The Cationic Porphyrin TMPyP4 Down-Regulates c-MYC and Human Telomerase Reverse Transcriptase Expression and Inhibits Tumor Growth in Vivo

Cory L. Grand, Haiyong Han, Rubén M. Muñoz, Steve Weitman, Daniel D. Von Hoff, Laurence H. Hurley, and David J. Bearss

Abstract
Cationic porphyrins are being studied as possible anticancer agents because of their ability to bind to and stabilize DNA guanine quadruplexes (G-quadruplexes). We have shown previously that the cationic porphyrin TMPyP4 is able to bind to and stabilize G-quadruplexes in human telomere sequences, resulting in inhibition of telomerase activity. To better understand the mechanism of action behind telomerase inhibition by TMPyP4, we performed a cDNA microarray analysis on cells treated with TMPyP4 and TMPyP2, a positional isomer of TMPyP4 that has low affinity for G-quadruplexes. Analysis of time course data from the microarray experiments revealed that TMPyP4 and TMPyP2 treatment altered the expression of several gene clusters. We found that c-MYC, an oncogene nearly ubiquitously in human tumors that bears the potential in its promoter to form a G-quadruplex, was among the genes specifically down-regulated by TMPyP4, but not by TMPyP2. The hTERT gene, which encodes the catalytic subunit of telomerase, is transcriptionally regulated by c-MYC, and we have found that TMPyP4 also causes a decrease in human telomerase reverse transcriptase transcript, suggesting two possible mechanisms for the effect of TMPyP4 on telomerase activity. We also show that TMPyP4, but not TMPyP2, is able to prolong survival and decrease tumor growth rates in two xenograft tumor models. We believe that, because of the actions of TMPyP4 in decreasing both c-MYC protein levels and telomerase activity, as well as its anticancer effects in vivo, it is a worthwhile agent to pursue and develop further.

Introduction
G-quadruplexes have been implicated in a number of processes, including inhibition of telomerase and control of gene expression (1–7). We have demonstrated previously that the G-quadruplex-interactive compound TMPyP4 (Fig. 1) can inhibit telomerase in a cell-free system and in vitro in cell lines incubated with TMPyP4 (8). More recently, we have demonstrated that multiple myeloma cell lines exhibit telomere shortening, delayed cell crisis, and apoptosis consistent with telomeres reaching a critical length (9). In sea urchin cells, we have demonstrated the formation of anaphase bridges after incubation with TMPyP4, which we interpret as resulting from dimerization of single-stranded guanine hairpins (9). All of these results can be rationalized based upon the assumption of direct interaction of TMPyP4 with G-quadruplex structures formed in telomeres. We have demonstrated recently that TMPyP4 can also interact with and stabilize i-motif structures (10), which are interdigitated cytosine-cytosine dimers that form four-stranded structures in the C-rich strand of telomeres and other G-quadruplex-forming sequences (11, 12). Although these i-motifs might not be expected to directly inhibit telomerase, their formation could make the G-rich single strand available to form quadruplexes in telomeres or in duplex regions of guanine-rich/cytosine-rich strands such as those found in the promoters of certain oncogenes. c-MYC is one such oncogene that bears a G-quadruplex-amenable sequence in its promoter.

The protein product of the c-MYC proto-oncogene transcriptionally activates hTERT, the catalytic subunit of telomerase (13–15), and controls a variety of genes that together enhance the proliferative capacity of cells (16–18). Thus, it is not surprising that c-MYC is tightly controlled by a complex mechanism involving four promoters (19, 20). Dysregulation of the c-MYC proto-oncogene can arise from a variety of mechanisms, including chromosomal translocation (21), retroviral transduction (22–24), gene amplification (25), and retroviral insertion (26). c-MYC is overexpressed in a variety of human malignancies, including leukemias, lymphomas, and prostate, lung, breast, pancreatic, ovarian, cervical, and gynecologic cancers (27–29). Because of its prevalence in human cancers, c-MYC is a viable target for anticancer therapeutics.

As a first step to c-MYC activation, disruption of the chromatin structure is required to allow access of the transcriptional machinery to the promoter (30). Several nuclelease hypersensitivity elements have been shown to play important roles in this process. Notably, one of these, NHE IIIa, accounts for 95% of total c-MYC transcription (31). This element is unusual in that it is guanine-rich on one strand and

Received 2/8/02; revised 4/8/02; accepted 5/2/02.

1 This research was supported by grants from the NIH and the Arizona Disease Control Research Commission.

2 To whom requests for reprints should be addressed, at Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724. Phone: (520) 626-8452; Fax: (520) 626-6898; E-mail: dbearss@azcc.arizona.edu.
TMPyP4 Down-Regulates c-MYC

Both strands are known to form unusual DNA structures; the G-rich strand forms a G-quadruplex (6, 7), and the C-rich strand forms an i-motif or i-tetraplex structure (32). In vitro, the G-quadruplex structure that is favored at physiological conditions is a unimolecular, antiparallel, foldover structure (6).

In the present study, we demonstrate that TMPyP4 down-regulates c-MYC, and this appears to contribute to the observed effects on telomerase by lowering hTERT expression. Consistent with its relative ability to bind to G-quadruplexes, TMPyP2 (Fig. 1), a positional isomer of TMPyP4 that shows much weaker biological activity than TMPyP4, is also less able to down-regulate c-MYC and hTERT. This effect does not appear to be mediated through a general blockage of the cell cycle, because TMPyP4 does not change the cycling profile of treated cells. We also show that TMPyP4 can relieve tumor burden in both a mammary and neuroblastoma mouse model and increase the life span of tumor-bearing mice, making it a promising lead compound that merits further study.

Materials and Methods

Cell Culture. HeLa S3 (human cervical carcinoma metastasis) and MiaPaCa-2 (human pancreatic tumor) were obtained from American Type Culture Collection; ForF cells (human foreskin fibroblast cells) were prepared fresh at the Arizona Cancer Center from newborn foreskins. ForF cells and MiaPaCa-2 cells were cultured at 37°C in RPMI 1640 (Cellgro) with 10% fetal bovine serum, 50 units/ml penicillin G sodium, and 50 units/ml streptomycin sulfate (Life Technologies, Inc.). HeLa S3 cells were cultured in DMEM (Cellgro) with 10% fetal bovine serum, 50 units/ml penicillin G sodium, and 50 units/ml streptomycin sulfate. Cells were grown to 80% confluency and passaged at 1:10 in the following fashion. The medium was aspirated by vacuum, and the cells were washed with 1× PBS (Cellgro). Sufficient trypsin (Life Technologies, Inc.) was added to cover the cells, and cells were incubated at room temperature for ~3 min or until cells detached from the flask with firm tapping. The trypsin was neutralized with an equal volume of culture medium, and the cells were counted using a hemocytometer.

Treatment with Drugs. Cell cultures were permitted to reach ~50% confluency before drug was added. Drug concentrations were as follows: 100 μM TMPyP2 and TMPyP4 (synthesized in the laboratory; this dose was shown to be biologically effective in preliminary studies); 0.2 mg/ml doxorubicin (Ben Venue Laboratories, Inc.); 100 nM Taxotere/docetaxel (Rhône-Poulenc Rorer Pharmaceuticals, Inc.); and 10 nM gemcitabine/Gemzar (El Lilly and Co.). Drugs were diluted in medium in which the cells were normally cultured. Cells were washed once with PBS, and new medium containing drug was added directly to the flask. Cells were harvested as noted above, 12, 24, 36, 48, or 50 h after initial treatment, concurrently with untreated cells. Time points were collected in duplicate for each treatment.

RNA Extraction. Cell pellets were lysed in Buffer RLT from the RNeasy RNA Mini Extraction kit (QiAGen) and homogenized using a QIAshredder (QiAGen). RNA was extracted according to the protocol included with the RNA Extraction kit and eluted in distilled, deionized water with 0.1% diethyl pyrocarbonate (DEPC-H2O, Sigma) to a final volume of 30 μl. RNA was quantitated by UV spectrophotometry and stored at ~80°C.

Protein Extraction and Quantitation. Cells were homogenized in 100–150 μl of NP40 lysis buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.02% sodium azide, 100 μg/ml phenylmethylsulfonyl fluoride, and 1% NP40], the lysates were centrifuged at ~14,000 × g, and the supernatants were collected and stored frozen at ~80°C. Lysates were quantified in 96-well plates by BCA Protein Assay (Pierce).

TRAP Assays. 1.5 μl of protein was used to determine the amount of active telomerase enzyme in each total protein extract, using the TRAPeze radiolysis detection kit (Intergen), a TRAP.

RT-PCR. Total RNA were used as a template for reverse transcription, using the following protocol. Each 20-μl reaction contained 1× Omniscript RT buffer (QiAGen), 500 μM...
each of dCTP, dATP, dGTP, and dTTP (QIAGen), 1 µM Oligo dT primer (Ambion), 1 µM random decamer primers (Ambion), 1 unit of Omniscript reverse transcriptase (QIAGen), diethyl pyrocarbonate in water (DEPC-H₂O), and 2 µg of total RNA. Mixtures were incubated at 37°C for 60 min for reverse transcription and then at 92°C for 10 min to inactivate the enzyme. Both incubations were carried out in a DNA Engine Peltier Thermal Cycler (MJ Research). Reaction products were kept at 4°C until ready to be used in the subsequent PCR. PCR was performed according to the following protocol: each 50-µl reaction contained 1× PCR buffer (Promega), 50 µM each of dCTP, dATP, dGTP, and dTTP (Promega), 0.5 µM β-actin primer pair (Ambion), 2.5 unit of Taq Polymerase (Promega), 0.5 µM c-MYC or hTERT primer (see below), 0.1% DEPC-H₂O, and 2 µl of the reverse transcriptase reaction described above.

Primer Sequences

The primer sequences used were:
- c-MYC (upstream), 5′-AGAGGAACTGCGCTCCTCC-3′; c-MYC (downstream), 5′-AGGTTTTGCTCCTGTTTG-3′ (product length, 2166 bp);
- hTERT (upstream), 5′-GCCCTGTTGCAGCTTCTCTCA-3′; hTERT (downstream), 5′-CCCCAAA-TTTGACCCACAG-3′ (product length 1493 bp). The reactions were incubated in a DNA Engine Peltier Thermal Cycler as follows: 95°C, 5 min; (95°C, 1 min; 59°C, 1 min, 10 s; 72°C, 1 min, 30 s) 25× for c-MYC or 30× for hTERT; 72°C, 5 min. PCR products were then kept at 4°C until they were electro- phoresed.

Northern Blot Analysis

Selected results obtained by cDNA microarray analysis were confirmed experimentally by Northern blot analysis. Briefly, equal amounts of total RNA from HeLa S3 were size separated on a 1% denaturing formaldehyde agarose gel, transferred to a nylon membrane, and hybridized with radiolabeled probes specific to the gene to be analyzed. Probe templates were obtained by PCR amplification of the cDNA insert from the respective IMAGE Consortium clone used on the cDNA microarrays.

Probe Preparation

Human cDNA bacterial clones were purchased from Research Genetics (Huntsville, AL). Referred to as gf200, the set consists of 5184 sequence-validated IMAGE clones representing known genes of interest not found in gf200 were purchased from Research Genetics and included in the microarray. After printing, the slides were placed in a humidity chamber overnight in the dark to rehydrate the arrays. The following day, slides were washed for 1 min in 0.1% SDS and 1 min in double-distilled water at room temperature. Slides were then submerged in 240 ml of 75% v/v water/ethanol solution into which 0.6 g of sodium cyano-borohydride had been freshly dissolved. After 5 min at room temperature, slides were washed four times in double-distilled water for 2 min and spun dry at 500 × g for 1 min. Slides were stored in the dark at room temperature and ≤40% humidity until use.

Target Preparation

Fluorescent first-strand cDNA was made from 4 µg of polyA⁺ RNA in the presence of 50 µM Cy5-dCTP or Cy3-dCTP in a 25-µl volume containing 500 ng of oligo (12–18 dt), 1× Superscript buffer, 400 units of Superscript II, 3.3 units of RNase inhibitor (all from Life Technologies, Inc., Grand Island, NY), 400 µM each of dGTP, dATP, and dTTP, 100 µM dCTP, and 10 mM DTT. All reagents except the Superscript II were mixed on ice and placed at 65°C for 5 min and then at 25°C for 5 min, at which point the Superscript was added, and the mixture was heated to 42°C for 2 h. The mRNA template was hydrolyzed by heating the reaction for 5 min at 95°C, adding 6.25 µl of 1 M NaOH, and incubating for 10 min at 37°C. Neutralization was achieved by the addition of 6.25 µl of 1 M HCl. Labeled cDNA from two reactions (one Cy3 labeled, one Cy5 labeled) was combined and purified on a Microcon-50 column using four buffer exchanges (the first three were double-distilled water, the final exchange was 10 mM Tris-HCl, pH 7.5). After elution from the column, the probe was lyophilized to dryness and resuspended in 10 µl of hybridization buffer (2× SSC, 0.1% SDS, 100 ng/µl Cot1 DNA, and 100 ng/µl oligo dA), denatured by boiling for 2.5 min, and added to a denatured microarray (slide was boiled for 2 min in double-distilled water, plunged into room temperature ethanol, and spun dry at 500 × g). A coverslip (22 × 22 mm) was applied, and the array was placed in a hybridization chamber (GeneMachines) at 62°C for 18 h. After hybridization, slides were washed by placing them into 50-ml conical tubes containing 2× SSC, 0.1% SDS for 5 min; 0.06× SSC, 0.1% SDS for 5 min; and 0.06× SSC for 2 min, all at room temperature. Slides were scanned for Cy3 and Cy5 fluorescence using an Axon GenePix 4000 microarray reader (Axon Instruments, Foster City, CA) and quantitated using GenePix software. The 8226/S and 8226/Dox6 hybridizations were performed three times, and the
buffer diluted in NP40 lysis buffer. Gels were run on an adjustable vertical slab gel apparatus (CBS Scientific Co.) at 100–120 V until the dye front ran off the bottom of the gel. After electrophoresis, gels were cropped of their stacking component and immersed in cold (4°C) Towbin transfer buffer (33). Protran nitrocellulose membrane material (Schleicher and Schuell, Inc.) and 3M Whatman filter paper (Bio-Rad) were cut to match the size of the gels and immersed in cold transfer buffer as well. The transfer stack was assembled according to published procedure (33), and proteins were transferred for 2.5 h in a model EBU-102 transfer tank (CBS Scientific Co.) at 300 mA using an EC-3000P power source (EC Apparatus Corp.). Membranes were blocked overnight with 5% nonfat dry milk in TBS-T and blotted with a 1:1000 dilution of c-MYC monoclonal antibody (Neomarkers) in blocking buffer for 1 h. Membranes were then washed three times in blocking buffer, and bound antibodies were localized with a 1:5000 solution of horseradish peroxidase-labeled goat-antimouse immunoglobulin. Protein bands were then detected using the Phototype-HRP Detection kit (Cell Signaling).

In Vivo Activity of TMPyP2 and TMPyP4. Female nude mice weighing ~20 g were implanted s.c. by trocar injection with MX-1 mammary tumor cells or PC-3 human prostate carcinomas harvested from cell cultures, both of which have elevated c-MYC levels. For each group, 10 mice with tumors were used, each of which was ear tagged and followed individually throughout the experiment. Mice were weighed twice weekly, and tumor measurements were taken by calipers twice weekly, starting on day 1. These tumor measurements were converted to mg tumor weight by \(L^2 \times W/2 \) (where \(L \) is length and \(W \) is width), and from these calculated tumor weights the termination date was determined.

In the MX-1 model, after tumors reached a weight of 100 mg, animals were administered cyclophosphamide (150 mg/kg, i.p., q.d. \(\times 1 \)), which left the mice with a minimum of tumor burden. Animals were then pair-matched into groups of eight mice each. Treatment with TMPyP4 (10 and 20 mg/kg, i.p., two times weekly) was then started and continued until the end of the study. Survival, or time to reaching a 2-g tumor size, was the primary efficacy end point of this study.

Animals with PC-3 injected cells were allowed to form tumors of ~60 mg in weight, at which time the animals were pair-matched into treatment and control groups. The administration of drugs or vehicle began the day the animals were pair-matched (day 1), and all injections were done i.p. Porphyrins were formulated for injection in distilled water and administered at 40 mg/kg on a q.d. \(\times 5 \) schedule. The experiment was terminated when control tumors reached a size of 2 g.

Results

TMPyP4 Reduces Telomerase Activity in Cell Culture. It has already been established that TMPyP4 can bind to and stabilize DNA-G-quadruplex structures in human telomeric sequences (34). Knowing this, we were interested in the effect that this interaction might have on telomerase activity. MiaPaCa-2 cells were treated with 100 \(\mu M \) TMPyP4 for 12,
TMPyP4 Causes a Decrease in c-MYC Expression. To verify the effect on c-MYC expression by TMPyP4, Northern Blot analysis was performed for the c-MYC transcript. HeLa S3 cells were treated with 100 μM TMPyP4 for 12, 24, 36, and 50 h, and the total RNA was extracted, electrophoresed, and used as a target for Northern Blot analysis, with labeled c-MYC cDNA as a probe. The results are shown in Fig. 4. As is evident, there is an overall decrease in the abundance of c-MYC mRNA with continued exposure to TMPyP4.

A Comparison of TMPyP2 and TMPyP4 in the cDNA Microarray Shows Specific Down-Regulation of c-MYC and Downstream-regulated Genes by TMPyP4. HeLa cells were treated with TMPyP2 or TMPyP4 at 100 μM for 12, 24, 36, and 48 h before isolation of the RNA for microarray analysis. Fig. 3 shows a sample microarray slide for TMPyP4. The results from the TMPyP4 and TMPyP2 microarrays were compared in two ways, as shown in Tables 1 and 2. Table 1 shows those genes whose expression was altered by at least 3-fold by either TMPyP2 or TMPyP4, and Table 2 shows those genes altered only in TMPyP4-treated cells. The results show that a subset of genes is responsive to both TMPyP2 and TMPyP4 treatment (Table 1). These include genes involved in the oxidative stress response (superoxide dismutase) and metallothionein genes. A number of genes were also affected uniquely by TMPyP4. This group includes the proto-oncogene c-MYC as well as several c-MYC-regulated genes. Other cell cycle regulators and proto-oncoproteins were also influenced by TMPyP4 treatment (Table 2).

It is of interest that among these uniquely affected genes are the proto-oncogenes c-FOS and c-MYB, which have been shown, along with c-MYC, to contain sequences in their promoters conducive to the formation of G-quadruplex structures (6).
TMPyP4 Down-Regulates c-MYC and hTERT

hTERT are expected. Furthermore, this likely explains the apparent inhibition of telomerase we observed in earlier experiments using the TRAP assay.

TMPyP4 Causes a Decrease in c-MYC Protein Expression. A Western Blot analysis was performed to determine whether there was a corresponding decrease in the c-MYC protein levels. MiaPaCa-2 pancreatic cancer cells were treated with 100 μM TMPyP2 or TMPyP4 for 12, 24, 36, and 48 h, the total protein was extracted and electrophoresed by SDS-PAGE, and the electrophoresed protein was used as a target for Western Blot analysis. A monoclonal antibody to human c-MYC was used as a probe to specifically detect this transcription factor. The results are shown in Fig. 6A. Parallel with the RT-PCR and Northern Blot analysis results presented earlier, TMPyP4 caused a decrease in the amount of c-MYC protein present. TMPyP2 had an insignificant effect.

TMPyP4 Is Able to Slow the Growth of Human Breast (MX-1) and Prostate Tumor (PC-3) Xenografts in Mice. The models chosen for evaluation of TMPyP4 were the MX-1 mammary chemoadjuvant model and a PC-3 prostate model, both of which have elevated c-MYC levels and high telomerase activity (35). In the MX-1 model, after tumors reached 100 mg, animals were administered cyclophosphamide (150 mg/kg, i.p., q.d. × 1), which left the mice with a minimum of tumor burden. Animals were then pair-matched into groups of 20 mice each. Treatment (day 1) with TMPyP4 (10 and 20 mg/kg, i.p., two times weekly) was then started and continued until the end of study. Survival, or time to reaching a 2-g tumor size, was the primary efficacy end point of this study. This study design was developed to simulate a clinically relevant condition that occurs in women with breast cancer after aggressive cytotoxic therapy.

The data in Fig. 7A show the survival curve for animals administered vehicle versus TMPyP4 at 10 mg/kg (i.p., two times weekly). Treatment with TMPyP4 resulted in an increase in survival compared with controls. At days 60 and 100, survival was 70% versus 45% and 55% versus 45% for animals administered TMPyP4 versus vehicle, respectively. Treatment with TMPyP4 at 20 mg/kg (i.p., two times weekly) was stopped at day 60 because of toxicity (data set not shown).

We have also evaluated TMPyP2 versus TMPyP4 in a PC-3 prostate carcinoma model in which c-MYC is overexpressed. In this model, animals were not pretreated with a cytotoxic agent. Tumor weights were evaluated at days 1, 4, 8, 11, 15, and 18, and mean tumor growth rates were calculated (Fig. 7B). Control tumors grew at a rate of 132 ± 15 mg/day, whereas TMPyP2 and TMPyP4 treatment slowed tumor growth to 104 ± 16 mg/day and 50 ± 6 mg/day, respectively. Only TMPyP4 caused a significant decrease in mean tumor growth rates (P < 0.05 by ANOVA).

In summary, we have clearly documented that TMPyP4 has activity in an adjuvant model of breast cancer and stand-alone activity in PC-3. Significantly, c-MYC is overexpressed in both MX-1 and PC-3.

Discussion

Previous studies from our group have shown that the cationic porphyrin TMPyP4 can bind to and stabilize G-quadruplexes formed in human telomeric sequences, thus interfering with the ability of telomerase to extend telomeric DNA repeats (8). We have also shown, in this and previous studies, that TMPyP4 reduces telomerase activity in cell extracts. This is in contrast to TMPyP2, which has a much less pronounced effect on the activity of telomerase. This suggests that the effects of TMPyP4 may not be limited to its interaction with telomeric G-quadruplexes.

To better understand the mechanistic basis of the observed effects of TMPyP2 and TMPyP4 on telomerase activity, we have examined changes in gene expression after treatment with these compounds. The expression levels of a number of genes, as determined by cDNA microarray analysis, were found to be changed by treatment with these molecules. A subset of genes was affected by both porphyrins. These genes are related to oxidative stress response, indicating that treatment with these porphyrins may result in oxidative damage. This is not surprising, because porphyrins in general have been used in photodynamic therapy for their ability to produce reactive oxygen (36); however, attempts were made to minimize the exposure of treated cells to light. Another group of genes was altered uniquely by TMPyP4,

Table 1 Genes affected by both TMPyP4 and TMPyP2 treatment

<table>
<thead>
<tr>
<th>Induced genes</th>
<th>Down-regulated genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation reduction genes</td>
<td>Metallothionein genes</td>
</tr>
<tr>
<td>Cystathionase</td>
<td>Metallothionein 2H</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>Metallothionein 1L</td>
</tr>
<tr>
<td>Cytochrome p450</td>
<td>Metallothionein 1H</td>
</tr>
<tr>
<td>Thiorodoxin</td>
<td>Metallothionein 2A</td>
</tr>
<tr>
<td>Superoxide dismutase-1</td>
<td></td>
</tr>
<tr>
<td>Superoxide dismutase-2</td>
<td></td>
</tr>
<tr>
<td>Glutathione S-transferase M4</td>
<td></td>
</tr>
<tr>
<td>Proteasome genes</td>
<td></td>
</tr>
<tr>
<td>Macropain</td>
<td></td>
</tr>
<tr>
<td>Macropain 26S</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Effects of TMPyP4 treatment on gene expression

<table>
<thead>
<tr>
<th>Induced genes</th>
<th>Down-regulated genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptosis genes</td>
<td>c-MYC-associated genes</td>
</tr>
<tr>
<td>Caspase 1</td>
<td>c-MYC</td>
</tr>
<tr>
<td>Oncin decarboxylase</td>
<td></td>
</tr>
<tr>
<td>CDC25A</td>
<td></td>
</tr>
<tr>
<td>Cell signaling genes</td>
<td>Cell cycle genes</td>
</tr>
<tr>
<td>TG-β</td>
<td>CDK-4</td>
</tr>
<tr>
<td>CDK-4</td>
<td></td>
</tr>
<tr>
<td>CDK-6</td>
<td></td>
</tr>
<tr>
<td>CD9</td>
<td>Cyclin B1</td>
</tr>
<tr>
<td>CO-29</td>
<td></td>
</tr>
<tr>
<td>RAB-1A</td>
<td></td>
</tr>
<tr>
<td>RAB9</td>
<td></td>
</tr>
<tr>
<td>Proliferation-associated gene A</td>
<td></td>
</tr>
<tr>
<td>DNA repair genes</td>
<td></td>
</tr>
<tr>
<td>MLH1</td>
<td>c-FOS</td>
</tr>
<tr>
<td>ERCC5</td>
<td>c-MYC</td>
</tr>
<tr>
<td>JUN-B</td>
<td></td>
</tr>
<tr>
<td>c-MYB</td>
<td></td>
</tr>
<tr>
<td>STAT-1</td>
<td></td>
</tr>
<tr>
<td>Heat shock genes</td>
<td>Oxidation reduction genes</td>
</tr>
<tr>
<td>HSP27</td>
<td>Cytochrome C1</td>
</tr>
<tr>
<td>HSP10</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from mct.aacrjournals.org on August 14, 2017. © 2002 American Association for Cancer Research.
including a number of cell cycle regulatory genes and proto-oncogenes. Most interestingly, these data show that TMPyP4 can reduce the expression of the c-MYC oncogene as well as several c-MYC-regulated genes, implicating c-MYC down-regulation as a potential target pathway for TMPyP4. This is of particular interest in light of the fact that the catalytic subunit of telomerase, hTERT, is transcriptionally regulated by c-MYC. Therefore, because TMPyP4 inhibits c-MYC expression and hTERT is controlled by this transcription factor, this explains the effect of TMPyP4 on telomerase activity.

We confirmed this model by showing that TMPyP4 decreases c-MYC expression at the RNA and protein levels in MiaPaCa-2 and HeLa S3 cells. In contrast, TMPyP2 had a much reduced effect in all of these assays compared with TMPyP4. TMPyP2 has a much lesser ability to bind to and stabilize G-quadruplex DNA structures (34), suggesting to us that the unique effects of TMPyP4 on gene expression may be mediated through an interaction with such a secondary DNA structure. The c-MYC promoter region contains a stretch of guanine-rich DNA (the NHE III) that can form G-quadruplexes. Human telomeres, with their repeats of the hexanucleotide (TTAGGG)n, also have the potential to form G-quadruplexes. Of considerable interest to us now is the mechanism by which TMPyP4 mediates its effects on c-MYC and telomerase and whether this is related to the binding of TMPyP4 to G-quadruplex structures in the NHE III.

The inhibition of c-MYC expression in vitro by TMPyP4 accounts for at least part of the reduction of telomerase activity by this molecule. The c-MYC proto-oncogene, as mentioned earlier, plays a role in the expression of hTERT, the catalytic subunit of the telomerase holoenzyme (13–15). This is likely not the only mechanism of telomerase inhibition by TMPyP4, however. It has been demonstrated previously that TMPyP4 can inhibit telomerase activity in a cell-free system using the direct assay (IC50, 6 μM; Ref. 37). This suggests that TMPyP4 could be interacting with either the telomere or the telomerase holoenzyme complex itself.

In support of the observations made here of down-regulation of c-MYC and hTERT, it has also been demonstrated that in multiple myeloma cells there is more pronounced telomere shortening and apoptosis by TMPyP4 than by TMPyP2.
As further validation of the potential anticancer activity of G-quadruplex-interactive agents, we performed in vivo studies in mice, using two well-established tumor models. TMPyP4 was tested as a stand-alone agent and in an adjuvant chemotherapy model with a cytotoxic compound, cyclophosphamide, and we found in both cases that TMPyP4 was able to prolong survival and decrease tumor growth, compared with TMPyP2 and untreated controls. These results are significant, given that TMPyP4 has low cytotoxicity in vitro (8), suggesting that TMPyP4 acts as a cytostatic agent. These results also suggest that the effects of TMPyP4 are mediated through a G-quadruplex-dependent mechanism, because treatment with TMPyP2 showed no significant effects on reduction of tumor growth. Blackburn et al. (38) has proposed a telomere capping function for telomerase and that simultaneous telomere injury and depletion of telomerase may have more detrimental effects than either event alone. Agents such as TMPyP4 that fortunately have both effects (i.e., telomere injury through G-quadruplex formation and down-regulation of hTERT) may be more efficacious than other agents that only affect telomeres.

Both the c-MYC and telomerase proteins are valuable targets for anticancer drug development, because both are abnormally overexpressed in a very substantial proportion of human malignancies. We have found that the cationic porphyrin TMPyP4 is not only able to down-regulate the expression and activity of both of these gene products but also has significant antitumor activity in vivo, making it a worthwhile lead compound for further development.

Acknowledgments
We are grateful to Dr. David M. Bishop for proofreading and editing the manuscript and for preparing the final version of the figures.

References
Erratum

In the article by Bradshaw et al., entitled “Preclinical Evaluation of Amino Acid Prodrugs of Novel Antitumor 2-(4-Amino-3-Methylphenyl)Benzothiazoles,” which appeared in the February 2002 issue of MCT (pp. 239–246), panels B and C of Fig. 3 were transposed. The correct figure appears below.

Fig. 3. A, effect of amine 2 on the growth of MCF-7 and MDA-MB-435 tumor xenografts transplanted in opposite flanks of the same mouse. Effect of 2b on the growth of IGROV-1 ovarian (B) and MCF-7 breast tumor xenografts (C and D).
Correction

In the article by Grand et al., entitled “The Cationic Porphyrin TMPyP4 Down-Regulates c-MYC and Human Telomerase Reverse Transcriptase Expression and Inhibits Tumor Growth in Vivo,” which appeared in the June 2002 issue of MCT (pp. 565–573), a reference was mistakenly omitted from “Materials and Methods.” The following text and reference citation should have appeared under the “Target Preparation” heading of the article:

All cDNA microarray studies were performed by the Microarray Core Facility at the Arizona Cancer Center. Probe preparation, microarray fabrication, and target preparation were performed as described in Watts et al. [J. Pharmacol. Exp. Ther., 299: 434–441, 2001] with the following modifications: polyA+ RNA from TMPyP2- or TMPyP4-treated and untreated HeLa S3 cells was labeled with Cy5-dCTP and that from untreated cells with Cy3-dCTP. Hybridizations were performed in duplicate for each timepoint (12, 24, 36, and 48 h).

The omitted reference is:

The Cationic Porphyrin TMPyP4 Down-Regulates c-MYC and Human Telomerase Reverse Transcriptase Expression and Inhibits Tumor Growth in Vivo

1 This research was supported by grants from the NIH and the Arizona Disease Control Research Commission.

Cory L. Grand, Haiyong Han, Rubén M. Muñoz, et al.