Preclinical Development

Sorafenib Inhibits the Hepatocyte Growth Factor–Mediated Epithelial Mesenchymal Transition in Hepatocellular Carcinoma

Tomoyuki Nagai1,2, Tokuzu Arao1, Kazuyuki Furuta1, Kazuko Sakai1, Kanae Kudo1,2, Hiroyasu Kaneda1, Daisuke Tamura1, Keichi Aomatsu1, Hideharu Kimura1, Yoshihiko Fujita1, Kazuko Matsumoto1, Nagahiro Saijo3, Masatoshi Kudo2, and Kazuto Nishio1

Abstract

The epithelial mesenchymal transition (EMT) has emerged as a pivotal event in the development of the invasive and metastatic potentials of cancer progression. Sorafenib, a VEGFR inhibitor with activity against RAF kinase, is active against hepatocellular carcinoma (HCC); however, the possible involvement of sorafenib in the EMT remains unclear. Here, we examined the effect of sorafenib on the EMT. Hepatocyte growth factor (HGF) induced EMT-like morphologic changes and the upregulation of SNAI1 and N-cadherin expression. The downregulation of E-cadherin expression in HepG2 and Huh7 HCC cell lines shows that HGF mediates the EMT in HCC. The knockdown of SNAI1 using siRNA canceled the HGF-mediated morphologic changes and cadherin switching, indicating that SNAI1 is required for the HGF-mediated EMT in HCC. Interestingly, sorafenib and the MEK inhibitor U0126 markedly inhibited the HGF-induced morphologic changes, SNAI1 upregulation, and cadherin switching, whereas the PI3 kinase inhibitor wortmannin did not. Collectively, these findings indicate that sorafenib downregulates SNAI1 expression by inhibiting mitogen-activated protein kinase (MAPK) signaling, thereby inhibiting the EMT in HCC cells. In fact, a wound healing and migration assay revealed that sorafenib completely canceled the HGF-mediated cellular migration in HCC cells. In conclusion, we found that sorafenib exerts a potent inhibitory activity against the EMT by inhibiting MAPK signaling and SNAI1 expression in HCC. Our findings may provide a novel insight into the anti-EMT effect of tyrosine kinase inhibitors in cancer cells. Mol Cancer Ther; 10(1); 169–77. ©2011 AACR.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third largest cause of cancer-related death in the world annually (1). Recurrence, metastasis, and the development of new primary tumors are the most common causes of mortality among patients with HCC (2). Sorafenib (Nexavar; Bayer HealthCare Pharmaceuticals Inc.) is a small molecule that inhibits the kinase activities of Raf-1 and B-Raf in addition to VEGFRs, PDGFR-β (platelet-derived growth factor receptor β), Flt-3, and c-KIT (3). Two recent randomized controlled trials reported a clinical benefit of single-agent sorafenib in extending overall survival in both Western and Asian patients with advanced unresectable HCC (4, 5). The potential action mechanisms that lead to these clinical benefits are thought to include antiangiogenic effects and sorafenib’s characteristic inhibitory effect on Raf-1 and B-Raf signaling.

Meanwhile, growing evidence indicates that the epithelial mesenchymal transition (EMT), a developmental process by which epithelial cells reduce intercellular adhesions and acquire fibroblastoid properties, has important roles in the development of the invasive and metastatic potentials of cancer progression (6–8). To date, numerous clinicopathologic studies have shown positive correlations between the expressions of the transcription factors SNAI1 (snail homologue 1/SNAIL) and SNAI2 (snail homologue 2/Slug), which are key inducible factors of the EMT, and poor clinical outcomes in breast, ovary, colorectal, and lung cancer; squamous cell carcinoma; melanoma, and HCC (reviewed in ref. 6).

Generally, the activation of a wide variety of ligands including FGF (fibroblast growth factor), TGF-β-BMPs (bone morphogenetic protein), Wnt, EGF (epidermal growth factor), VEGF, and HGF (hepatocyte growth factor) and its receptor can upregulate the expression of EMT-regulating transcription factors, including SNAI1, SNAI2, ZEB1, ZEB2, and TWIST (6). Among them, HGF (also known as scattering factor) activates...
the Met signaling pathway, thereby increasing the invasive and metastatic potentials of the cells and allowing the survival of cancer cells in the bloodstream in the absence of anchorage (9). In addition, HGF is well known as a potent angiogenic cytokine, and Met signal activation can modify the microenvironment to facilitate cancer progression (9). Therefore, the HGF-Met signaling pathway is regarded as a promising therapeutic target, and many molecular targeted drugs are under clinical development (10). In HCC, the mRNA levels of HGF and Met receptor are markedly increased compared with those in normal liver (11). A high serum HGF concentration is associated with a poor prognosis for overall survival after hepatic resection, and the serum level of HGF represents the degree of the carcinogenic state in the livers of patients with C-viral chronic hepatitis and cirrhosis (12–14). Thus, we examined the effect of sorafenib on the HGF-Met-mediated EMT in HCC.

Materials and Methods

Reagents

Sorafenib was provided by Bayer HealthCare Pharmaceuticals Inc. U0126, wortmannin (Cell Signaling Technology), and human HGF (R&D Systems) were purchased from the indicated companies. The structures of compounds are shown in Supplementary Figure 1.

Cell culture

The human HCC cell lines HepG2 and Huh7 were maintained in Dulbecco’s modified Eagle’s (DMEM) medium (Sigma) supplemented with 10% FBS, penicillin, and streptomycin (Sigma) in a humidified atmosphere of 5% CO₂ at 37°C. The cell lines were obtained from the Japanese Collection of Research Bioresources and were grown in culture for less than 6 months.

Scratch assay

The method used for the scratches assay has been previously described (15). Briefly, the cells were plated onto 24-well plates and incubated in DMEM containing 10% FBS until they reached subconfluence. Scratches were introduced to the subconfluent cell monolayer, using a plastic pipette tip. The cells were then cultured with DMEM containing 10% FBS at 37°C. After 24 hours, the scratch area was photographed using a light microscope (IX71; Olympus). The wound distance between edge to edge were measured and averaged from 5 points per 1 wound area, using DP manager software (Olympus). The 2 wound areas were evaluated in an experiment and the experiment was done in triplicate.

Migration assay

The migration assays were done using the Boyden chamber methods and polycarbonate membranes with an 8-µm pore size (Chemotaxicell), as previously described (15). The membranes were coated with fibronectin on the outer side and dried for 2 hours at room temperature. The cells to be analyzed (2 × 10⁴ cells/well) were then seeded onto the upper chambers with 200 µL of migrating medium (DMEM containing 0.5% FBS), and the upper chambers were placed into the lower chambers of 24-well culture dishes containing 600 µL of DMEM containing 10% FBS or with 10 ng/mL of HGF or with HGF and 10 µmol/L of sorafenib. After incubation for 36 hours (HepG2) and 24 hours (Huh7), the media in the upper chambers were aspirated and the nonmigrated cells on the outer sides of the membranes were removed using a cotton swab. The cells that had migrated to the outer side of the membranes were fixed with 4% paraformaldehyde for 10 minutes, stained with 0.1% Giemsa stain solution for 15 minutes, and then counted using a light microscope. Migrated cells were averaged from 5 fields per 1 chamber and 3 chambers were used on 1 experiment. The experiment was done in triplicate.

Morphologic analysis

HepG2 and Huh7 cells (2 × 10⁴ and 1 × 10⁴ cells/well, respectively) were seeded in 6-well tissue culture dishes. After 24 hours of incubation, the cells were stimulated with 10 ng/mL of HGF or control PBS. When the inhibitors were used, the cells were exposed to each inhibitor for 3 hours before the addition of HGF. After 48 hours, the cells were analyzed using a light microscope. The experiment was done in triplicate.

Western blot analysis

The following antibodies were used in this study: phospho-Met (Y1349), Met, phospho-AKT (S473), AKT, phospho-p44/42 mitogen-activated protein kinase (MAPK), SNAI1/Snail, E-cadherin, N-cadherin, vimentin, β-actin antibody horseradish peroxidase-conjugated secondary antibody (Cell Signaling Technology), and fibronectin (Santa Cruz Biotechnology). All the experiments were done at least in duplicate. The Western blot analysis was done as described previously (16). The data were quantified by automated densitometry using Multi-gauge Ver. 3.0 (Fujiﬁlm). Densitometric data were normalized by β-actin in triplicate and the average was shown above the Western blot as a ratio of control sample.

Real-time reverse transcription PCR

The real-time reverse transcription PCR (RT-PCR) method has been previously described (17). Briefly, 1 µg of total RNA from the cultured cells was converted to cDNA using a GeneAmp RNA-PCR kit (Applied Biosystems). Real-time RT-PCR amplification was done using a Thermal Cycler Dice (Takara) in accordance with the manufacturer’s instructions under the following conditions: 95°C for 6 minutes, 40 cycles of 95°C for 15 seconds, and 60°C for 1 minute. Glyceraldehyde 3-phosphate dehydrogenase (GAPD) was used to normalize the expression levels in the subsequent quantitative analyses. To amplify the target genes, the following primers were purchased from TaKaRa: CDHI, forward 5’-TTA AAC
TCC TGG CCT CAA GCA ATC-3' and reverse 5'-TCC TAT CTG GAA AGC AAC TG-3'; CDH2, forward 5'-CGA ATG GAT GAA AGA CCC ATC C-3' and reverse 5'-GGA GCC ACT GCC TTC ATA GTC AA-3'; SNAI1, forward 5'-TCT AGG CCC TGG CTG CTA CAA-3' and reverse 5'-ACA TCT GAG TGG GTC TGG AGG TG-3'; SNAI2, forward 5'-ATG CAT ATT CGG ACC CAC ACA TTA C-3' and reverse 5'-AGA TTT GAC CTG TCT GCA AAT-3'; VIM, forward 5'-TGA GTT CCA GAT GAC ACA CCT GCA G-3' and reverse 5'-CTG GAG CCG GAA AGC AAC ATA-3'; and GAPD, forward 5'-GCA CCG TCA AGG CTT AGA AC-3' and reverse 5'-ATG GTG TGG AAG AGC CCA GT-3'.

Small interfering RNA transfection

Three different sequences of small interfering RNA (siRNA) targeting human SNAI1 (Hs_SNAI1_9785, 9786, and 9787) and those of 2 scramble control siRNAs were purchased from Sigma Aldrich Japan. The transfection methods have been previously described (17).

Statistical analysis

The statistical analyses were done using Microsoft Excel (Microsoft) both to calculate the SD and to test for statistically significant differences between the samples using a Student t test. A value $P < 0.05$ was considered statistically significant.

Results

To examine the activity of HGF-Met signaling in HCC cells, we examined the expressions of phospho-Met, Met, phospho-AKT, AKT, phospho-MAPK, and MAPK in the HepG2 and Huh7 cell lines, using Western blotting. The phosphorylation levels of Met, AKT, and MAPK were dose-dependently increased by HGF stimulation (Fig. 1A). A time-course analysis showed that the phosphorylation levels of Met, AKT, and MAPK peaked at 1 to 2 hours after HGF stimulation and gradually recovered to the baseline values at 4 hours later (Fig. 1B). These results indicated that Met signaling is actually capable of being activated in response to HGF in HCC cells.

From a morphologic aspect, the EMT is characterized by an increase in cell scattering and an elongation of the cell shape (18). To evaluate whether HGF mediates the morphologic change that is characteristic of the EMT in HCC cells, cellular morphology was examined after HGF stimulation. HGF clearly mediated both cell scattering and the elongation of the cell shape in HepG2 and Huh7 cell lines (Fig. 1C). These data indicate that HGF mediates
the morphologic changes that are compatible with the induction of the EMT in HCC cell lines.

Because SNAI1 and SNAI2 are considered to be master regulators of the EMT, changes in the mRNA expression levels of EMT-related genes SNAI1/Snail, SNAI2/Slug, E-cadherin/CDH1, N-cadherin/CDH2, and fibronectin/FN1 were determined using real-time RT-PCR. The HepG2 and Huh7 cells were stimulated with or without 10 ng/mL of HGF for 2 hours (SNAI1 and SNAI2) or 48 hours (E-cad, N-cad, and FN1). Rel mRNA, normalized mRNA expression levels (target genes/GAPD x 10^4); E-cad, E-cadherin; N-cad, N-cadherin. B, the HGF-mediated protein expression changes in SNAI1, E-cadherin, N-cadherin, fibronectin, and vimentin were determined using a Western blot analysis. The HepG2 and Huh7 cells were stimulated with HGF at the indicated dose (0, 0.1, 1, or 10 ng/mL) and collected for analysis after 4-hour stimulation for SNAI1 and 72 hours for the others. C, the cells were stimulated with 10 ng/mL of HGF for the indicated time course (0, 1, 2, 4, 8, 12, or 24 hours) and used for analysis. β-Actin was used as a loading control. D, Western blot analysis of E-cadherin and N-cadherin. The cells were stimulated with 10 ng/mL of HGF for 0, 48, and 96 hours and then analyzed.

Figure 2. HGF upregulates SNAI1 expression and induces cadherin switching in HCC. A, changes in the mRNA expressions of the EMT-related genes SNAI1/Snail, SNAI2/Slug, E-cadherin/CDH1, N-cadherin/CDH2, and fibronectin/FN1 were determined using real-time RT-PCR. The HepG2 and Huh7 cells were stimulated with or without 10 ng/mL of HGF for 2 hours (SNAI1 and SNAI2) or 48 hours (E-cad, N-cad, and FN1). Rel mRNA, normalized mRNA expression levels (target genes/GAPD x 10^4); E-cad, E-cadherin; N-cad, N-cadherin. B, the HGF-mediated protein expression changes in SNAI1, E-cadherin, N-cadherin, fibronectin, and vimentin were determined using a Western blot analysis. The HepG2 and Huh7 cells were stimulated with HGF at the indicated dose (0, 0.1, 1, or 10 ng/mL) and collected for analysis after 4-hour stimulation for SNAI1 and 72 hours for the others. C, the cells were stimulated with 10 ng/mL of HGF for the indicated time course (0, 1, 2, 4, 8, 12, or 24 hours) and used for analysis. β-Actin was used as a loading control. D, Western blot analysis of E-cadherin and N-cadherin. The cells were stimulated with 10 ng/mL of HGF for 0, 48, and 96 hours and then analyzed.
observed within few hours, but cadherin switching occurs around 24 hours later after stimulation (20, 21), consistent with our result. These results indicate that HGF meditates the induction of SNAI1, cadherin switching, and the EMT in HCC cells.

Besides SNAI1 and SNAI2, other transcription factors of several genes also have the potential to repress E-cadherin and to induce the EMT; these factors include ZEB1/TCF8, ZEB2/SMAD interacting protein 1, TWIST, E47/TCF3, and TCF4/E2-2 (6). Therefore, we examined whether SNAI1, among several EMT-inducible genes, has a central role in the HGF-mediated EMT in HCC cells. Three sequences of SNAI1-siRNA (1, 2, and 3) were used. The HepG2 and Huh7 cells were treated with or without 50 nmol/L of each siRNA for 48 hours and were then stimulated with 10 ng/mL of HGF. SNAI1-siRNA #2 was effective and was used in subsequent experiments. SNAI1 knockdown canceled the HGF-mediated morphologic changes. The HepG2 and Huh7 cells were treated with 50 nmol/L of siRNA for 48 hours and were then stimulated with 10 ng/mL of HGF in all 4 panels. SNAI1 suppression by siRNA strongly canceled the HGF-mediated downregulation of E-cadherin and the upregulation of N-cadherin in both HepG2 and Huh7 cells. The cells were treated with 50 nmol/L of siRNA for 48 hours and were analyzed using a Western blot analysis. Densitometric data are shown above the Western blot. D, the siRNA knockdown of SNAI1 inhibited the HGF-mediated cellular migration. The siRNA-transfected HepG2 and Huh7 cells were evaluated using migration assay. The migration assays were conducted using the Boyden chamber methods as described in Materials and Methods. *, P < 0.05 (Cont-si vs. SNAI1-si with HGF); Cont-si, control-siRNA; SNAI1-si, SNAI1-targeting siRNA.

In general, SNAI1 expression is regulated by ligand-receptor signal transduction through a downstream signal pathway that includes the Smad, MAPK, AKT, and GSK3 pathways (6, 22, 23). Sorafenib has been shown to inhibit RAF-MAPK signaling in HCC cells (24). Accordingly, we hypothesized that sorafenib might downregulate SNAI1 expression by inhibiting RAF-MAPK signaling, which is a unique activity of sorafenib.
expected, sorafenib and the MEK inhibitor U0126 (10 μmol/L) markedly inhibited the HGF-induced phosphorylation of MAPK, but the PI3K inhibitor wortmannin (10 μmol/L) did not. Of note, SNAI1 expression was markedly downregulated by sorafenib and U0126. The HepG2 and Huh7 cells were exposed to 10 μmol/L of sorafenib or wortmannin or U0126 for 3 hours and were then stimulated with 10 ng/mL of HGF for 60 minutes. Wort, wortmannin. B, the HGF-mediated morphologic changes were canceled by sorafenib and U0126 but not by wortmannin in the HCC cells. The cells were exposed to sorafenib or wortmannin or U0126 for 48 hours with or without HGF (10 ng/mL) and then photographed. C, HGF-mediated downregulation of E-cadherin was canceled by sorafenib. The cells were stimulated with HGF (10 ng/mL) and treated with sorafenib at indicated concentration for 48 hours. D, HGF-mediated cadherin switching and upregulation of fibronectin and vimentin were canceled by sorafenib in the HCC cell lines. The cells were cultured with or without 2 μmol/L of sorafenib for 72 hours, with or without HGF (10 ng/mL), and then were analyzed using Western blot analysis. Densitometric data are shown above the Western blot.

Figure 4. Sorafenib downregulates SNAI1 expression in HCC. A, as expected, sorafenib and the MEK inhibitor U0126 inhibited the HGF-mediated phosphorylation of MAPK, but the PI3K inhibitor wortmannin did not. Of note, SNAI1 expression was markedly downregulated by sorafenib and U0126. The HepG2 and Huh7 cells were exposed to 10 μmol/L of sorafenib or wortmannin or U0126 for 3 hours and were then stimulated with 10 ng/mL of HGF for 60 minutes. Wort, wortmannin. B, the HGF-mediated morphologic changes were canceled by sorafenib and U0126 but not by wortmannin in the HCC cells. The cells were exposed to sorafenib or wortmannin or U0126 for 48 hours with or without HGF (10 ng/mL) and then photographed. C, HGF-mediated downregulation of E-cadherin was canceled by sorafenib. The cells were stimulated with HGF (10 ng/mL) and treated with sorafenib at indicated concentration for 48 hours. D, HGF-mediated cadherin switching and upregulation of fibronectin and vimentin were canceled by sorafenib in the HCC cell lines. The cells were cultured with or without 2 μmol/L of sorafenib for 72 hours, with or without HGF (10 ng/mL), and then were analyzed using Western blot analysis. Densitometric data are shown above the Western blot.

Table A

<table>
<thead>
<tr>
<th></th>
<th>HepG2</th>
<th>Huh7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Wort</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U0126</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th></th>
<th>HepG2</th>
<th>Huh7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wort</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U0126</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table C

<table>
<thead>
<tr>
<th></th>
<th>HepG2</th>
<th>Huh7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wort</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U0126</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table D

<table>
<thead>
<tr>
<th></th>
<th>HepG2</th>
<th>Huh7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes

- **Figure 4.** Sorafenib downregulates SNAI1 expression in HCC. A, as expected, sorafenib and the MEK inhibitor U0126 inhibited the HGF-mediated phosphorylation of MAPK, but the PI3K inhibitor wortmannin did not. Of note, SNAI1 expression was markedly downregulated by sorafenib and U0126. The HepG2 and Huh7 cells were exposed to 10 μmol/L of sorafenib or wortmannin or U0126 for 3 hours and were then stimulated with 10 ng/mL of HGF for 60 minutes. Wort, wortmannin. B, the HGF-mediated morphologic changes were canceled by sorafenib and U0126 but not by wortmannin in the HCC cells. The cells were exposed to sorafenib or wortmannin or U0126 for 48 hours with or without HGF (10 ng/mL) and then photographed. C, HGF-mediated downregulation of E-cadherin was canceled by sorafenib. The cells were stimulated with HGF (10 ng/mL) and treated with sorafenib at indicated concentration for 48 hours. D, HGF-mediated cadherin switching and upregulation of fibronectin and vimentin were canceled by sorafenib in the HCC cell lines. The cells were cultured with or without 2 μmol/L of sorafenib for 72 hours, with or without HGF (10 ng/mL), and then were analyzed using Western blot analysis. Densitometric data are shown above the Western blot.
RAF-MAPK pathway, thereby downregulating SNAI1 and inhibiting the EMT in HCC.

Because sorafenib inhibits the HGF-mediated EMT in HCC cells, we next examined whether the inhibitory effect of sorafenib on the EMT leads to an inhibition of cellular migration in HCC cells. A scratch assay revealed that HGF stimulation increased cellular migration by about 2-fold in both HCC cell lines; however, sorafenib significantly inhibited this effect to the baseline levels (Fig. 5A). Similarly, a migration assay using the Boyden chamber method revealed that sorafenib canceled HGF-mediated cellular migration in both cell lines (Fig. 5B). These results suggest that sorafenib actually inhibits the cellular migrating phenotype of the EMT in HCC cells. The combination of migration data with siRNA and sorafenib (Fig. 3D and Fig. 5B) suggests that inhibitory effects of sorafenib on migration may be mediated by Snail downregulation in some tumors (e.g., Huh7) but not in others (e.g., HepG2). It is assumed that the inhibitory activity of sorafenib on the cellular migrating phenotype is due to its inhibitory effect of Raf-MAPK signaling pathway (Fig. 4A and B). Regarding HGF-dependent PI3K-AKT signaling pathway, wortmannin weakly inhibited the wound closure in Huh7 cells and to the same extent by sorafenib in HepG2 cells (Supplementary Fig. 5). In contrast, wortmannin has no effect on Snail levels or on HCC morphology changes (Fig. 4A and B). Collectively, we speculate that activation of HGF-dependent PI3K-AKT pathway may not be involved in SNAI1 induction or morphologic change but at least partially involved in cell migration independent of Raf-MAPK-SNAI1 signaling.

Taken together, these results indicate that sorafenib inhibits the HGF-mediated EMT, which is characterized by cadherin switching, morphologic changes, and an increase in the cellular migrating phenotype, by inhibiting Raf-MAPK signaling, resulting in the downregulation of SNAI1 in HCC cells (Fig. 6).

Discussion

Recent accumulating evidence has shown that the EMT is involved in drug sensitivity to several anticancer agents (25). Within this topic, the most intensively investigated drugs have been endothelial growth factor receptor (EGFR)-targeting drugs for the treatment of lung cancer. A clinical trial has revealed that lung cancer cells with strong E-cadherin expression exhibit a significantly longer time to progression after EGFR-TKI (tyrosine kinase inhibitor) treatment (26). Other studies on EGFR-targeting drugs have shown that mesenchymal type lung cancer cells exhibit an EMT-dependent acquisition of PDGFR, FGF receptor, and TGF-β receptor signaling pathways (27), and integrin-linked kinase is a novel target for overcoming HCC resistance to EGFR inhibition (28). Regarding sensitivity to gemcitabine, mesenchymal type cancer cells are reportedly associated with gemcitabine resistance in pancreatic cancer cells (29). The mechanism of resistance to gemcitabine has been shown to involve the activation of Notch signaling, which is mechanistically linked with the mesenchymal chemoresistance phenotype of pancreatic cancer cells (30). Thus, baseline cellular characteristics based on the EMT phenotype might be useful not only as prognostic biomarkers for a malignant phenotype but also as predictive markers.
Sorafenib inhibits the HGF-mediated EMT in HCC cells. Wort, wortmannin; N-cad, N-cadherin; E-cad, E-cadherin. Sorafenib occurs through the downregulation of SNAI1 by the inhibition of MAPK phosphorylation in HCC cells. Wort, wortmannin; N-cad, E-cadherin (32), suggesting that the use of HDAC inhibitors to inhibit SNAI1 function might represent a promising therapeutic approach. On the other hand, large-scale clinical data on SNAI1 expression and the prognosis of patients with HCC were recently reported (33) and the overexpression of SNAI2 and/or TWIST was correlated with a worse prognosis. In contrast, no such significant differences were observed in samples that overexpressed SNAI2. The coexpression of Snail and TWIST was correlated with the worst prognosis for HCC (33). This evidence suggests that SNAI1 might be a useful therapeutic target for oncology. Our findings showed that sorafenib completely canceled the HGF-mediated SNAI1 induction in HepG2 and Huh7 cells. This activity of sorafenib, in addition to sorafenib’s antiangiogenic effects, might contribute to a clinical benefit against metastatic and aggressive phenotypes in patients with HCC.

Figure 6. Diagram of the proposed mechanism by which sorafenib inhibits the EMT. Sorafenib inhibits the HGF-mediated EMT, which is characterized by morphologic changes, cadherin switching, and an increase in the cellular migrating phenotype. The anti-EMT effect of sorafenib occurs through the downregulation of SNAI1 by the inhibition of MAPK phosphorylation in HCC cells. Wort, wortmannin; N-cad, N-cadherin; E-cad, E-cadherin.

SNAI1-induced EMT mediates regulatory T cells and impairs dendritic cells, accelerating cancer metastasis not only by enhancing invasion but also by inducing immunosuppression (31). A complex of histone deacetylase (HDAC) and SNAI1 plays an essential role in silencing E-cadherin (32), suggesting that the use of HDAC inhibitors to inhibit SNAI1 function might represent a promising therapeutic approach. On the other hand, large-scale clinical data on SNAI1 expression and the prognosis of patients with HCC were recently reported (33) and the overexpression of SNAI2 and/or TWIST was correlated with a worse prognosis. In contrast, no such significant differences were observed in samples that overexpressed SNAI2. The coexpression of Snail and TWIST was correlated with the worst prognosis for HCC (33). This evidence suggests that SNAI1 might be a useful therapeutic target for oncology. Our findings showed that sorafenib completely canceled the HGF-mediated SNAI1 induction in HepG2 and Huh7 cells. This activity of sorafenib, in addition to sorafenib’s antiangiogenic effects, might contribute to a clinical benefit against metastatic and aggressive phenotypes in patients with HCC.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Tomoko Kitayama and the staff of the Life Science Research Institute for their technical assistance.

Grant Support

This work was supported in part by the Third- Term Comprehensive 10-Year Strategy for Cancer Control and a Grant- in- Aid for Cancer Research (H20-20-9) from the Ministry of Health and Labor Scientific Research Grants.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 9, 2010; revised October 25, 2010; accepted October 25, 2010; published online January 10, 2011

References

11. Yang H, MagiLinck N, Noureddin M, Mato JM, Lu SC. Effect of hepatocyte growth factor on methionine adenosine transferase genes

Molecular Cancer Therapeutics

Sorafenib Inhibits the Hepatocyte Growth Factor–Mediated Epithelial Mesenchymal Transition in Hepatocellular Carcinoma

Tomoyuki Nagai, Tokuzo Arao, Kazuyuki Furuta, et al.

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/10/1/169

Supplementary Material
Access the most recent supplemental material at:
http://mct.aacrjournals.org/content/suppl/2011/01/10/10.1.169.DC1

Cited articles
This article cites 33 articles, 13 of which you can access for free at:
http://mct.aacrjournals.org/content/10/1/169.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/10/1/169.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.