lymphoma Kinase-Positive Malignancies Was Achieved in ALK-Positive Nonclinical Models
James G. Christensen

2025 Lapatinib: Functional Genomics Study Leads to Insights into Mechanism of Action
Tona M. Gilmer

2026 Bench to Bedside and Back Again: Personalizing Treatment for Patients with GIST
Andrew K. Godwin

2027 The Importance of PK/PD Data–Key Biological Answers Needed to Evaluate the Success of Potential Cancer Therapeutics
Rakesh Kumar and Benjamin Suttle

2028 Bortezomib: Understanding the Mechanism of Action
Bilal Piperdi, Yi-He Ling, Leonard Liebes, Franco Muggia, and Roman Perez-Soler

2029 Starting with the ABCs: Akt in Breast Cancer
Kip A. West and Phillip A. Dennis

2030 Cell Line Models Identify Different Sensitivity of Mutant Forms of c-KIT to Kinase Inhibitory Drugs and Predict the Response of Patients to Therapy
Leonie K. Ashman

2031 Mechanism of Action of Proteasome Inhibitors and Deacetylase Inhibitors and the Biological Basis of Synergy in Multiple Myeloma
Teru Hideshima, Paul G. Richardson, and Kenneth C. Anderson

REVIEW

Mechanism of Action of Proteasome Inhibitors and Deacetylase Inhibitors and the Biological Basis of Synergy in Multiple Myeloma
Teru Hideshima, Paul G. Richardson, and Kenneth C. Anderson
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2043</td>
<td>Identification of Small-Molecule Inhibitors of the Colorectal Cancer Oncogene Krüppel-like Factor 5 Expression by Ultrahigh-Throughput Screening
Agnieszka B. Białkowska, Melissa Crisp, Thomas Bannister, Yuanjun He, Sarwat Chowdhury, Stephan Schürer, Peter Chase, Timothy Spencer, Franck Madoux, Chenli Tian, Peter Hodder, Daniel Zaharevitz, and Vincent W. Yang</td>
<td>2104</td>
<td>Inactivation of Mirk/Dyrk1b Kinase Targets Quiescent Pancreatic Cancer Cells
Daina Z. Ewton, Jing Hu, Maria Vilenchik, Xiaobing Deng, Kin-chun Luk, Ann Polonksaia, Ann F. Hoffman, Karen Zipf, John F. Boylan, and Eileen A. Friedman</td>
</tr>
<tr>
<td>2062</td>
<td>Targeting the Intracellular MUC1 C-terminal Domain Inhibits Proliferation and Estrogen Receptor Transcriptional Activity in Lung Adenocarcinoma Cells
Carolyn M. Klinge, Brandie N. Radde, Yoannis Imbert-Fernandez, Yun Teng, Margarita M. Ivanova, Sabra M. Abner, and Alexandra L. Martin</td>
<td>2124</td>
<td>Activation of the Insulin-like Growth Factor-1 Receptor Induces Resistance to Epidermal Growth Factor Receptor Antagonism in Head and Neck Squamous Carcinoma Cells
Mark J. Jameson, Andrew D. Beckler, Linnea E. Taniguchi, Amir Allak, Lisa B. VanWagner, Nora G. Lee, William C. Thomsen, Matthew A. Hubbard, and Christopher Y. Thomas</td>
</tr>
<tr>
<td>2072</td>
<td>A6 Peptide Activates CD44 Adhesive Activity, Induces FAK and MEK Phosphorylation, and Inhibits the Migration and Metastasis of CD44-Expressing Cells
Randolph S. Piotrowicz, Bassam B. Damaj, Mohamed Hachicha, Francesca Incardona, Stephen B. Howell, and Malcolm Finlayson</td>
<td>2135</td>
<td>Inhibition of Focal Adhesion Kinase by PF-562,271 Inhibits the Growth and Metastasis of Pancreatic Cancer Concomitant with Altering the Tumor Microenvironment
Jayme B. Stokes, Sara J. Adair, Jill K. Slack-Davis, Dustin M. Walters, Robert W. Tilghman, E. Dan Hershey, Bryce Lowrey, Keena S. Thomas, Amy H. Bouton, Rosa F. Hwang, Edward B. Stelow, J. Thomas Parsons, and Todd W. Bauer</td>
</tr>
<tr>
<td>2083</td>
<td>Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated through Distinct Kinase and Interferon Signaling Networks
Ioannis Prassas, George S. Karagiannis, Ihor Batruch, Apostolos Dimitromanolakis, Alessandro Datti, and Eleftherios P. Diamandis</td>
<td>2146</td>
<td>3,5-Bis(2,4-Difluorobenzylidene)-4-piperidone, a Novel Compound That Affects Pancreatic Cancer Growth and Angiogenesis
Dharmalingam Subramaniam, Nathan D. Nichols, Animesh Dhar, Shahid Umar, Vibhudutta Awasthi, Danny R. Welch, Roy A. Jensen, and Shrikant Anant</td>
</tr>
<tr>
<td>2094</td>
<td>Combining Curcumin (Diferuloylmethane) and Heat Shock Protein Inhibition for Neurofibromatosis 2 Treatment: Analysis of Response and Resistance Pathways
Laura S. Angelo, Ji Yuan Wu, Feng Meng, Michael Sun, Scott Kopetz, Ian E. McCutcheon, John M. Slopis, and Razelle Kurzrock</td>
<td>2157</td>
<td>Targeting FGFR/PDGFR/VEGFR Impairs Tumor Growth, Angiogenesis, and Metastasis by Effects on Tumor Cells, Endothelial Cells, and Pericytes in Pancreatic Cancer
Johannes Taeger, Christian Moser, Claus Hellerbrand, Maria E. Mycielska, Gabriel Glockzin, Hans J. Schlit, Edward K. Geissler, Oliver Stoeztzing, and Sven A. Lang</td>
</tr>
</tbody>
</table>
MOLECULAR MEDICINE IN PRACTICE

Tasisulam Sodium, an Antitumor Agent That Inhibits Mitotic Progression and Induces Vascular Normalization
Timothy Meier, Mark Uhlik, Sudhakar Chintharlapalli, Michele Dowless, Robert Van Horn, Julie Stewart, Wayne Blosser, James Cook, Debra Young, Xiang Ye, Glenn Evans, Kelly Credile, Darryl Ballard, Lysiane Huber, Andrew Capen, Marcio Chedid, Robert Ilaria, Jr., Michele C. Smith, and Louis Stancato

Antitumoral Effects of Calcitriol in Basal Cell Carcinomas Involve Inhibition of Hedgehog Signaling and Induction of Vitamin D Receptor Signaling and Differentiation
Anja Uhmann, Hannah Niemann, Béreinice Lammering, Cornelia Henkel, Ina Heß, Frauke Nitzki, Anne Fritsch, Nicole Prüfer, Albert Rosenberger, Christian Dullin, Anke Schraepfer, Julia Reifenberger, Stefan Schweyer, Torsten Fietsh, Frank Strutz, Walter Schulz-Schaeffer, and Heidi Hahn

Correction: Activated Phosphoinositide 3-Kinase/AKT Signaling Confers Resistance to Trastuzumab but not Lapatinib
Genshi Zhao, Wei-ying Li, Daohong Chen, James R. Henry, Hong-Yu Li, Zhaoen Chen, Mohammad Zia-Ebrahimi, Laura Bloem, Yan Zhai, Karen Huss, Sheng-bin Peng, and Denis J. McCann

ABOUT THE COVER
Met kinase homology model with its inhibitor, SU1219, docked in the ATP binding site. The cover image was selected from an article previously published in Molecular Cancer Therapeutics, which was chosen in celebration of the 10th anniversary of the journal. For details, see the commentary by Wang and colleagues on page 2022.
Molecular Cancer Therapeutics

10 (11)

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/10/11

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.